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We propose a method for automatic musical key extraction using a two-stage spectral
dimensionality reduction (two consecutive mappings). First we build a data set represent-
ing the 24 Western musical keys, and then we use a nonlinear dimensionality reduction
method, in order to understand the true manifold on which the musical keys lie. The order
of the keys along the manifold is perfectly correlated with a cognitive model for the key
space. We exploit this manifold in order to extract the musical key from a musical piece.
Furthermore we propose three classifiers using the extracted manifold. The Classifiers
work in two stages, by first estimating the mode and then by estimating the key within
the estimated mode. Finally we examine our method on The Beatles data set and
demonstrate its improved performance compared to various existing methods.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Most Western musical pieces were written using the 24
possible diatonic musical keys. Musical keys describe the
relation among pitches in the piece. This musical feature,
which is retrievable by most musicians, is difficult to extract
automatically using a computer. In this study we develop and
examine an algorithm for automatic key extraction from raw
data. Automatic key extraction has driven much recent
research due to a large number of applications involved, for
example, content based search [1], playlist generation, mosai-
cing, automatic accompaniment and disc jockey work. Recent
studies focus on the task of extracting a musical key from raw
data without the use of symbolic transcription; these studies
have achieved reasonable results but cannot compete with a
gifted musician.

To imitate the musician's intelligence, it is helpful to
understand how an amateur musician might perform the
m).
task (at least according to the authors' own experience). By
listening to a musical piece, the musician could create a
tonal description (pitches or notes) of the song. Then,
possibly by playing a musical instrument, the musician is
able to determine which key is most appropriate for the
given piece (a more proficient musician could improve this
procedure). Most studies try to imitate this two-stage task
by first extracting a tonal representation of the musical
piece using a histogram of pitches [2] (12 semitones of the
chromatic scale) represented in the chroma domain, or
using a pitch class profile [3]. In the second stage the
representation is classified into one of the 24 possible
Western keys.

For the classification task Krumhansl and Kessler [4]
have performed a cognitive probe-tone experiment and
derived 24 typical key chroma profiles. These profiles aim
to describe the significance of each pitch to the musical
key; they represent the typical distribution of notes in a
musical key. The profiles were modified by Temperley [5]
and Gomez [6], who improved the classification results
when analyzing Western music. The classification is per-
formed by computing the correlation values to all 24
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profiles and estimating the most prominent key. Recent
algorithms such as [7] build a training set and derive a
statistical average profile to represent each of the 24 keys.
Both the statistical and the cognitive approaches for
creating a typical profile can be described geometrically
by a partition of the chroma space into 24 unrelated zones.
However, the computation of the partition differs between
the methods. In our study we will use a non-linear
dimensionality reduction algorithm for the chroma space
partition.

Many studies have been done in the field of cognitive
music to model the structure of the tonal space [8]. One of
the oldest models of this kind, which was developed by
Leonard Euler in 1739 [9], is called Tonnetz (Tonal net-
work), ordering all the harmonical similarities between
notes in a 2-dimensional diagram. Other examples of these
models are the Circle-of-Fifth, a double helix [10] and a
torus [4]. In [11, 8] dimensionality reduction methods
were used to visualize and confirm the existence of low
dimensional structures in the tonal space. Chuan and
Chew [12] used a Spiral Array space and proposed the
Center of Effect model. According to this model each key is
represented by a point on a spiral (more precisely a helix)
and the classification is done by measuring the geodesic
distance between points on the spiral. This approach can
be viewed as creating an artificial manifold, then project-
ing a new data point to the manifold, and finally classifying
the data using a partition of the manifold. Recent works
by Peeters [13] use a Hidden Markov Model for the
classification task.

