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Abstract

In this paper, we present a multi-resolution random field model (RFM) and a corresponding algorithm for anomaly

subspace detection. We utilize the redundant discrete wavelet transform (RDWT) for generating a multi-resolution feature

space, and model each layer by a non-casual RFM with different sets of parameters. A multi-resolution matched subspace

detector (MSD) is designed for detecting targets in the background multi-resolution RFM noise environment. The

improved performance of the proposed algorithm is demonstrated compared to using an MSD-based anomaly detector

and multi-resolution Gaussian Markov random field (GMRF) model.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Anomaly detection techniques are useful in
numerous applications, both civilian and military,
such as detection of targets in multi-spectral and
hyper-spectral images [1–11], detection of sea-mine
targets in side-scan sonar images [12–15], detection
of land-mine targets in ground penetrating radar
images [16–19], detection of surface targets in
synthetic aperture radar images [20,21] and other
signal processing and image analysis applications.
The type of the scene and the type of the anomalous
targets are application dependent. The detection
process is generally performed with respect to
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a predefined probabilistic model and an appro-
priate feature space, where the anomalous elements
can be identified as different from the background
clutter.

Anomaly detectors often use Bayesian classifiers,
utilizing available a priori knowledge and a poster-

iori parametric statistics of both background clutter
and anomalous targets. Single hypothesis test (SHT)
[22] is employed in detection problems where the
targets are substantially diverse, and not necessarily
conform to a uniform model or even a characteriz-
ing subspace. Matched signal detector is employed
when a typical signature of a target is available.
Matched subspace detector (MSD) [3,4,23–25] and
adaptive subspace detector (ASD) [26] are used
when partial information about the targets allows to
define a subspace for targets.

Random field models (RFM), such as simulta-
neous auto-regressive (SAR) and Gaussian Markov
.

www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2007.05.027
mailto:shadhan@techunix.technion.ac.il
mailto:shadhan@techunix.technion.ac.il
mailto:icohen@ee.technion.ac.il


ARTICLE IN PRESS
L. Shadhan, I. Cohen / Signal Processing 87 (2007) 3045–30623046
random field (GMRF), have been applied exten-
sively for spatial analysis of textural features in
texture synthesis [27,28], image segmentation
[5,29–32], texture classification [33,34] and target
detection [5,10,13,25,35] algorithms. Single resolu-
tion spatial analysis introduces high false alarms in
semi-homogenous background textures due to
deviations from the RFM. In order to overcome
this, Goldman and Cohen [25] proposed a multi-
resolution GMRF model and a corresponding
anomaly detection algorithm using an MSD classi-
fier, achieving better detection results when com-
pared to single resolution spatial analysis detection
algorithms. However, the SAR and the GMRF
models are sensitive to the choice of their neighbor
set [27,36,37] since different neighbor sets account
for different textural patterns. Inappropriate choice
of a neighbor set increases the prediction error and
false alarm rate.

Multi-resolution decompositions, such as the
wavelet transform, are often used for feature
extraction. These decompositions employ a set of
multi-scale bandpass oriented filters for decompos-
ing the image, and decoupling high-order statistical
features of natural images [38,39]. However, wave-
let-based multi-resolution decompositions are char-
acterized by heavy tails of the marginal probability
density function of the features (known as excess
kurtosis) and volatility clustering (i.e., large changes
tend to follow large changes and small changes tend
to follow small changes) [40]. The first phenomenon
leads to high false alarm rate when Gaussian-based
classifiers are used, due to model mismatch. The
second phenomenon leads to deviations of the
clutter image from its RFM, resulting in higher
false alarm rates due to signal-to-noise ratio (SNR)
degradation.

In this work, we present a multi-resolution non-
casual RFM and a corresponding unsupervised
anomaly subspace detection algorithm. The pro-
posed multi-resolution RFM captures the highly
correlated spatial nature of the background clutter
and is less susceptible to the choice of neighbors. We
utilize the redundant discrete wavelet transform
(RDWT) for generating a multi-resolution feature
space, and each layer is then modeled by a non-
casual RFM with different sets of parameters. A
multi-resolution MSD is formulated for detecting
targets in the background multi-resolution RFM
noise environment with possible additive subspace
interference signals. The proposed algorithm is
implemented and its performance is analyzed in
various scenes containing Brodatz-like background
textures [41] and target anomalies. We demonstrate
the improved performance of the proposed algo-
rithm compared to using an MSD-based anomaly
detector and multi-resolution GMRF model [25].

The rest of the paper is organized as follows. In
Section 2, we formulate the detection problem. In
Section 3, we introduce an RFM for texture images
and a corresponding multi-resolution feature space.
In Section 4, we present the proposed anomaly
subspace detection algorithm. In Section 5, we
analyze the performance of the proposed anomaly
detection algorithm and compare the detection
results to those obtained by using competing
methods. In addition, we demonstrate the applica-
tion of the proposed algorithm to automatic target
detection of multiple target types using a set of
subspace detectors.

2. Problem formulation

Let O ¼ fv : 1pv1pM ; 1pv2pMg be the sup-
port of an image fyðvÞgv2O containing a background
natural texture, xðvÞ, rare target and additive
interfering signals scattered around in the image,
denoted as hðvÞ and gðvÞ, respectively. The supports
of the target and interfering signals are assumed to
be much smaller than the support of the back-
ground image. We define two hypotheses for each
pixel v 2 O:

H0 : yðvÞ ¼ xðvÞ þ gðvÞ,

H1 : yðvÞ ¼ xðvÞ þ gðvÞ þ hðvÞ, ð1Þ

where H0 and H1 represent absence and, respec-
tively, presence of an anomalous target in the image.
The problem at hand is to make a decision between
H0 and H1 for every pixel v 2 O with

PD¼
n

PðH1jH1Þ; PDX1� �1,

PFA¼
n

PðH1jH0Þ; PFAp�2, ð2Þ

for given values of �1 and �2.

3. Statistical model formulation

3.1. Segregation enhancement

Multi-resolution decompositions, such as the
wavelet transform, are often used for feature
extraction. The undecimated discrete wavelet trans-
form is preferable to the standard decimated
wavelet decomposition, mainly because it tends to
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decrease the variability of the estimated texture
features, hence improving texture classification
performance [42]. The undecimated discrete wavelet
transform also results in a texture characterization
invariant under texture translation. Here we utilize
the RDWT for generating a multi-resolution feature
space.

Unser and Eden explored in [43] several non-
linearities and their effects on texture segmentation
schemes. They have concluded that squaring,
followed by averaging and then by a logarithm
function, improves segmentation results. Mittelman
and Porat [29,44] argued that those non-linearities,
when applied to wavelet coefficients of natural
texture images, result in a normally distributed
feature space. Motivated by the work in [29,43,44],
we have formulated in [45] an RDWT-based multi-
resolution feature space and a corresponding SHT
anomaly detection scheme, using the same non-
linearities but with additional averaging step which
improved detection performance considerably. The
multi-resolution feature space in [45] is a linear
combination of independent Gaussian random
vectors, and follows a multivariate Gaussian dis-
tribution. This suggests that the feature space which
is presented in [45] is suitable for use with an MSD,
since the MSD is based on a multivariate Gaussian
model. However, in practice, it degrades the
segregation between additive anomalies and back-
ground clutter. This is due to the averaging stages
and the influence of the logarithm on the variance of
the feature space. Furthermore, the use of the
logarithm limits the ability to formulate appropriate
subspaces for target and