The first hurdle is to extract the exact pitches from the
musical piece. Due to the physical property of most
musical instruments, playing a single note generates a
fundamental frequency and all of its harmonics. This
creates a problem when trying to extract pitches from a
polyphonic musical piece because the harmonics of all of
the instruments and human voices are mixed together.
This problem can be solved by identifying the fundamental
pitch and removing the harmonics from the spectral
representation. These techniques have been used by
Pauws [14]. Such models take into account the perceptual
pitch and the musical background simultaneously. Chuan
and Chew [12] proposed using a fuzzy analysis system, and
Cremer and Derboven [15] proposed an overtone removal
process. An alternative solution, implemented by Gomez
[6], extends the Pitch Class Profile to Harmonic Pitch Class
Profile by considering a theoretical amplitude contribution
of the first four harmonics of each pitch within the three
main triads in a given key. Genussov and Cohen [16]
proposed approaching the problem using sparse represen-
tation methods. Various recent studies used Diffusion
Maps (DM) [17,18], a non-linear dimensionality reduction
method to extract and analyze unknown parameters from
physical systems. These include among others: speaker
identification [19], audio-visual recognition [20], classifi-
cation of skeletal fibers [21]. In [8] tonal atonal classifica-
tion was performed after applying DM to chroma repr-
esentations of audio signal.

In this study, we extend this technique and address the
challenging related task of key extraction. In the first part,
we demonstrate the use of a dense DM for classification
tasks of time varying signals. We show the improvement
resulting from a dense time-domain blocks-processing,
and we propose a novel approach for tuning the width-
parameter of the DM kernel. The resulting dense diffusion
mapping elucidates the low dimensional structure on
which the keys lie (thereby corroborating the results of
[11,8,22,23]). In the second part we use a two-stage
mapping (one for the mode the other for the key) to
propose three new classifiers of musical keys. Finally, we
use the Beatles 179 songs data set as a test set and
demonstrate the advantages of the proposed method
compared to recent state-of-the-art algorithms.

The structure of the paper is as follows: Section 2
describes the methods and algorithms used and proposed
in this work. In Section 3, we describe how we build and
analyze the 24 keys training set. Experimental results are
presented and analyzed in Section 4, followed by conclu-
sions in Section 5.
2. Methods and algorithms

2.1. Tonal description

The first step of key extraction from raw audio data is
extracting some tonal description of the musical piece. It is
difficult to create an accurate transcription of the piece.
However, we are not interested in a time representation of
the piece, but rather in finding a description of the spectral
energy corresponding to the pitches throughout the piece.
We use a 12-D feature vector called Pitch Class Profile
(PCP) to represent the tonal properties of the musical piece
[2]. The PCP is derived from the chromatic scale. This scale
is a 12 note musical scale, spaced with equal distances on a
logarithmic scale starting at a basic note. It is a frequency
domain vector showing the distribution of energy along
the pitch classes [6] of a given musical piece. The frequen-
cies are mapped onto a limited set of 12 chroma values (i.
e., all octaves are wrapped into one). A common method
for computing a PCP is the constant Q transform (CQT) [24]
(used by [25] to track modulations in audio), a discrete
spectral analysis of logarithmically spaced bins (similar to
DFT). The L-bins CQT coefficients of a signal s½n� are
computed as follows. The frequency range is first deter-
mined by selecting its lowest frequency fmin and its high-
est frequency fmax. Then, denoting the desired number of
bins per octave as β, the frequency center of the ℓ-th
frequency bin set to f ℓ ¼ fmin � 2ℓ=β , so that the total
number of bins is L¼ β � log2ðfmax=fminÞ. The constant
frequency-to-binwidth ratio is determined as Q ¼
ð21=β�1Þ�1. The CQT coefficients are then given by

scq ℓ½ � ¼ 1
Nℓ

XNℓ �1

n ¼ o
wℓ n½ � � s n½ � � e� j2πnQ=Nℓ ; ℓ¼ 0;1;2;…; L�1; ð1Þ

where wℓ½n� is a window-function of n for extracting the
ℓ-th CQT coefficient, and Nℓ is the length of that window.
The minimum required length of wℓ½n� is given (in sam-
ples) by Nℓ ¼ ⌈Q f s

f ℓ
⌉, where f s is the sampling frequency.

Using scq ¼ ½scq½1�;…; scq½72��, we compute the PCP vec-
tor cs of s½n� by summing all corresponding bins from
different octaves into a 12-D vector cs whose bth element
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is calculated by

cs½b� ¼
XP�1

p ¼ 0

jscq½bþpβ�j ð2Þ

where b ð1rbr12Þ is the chroma bin number, and
P ¼ ⌈L=β⌉¼ 6 is the total number of octaves in the CQT.
In the current study, the PCP is further normalized to a
maximal value of 1.

2.2. Dimensionality reduction

All dimensionality reduction algorithms aim at repre-
senting a given data set: X ¼ fx1; x2;…; xMgARN by
Z ¼ fz1; z2;…; zMgARS such that S

Ã
Ä
a
Á
A N. Many

methods exist for this task, e.g., Principal Component
Analysis (PCA) [26] and Multidimensional Scaling (MDS)
[27]. However, we assume that our data does not lie on a
linear manifold, so we seek a method which at the same
time preserves the local structure of the data. In our
context the local structure is the connectivity between
harmonically similar musical keys. The use of DM is well
suited for this task as a nonlinear dimensionality reduction
method. This method can help to model the relation
between intrinsic latent parameters of musical pieces
[28], such as Key, Timbre, Genre, Harmonic measures and
more.

As described above, we have computed a 12-D repre-
sentation of any given musical piece, residing in the non-
negative orthant of a 12-D space. However, this space is
not fully occupied with musical data; the set of “legal” PCP
vectors should be relatively sparse. This observation could
be explained by the rules musicians obey to when playing
music. For example, a uniformly spread PCP is highly
unlikely to be extracted from a Western musical piece.
Examining other similar examples will conclude in many
other unoccupied points in the chroma space. We there-
fore seek a manifold which represents the “legal” chroma
space of musical compositions. We use DM to extract only
the meaningful dimensions from our chroma representa-
tion (PCP), and to find the manifold representing musical
data within the 12-D space.

2.3. Diffusion maps

The DM framework is constructed by enforcing a
Markov random walk model, based on the local connectiv-
ities of data points [8]. The randomwalk enables capturing
the local relations within data points. Given a high
dimensional data set X ¼ fx1; x2; x3;…; xMg �RN , the DM
framework could be summarized by the following steps:
1.
 Choose a kernel function K:X � X⟶R, represent-
ed by a matrix KARM�M which satisfies for all
ðxi; xjÞAX the following properties: symmetry
Ki;j ¼Kðxi; xjÞ ¼Kðxj; xiÞ; positive semi-definiteness
8viARMjvTi KviZ0; nonnegative values Kðxi; xjÞZ
0. These properties guarantee real eigenvectors and
nonnegative real eigenvalues of the matrix K . A
common example for such kernel is a Gaussian with
an L2 norm as the affinity measure between two data
vectors: Ki;j ¼ expf�‖xi�xj‖2=2σ2
x g. P
2.
 By normalizing the kernel using D: Di;i ¼ jKij, we
compute the following matrix elements:

Pi;j ¼Pðxi; xjÞ ¼ ½D�1K �i;j: ð3Þ
The resulting matrix PARM�M can be viewed as the
transition kernel of a (fictitious) Markov chain on X,
such that the expression ½Pt �i;j ¼ ptðxi, xjÞ describes
the probability of transition in t steps from point xi
to point xj.
3.
 Apply spectral decomposition to the matrix P, or to
one of its powers Pt , to obtain a sequence of
eigenvalues fλmg and normalized eigenvectors
fψmg satisfying Pψm ¼ λmψm;m¼ 0;…;M�1.
4.
 Define a new representation for the data set X:

ΨtðxiÞ: xi⟼ λt1ψ1ðiÞ; λt2ψ2ðiÞ;
h

λt3ψ3ðiÞ;…; λtM�1ψM�1ðiÞ
iT

ARM�1; ð4Þ

where t is the selected number of steps and ψmðiÞ
denotes the ith element of ψm.
The main idea behind this representation is that the
Euclidian distance between two data points in the new
representation is equal to the following weighted L2
distance between the conditional probabilities ptðxi; : Þ
and ptðxj; : Þ (the i-th and j-th rows of Pt), the following
is usually called the Diffusion Distance [17]:

D2
t ðxi; xjÞ ¼ ‖ΨtðxiÞ�ΨtðxjÞ‖2 ¼

X
mZ1

λ2tm ðψmðiÞ�ψmðjÞÞ2

¼ ‖ptðxi; : Þ�ptðxj ; : Þ‖2W � 1 ; ð5Þ

where W is a diagonal matrix with elements:
Wi;i ¼ϕ0ðiÞ ¼Di;i=

PM
i ¼ 1 Di;i. A proof of this equality

can be found in [17].

5.
 Choose a desired accuracy δZ0 for the diffusion

distance defined above: sðδ; tÞ ¼maxfℓAN

such that jλℓjt4δjλ1jtg. Using the desired accuracy,
define a new mapping of sðδ; tÞ dimensions

ΨðδÞ
t :X- λt1ψ1ðiÞ; λt2ψ2ðiÞ; λt3ψ3ðiÞ;…; λtsψ sðiÞ

h iT
ARsðδ;tÞ
Our choice of affinity measure in this work is an exponen-
tial kernel based on the cosine affinity between feature
vectors. More specifically, denoting the 12-dimensional fea-
ture vector of the i-th musical frame as xi, let
ηi9ð1=12ÞP12

b ¼ 1 xi½b� denote its average value, and define
the average-subtracted features as ~xi9xi�ηi � 1 (where 1
denotes a 12� 1 all-ones vector). The cosine affinity (which in
our case is actually the correlation coefficient) between the i-
th and j-th feature vectors is computed using

Tij9
~xT
i ~xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ~xT
i ~x iÞð ~xT

j ~x jÞ
q ; i; j¼ 1;…;M; ð6Þ

and the respective kernel-based distance measure is given by

Kij σð Þ ¼ κ xi; xj;σ
� �

9exp
Tij�1
2σ2

� �
; i; j¼ 1;…;M; ð7Þ
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Fig. 1. The plot has two asymptotes. σ should be chosen in between the asymptotes, in the range where the plot appears linear. Two reasonable selections
are indicated; selection “b” agrees with our alternative method.
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where σ denotes an exponential-width parameter, which will
be discussed in more detail in Section 2.5.

This distance measure neglects the influence of the
chroma's energy. This suits our purpose as the chroma's
energy has no impact on the musical key. Our main
purpose is to classify the musical data, so we use the
matrix P without running its powers (t ¼ 1); when the
data lies continuously on a manifold (as in our case),
running powers of P create more possibilities for connec-
tions on the graph of the data and make the classification
task more difficult. The number of diffusion dimensions
we use in this study varies from one classifier to another;
however, the highest dimension used is sðδ; tÞ ¼ 12,
namely the full dimension of the features vector.

2.4. Artificial manifold

For effective use of DM, dense sampling of the data is
required, so as to allow each data point to have a sufficient
number of close neighbors, namely to lie on a dense
manifold. In this work (as in many others in machine
learning) we have collected a training set from indepen-
dent sources. In general, such data does not lie on a dense
manifold. For this reason we propose using overlapping
time frames to artificially create a dense manifold. We
chose to use successive frames of 30 s length with a 28-s
overlap, each data point represents the average PCP vector
of all the computed windows within the 30 s frame. The
overlap guarantees that there is only a slight change in the
PCP vector from point to point. In Section 3 we will
present an extracted manifold constructed using our
proposed overlapping scheme.

2.5. The choice of σ

The behavior of our chosen exponent kernel is deter-
mined by the width parameter σ in (7). A correct choice of
σ preserves local connectivity and neglects the global
distances. If σ is too large, there is almost no preference
for the local connections and this method essentially
reduces to PCA. On the other hand if σ is too small, the
matrix K has many small off-diagonal elements, indicating
poor connectivity within the data [8]. For this very
common task in kernel-based methods several approaches
have been proposed in the literature. Some choose σ as the
standard deviation of the data, and this approach is good
for capturing most of the data. However, we seek a value of
σ which would be most effective for our classification task.
We first consider a scheme proposed by Singer et al. [29].
Their scheme aims to find a range of values for σ. The idea
is to compute the kernel at various values of σ and search
for the values where the Gaussian bell shape exists. The
proposed scheme can be implemented using the following
4 steps:
1.
 Compute: KðσÞ for several values of σ.PP

2.
 Compute: LðσÞ ¼

i j
KijðσÞ for these values.

Plot a logarithmic plot of LðσÞ (vs. σ).
3.

4.
 Choose σ between the two asymptotes on a linear

range of LðσÞ.
Note that the two asymptotes would always be
LðσÞ⟶σ-0

logðMÞ, and LðσÞ⟶σ-1
logðM2Þ ¼ 2logðMÞ, since for

σ-0, K approaches the Identity matrix, and for σ-1, K
approaches an all-ones matrix.

We applied this scheme to 8000 audio data points (the
selection of data points will be explained in Section 3) and
concluded a range of σA ½0:05–0:5�. The plot demonstrat-
ing this process using our data is presented in Fig. 1. The
plot has two asymptotes indicating two unwanted ranges
in which the Gaussian kernel is not suited for the data.

In this work we propose an alternative scheme for a
supervized selection of σ for classification tasks. Given a
training set X and given I known classes C1;C2;…;CI , with
G data points within each class (total data points: J ¼ G � I),
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Fig. 2. Full training set (8000 pieces) consists of classical and improvization pieces total length used for each key (counting only the first and last minute of
the classical pieces). Major keys – capital letter, Minor keys – minuscule letter.
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compute several diffusion maps for various values of σ
within the possible range. Using the sðδÞ leading coordi-
nates within each computed diffusion map Ψ ðσÞF�ðG�IÞ,
denote μi as the center of mass of class Ci, computed in
the diffusion coordinates, and μa as the center of mass of
all data points. Compute the average square distance of the
N data points from the center of mass within the class

Dci ¼
1
G

X
xn ACi

‖Ψ xnð Þ�μi‖
2: ð8Þ

Then compute the same measure for all of the data:

Da ¼ 1
J

X
xn AX

‖Ψ xnð Þ�μa‖
2: ð9Þ

Finally, find σ which minimizes the ratio

σ̂ ¼ arg
σ
min

PI
i ¼ 1 Dci

Da
: ð10Þ

The idea is that this σ inherits the inner structure of the
classes and neglects the mutual structure. Applying this
scheme to our 8000 data points, we conclude a value of
σ ¼ 0:078 as a solution of (10). While the method proposed
by Singer and Erban [29] provides a reasonable range for σ
(as evident in Fig. 1), our method suggests a more specific,
optimized value for σ. Nonetheless, our “optimal” value is
still in good agreement with one of the reasonable values
implied in Fig. 1.
2.6. Geometric harmonics

In order to extend the diffusion coordinates to a new
data point (unlabeled musical piece) without re-applying a
large-scale eigendecomposition, we use Geometric Har-
monics [30]. We denote the training set, which was used
to build the matrix P, as X, and the rest of the new data set
as Y (test set). The extended eigenvectors for a new data
point yAY are approximated as weighted sums of the
original eigenvectors, using our chosen kernel to compute
the weights

ψ̂ i yð Þ ¼ 1
λi

X
xj AX

P xj; y
� �

ψ i jð Þ; ð11Þ

and the new mapping vector for data point

Ψ̂ ðyÞ ¼ λ1ψ̂ 1ðyÞ; λ2ψ̂ 2ðyÞ; λ3ψ̂ 3ðyÞ;…; λM�1ψ̂M�1ðyÞ
� �

ARM�1

ð12Þ
The new coordinates in the diffusion space are only
approximated and the new data points have no influence
on the original map's structure.

3. Training and classification for the experimental results

In this study we used audio with a sampling rate
of f s ¼ 44:1 KHz and chose fmin ¼ 110 Hz (A2) and
fmax ¼ 7040 Hz (A8), so that with β¼ 12 bins per octave
we get Q � 16:8, and a total number of L¼ 72 bins. We set
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all the window sequences to standard rectangular win-
dows, all of the same length of Nℓ ¼ 6364, so that essen-
tially the resulting coefficients are standard Discrete-Time
Fourier Transform (DTFT) coefficients of a block of length
N1, taken on a logarithmic frequency-scale in the specified
range. When processing audio segments of 30 s (1,323,000
samples) we accumulated the absolute values of the
coefficients, extracted from all ⌊1;323;000=6364c ¼ 207
non-overlapping blocks.

We begin the key analysis by building a training set for
all 24 possible Western keys. We downloaded 16.7 h of
audio, out of which 35% were classical musical pieces by
composers such as Bach, Pachelbel, Beethoven, Chopin,
Wagner and many more. The classical pieces' keys were
annotated by their composers. The other 65% of audio
pieces are improvizations by amateur and professional
musicians, all tagged according to the appropriate key along
the improvization. These pieces include various instru-
ments such as piano, organ, guitar, violin and even a
quartet, and characterized by various genres such as rock,
jazz, blues and pop. In Fig. 2 the lengths of the collected
pieces are presented, indexed according to the tagged key.

For all pieces we ran a cross-annotation procedure; for
each segment we computed the PCP and calculated the
correlation value to the typical chroma profile [6] corre-
sponding to the tagged key. If this value was negative we
ignored the segment, if it was positive but lower than 0.5
we cross annotated it manually (by listening to the seg-
ment), otherwise we kept the segment and its original tag.
We chose 8000 data points representing all 24 Western
keys. Next, we applied random pruning so that the number
of data points for each key is 200. This resulted in two
training sets which consist of 2400 points each, one for the
12 major keys and the other for the 12 minors.

3.1. Low dimensional representation of keys

As explained in the first section, various low dimen-
sional structures have been proposed to order the relations
among keys and pitchs. For example, 2-dimensional mod-
els such as a tonal network and a circle, or higher
dimensional models such as a 4-dimensional torus, a helix
and more (see, for example, [9,10,12,4]). The Circle-of-
Fifths model was constructed according to the observation
that shifting a key by a perfect fifth results in a harmoni-
cally similar key, meaning that both keys share notes and
have many closely related harmonies.

Previous studies such as [11,8] have used dimensionality
reduction schemes on pitch or key representations and found
a correspondence between the extracted structure and Circle-
of-Fifth model. To corroborate this correspondence and vali-
date our training set, we applied DM to the training sets (both
major and minor), using the optimal σ value that we com-
puted according to the scheme explained in Section 2. Thenwe
observed the leading dimensions of our manifold and com-
pared them to the various geometrical models which result
from cognitive musical studies. The two leading dimensions of
the manifold for minor keys are presented in Fig. 3, and the
mean of the classes for major keys can be observed in Fig. 4.

Using the two leading dimensions of our manifold we
find a correlation to the Circle-of-Fifths, shape and the
exact key order. This model does not appear when apply-
ing standard PCA on our training set. Furthermore, an
examination of additional dimensions reveals a more
complex manifold describing the tonal space.

3.2. Mode classifier

The 24 musical keys can be divided into two groups, 12
major and 12 minor keys. The major and minor attributes
reflect the nature of a musical piece. For instance, the
minor mode suggests for most Western listeners a nega-
tive emotional feeling [31]. Classifying the most prominent
key from a musical piece is difficult due to the large
number of possible classes. Using DM for this task is
computationally expensive due to the large amount of
data needed for the training set. We propose an initial
classifier for the musical mode (i.e. major/minor) and a
second classifier for the best key within the 12 possible
keys. Both classifiers are based on DM, but use different
training data and different dimensions. For the mode
classifier we use 24 chroma profiles collected by Gomez
[6]. We look for the diffusion coordinate which best
describes the piece's mode, by looking for the coordinate
having minimum variance inside the major/minor class
and maximal variance between the classes; we do this by
minimizing the ratio between these variances. We find
that the 12-th diffusion coordinate (on Gomez' profiles),
computed using a kernel as in Eq. (7), with σ ¼ 0:1, best
describes the mode parameter (in a manner that there is a
binary separation between the modes). In Fig. 5, one can
see two examples of the 12-th diffusion coordinate
describing the 24 typical PCPs collected by Gomez [6]
and our minor keys training set, respectively.

Major pieces fall closer to �1 and minor pieces fall
closer to 1. However, many musical pieces combine the
two attributes throughout the piece and tend to fall closer
to 0. We use two thresholds for our mode estimator,
tH ¼ 0:5 and tL ¼ �0:5. We denote the minimum distance
to one of the 12 minor classes as MinDminor and the
minimum distance to one of the 12 major classes as
MinDmajor. Given a test set Y and a representation Ψ̂
computed using (11) and (12), our proposed classifier
could be implemented using Algorithm 1.

Algorithm 1. Mode classifier.

if ðψ̂ 12ðyÞZ0:5Þ then

ŷmode ¼Minor
else

if ðψ̂ 12ðyÞr�0:5Þ then
ŷmode ¼Major

else
if ðMinDmajorZMinDminorÞ then
ŷmode ¼Minor

else
ŷmode ¼Major
end if

end if
end if
This classifier exploits two different DMs, one built from
Gomez's profiles and the second built from our training



Fig. 3. Two dimensional representation of 2400 chroma vectors, sampled from pieces played in 12 minor keys. The Circle-of-Fifths order can be clearly
observed.

Fig. 4. The mean of the 12 major keys training set. The Circle-of-Fifths cognitive model appears when looking at a 2-D slice of the class' means.
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set. The first DM is smaller by two orders, making the
computational task much lighter.
3.3. Key classifier

To classify a new data point, we propose three classi-
fiers. We denote the 4800 training points (major and
minor together as explained in 3) and the corresponding
diffusion map as X and Ψ. We use 72 chroma profiles
collected by Krumhansl, Gomez and Temperley [32,6,5],
we call them TypProfiles, and denote these profiles as X
and the corresponding mapping as Ψ. Fig. 6 demonstrates
the classification power of DM on the 72 TypProfiles.

For all musical pieces in the test set yAY we compute
the diffusion coordinates in Ψ and in Ψ, using the
Geometric Harmonics method (see Section 2.6). We clas-
sify each piece using the K-nearest neighbors method in
both diffusion domains, using sðδ;1Þ ¼ 5, since taking a
higher dimension makes almost no change in the com-
puted distances. The three different classifiers are
denoted as:

Classifier I-COM (Center Of Mass - class mean):
1.
 Estimate the mode using Algorithm 1.
2.
 Find the nearest class mean in Ψ.

3.
 Use the estimated mode and class to determine the key.
Classifier II-KNN (K-Nearest Neighbors):
1.
 Find the nearest training set points inΨ, use K-NN with
K¼10.
2.
 Set the key as the majority vote within the 10 nearest
neighbors.
Note that a KNN classifier based on a general training set can
be quite sensitive to outliers. We therefore chose a relatively
high value of K ¼ 10. This type of classifier is expected to be
effective mostly when the tested pieces are typically similar
(e.g., in genre or spectral properties) to the pieces in the
training set.

Classifier III-TYP (Typical):
1.
 Estimate mode using Algorithm 1.

2.
 Find the nearest training set point in Ψ, use K-NN with

K¼1.
3.
 Use the estimated mode and class to determine the key.



Fig. 5. Top – the 12th diffusion dimension of Gomez's profiles, indicating a binary separation between major and minor keys. Bottom – the 12th diffusion
coordinate of 2400 Minor pieces, calculated using out of sample extension on Gomez' profiles. Average value of 0.946 with a variance of about 0.0274.
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The TypProfiles Training set contains only 3 samples within
each class, therefore using K¼1 and classifying helps us avoid
conflicts when there are 2 or more nearest neighbors from
different classes.

4. Experimental results

For the experimental part we used a collection of 179
songs composed and performed by the Beatles. The keys of
the pieces were taken from Pollack (1999) and cross
annotated by a musicologist. Fig. 7 shows the distribution
of keys used by the Beatles. This database was selected
because it is easily available online and has been used for
experiments in many previous studies. This database is
very difficult to analyze due to the complex form of
composition used by the Beatles, often with transition of
keys within the songs, and because it contains percussive
sounds and different postproduction effects.

To evaluate the algorithm properly and compare it to
previous studies, we use a scoring method which is
applied in the MIREX key finding competitions, as well
as in other work such as [6,33]. According to this scoring
system, performance is measured by the percentage of
correctly identified keys as well as closely related keys. The
idea is that some missanotated keys are more severe than
others, because if the keys are related in some harmonic
manner it can still be of some informative use to the
musician; therefore we count a correct key as 1 point
a perfect fifth (adjacent keys on the Circle-of-Fifths) as
0.5 points relative major/minor (same key wrong mode) as
0.3 points parallel major/minor (parallel keys on the
Circle-of-Fifths) as 0.2 points.

Applying our algorithm to the first 30 s of the 179
musical pieces, with the parameters explained in this
paper, we achieve (with the TYP classifier) an exact
classification rate of the key in 66.5% and an average score
of 75.6%. In Table 1, we present a summary of previous
methods attempting key classification on this database,
and majority of the results were simulated by Gomez [6].
We note that within this data set there are ambiguities
regarding a few songs, nonetheless, we have not discarded
these songs, so as to maintain a fair comparison to Gomez'
results.

We note that there are two more works by Rocher et al.
[34] and Papadopoulos and Tzanetakis [35], applying their
key extraction methods to the same database; however,
they use only 174 and 141 songs, respectively, within this
database, discarding particularly difficult or ambiguous
pieces, therefore a comparison to their results might be
somewhat misleading. Their exact classification rate and
average score are 62.4% and 82.27%, respectively.

The methods in Table 1 are ordered by descending
scores and are annotated by the names of their respective
authors. Each method was examined using two additional
variations, which are a pre-processing stage for the
chroma vector: in one variation only the three most
dominant notes are taken into account; in the other
the three dominant notes have been weighted according



Fig. 6. The two leading dimensions of the 72 “typical” profiles, colored by the value of the 12th coordinate. Every point represents 3 profiles of the same
key. The exact shape and order of Circle-of-Fifths is again evident.
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Fig. 7. Distribution of keys within the 179 Beatles songs database.

Table 1
Summary of results of key extraction on the Beatles database as
simulated by Gomez, compared to our 3 proposed methods.

Method Score (%) Exact (%) Mode (%)

TYP 75.6 66.5 92.18
Temperley-E-1 74.17 66.29 88.57
COM 73.96 64.25 92.18
Temperley-2 73.2 63.43 87.43
Gomez-1 72.91 65.14 81.14
Krumhansl–2 72.46 61.71 86.86
KNN 71.46 61.46 86.59
Krumhansl–1 71.37 60 86.29
Temperley-1 70.69 62.86 90.29
Krumhansl–3 69.43 63.43 85.71
Triad-1 68.57 60.57 78.29
Temperley-E-2 68.4 54.86 85.71
Gomez-2 64.4 46.86 85.71
Temperley-3 63.89 57.14 84
Chai-1 62.74 54.29 71.43
Temperley-E-3 59.89 45.14 81.71
Chail-2 57.2 40.57 73.71
Gomez-3 53.43 41.71 71.43
Chail-3 51.2 35.43 70.29
Triad-2 48.91 20.57 84.57
Triad-3 45.49 18.86 83.43
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to their appearance in a chord. The exact estimation,
Mirex-score, and mode percentage are presented in the
corresponding columns. Evidently, we improve the results
in all three measures for key classification. As can be
concluded from the results presented in Table 1, the mode
estimation procedure used for the COM and TYP classifiers
yields most of the classification improvement compared to
the results of state of the art method by Temperley and
Gomez. The training set gave us insight regarding the
geometric model representing the keys; however, the
resulting KNN performance is only slight and is inferior
to Temperley and Krumhansl's modified methods and
offers only marginal improvement over the other methods.
The distribution of the exact and related keys classification
is presented in Fig. 8, we have chosen to present the
leading scores from each method.

5. Conclusions and future work

We have shown that adapting DM to musical data reveals
musical features (such as key or mode) and helps extract
meaningful low dimensional mappings of these features. The
method is very effective when the training set and the test set
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have similar features, for instance, belong to the same genre or
have the same timbre. In order to use this method on a “blind”
test set (unknown musical properties), a training set contain-
ing various genres of music must be built. We have presented
an automated algorithm for building a diffusion map, which is
best suited for classification tasks on any type of data.
However, this paper is not meant to focus on the classification
task per se, but rather to demonstrate the use and the insights
obtained from the DM in the context of Key extraction,
comparing to some other competing classification approaches.
Future work should involve examining the proposed a two-
stage DM and σ selection method on other data sets. It would
be interesting to examine this method for extracting other
musical features such as pitch, timbre and chord, as they are
not perfectly retrievable using current studies.
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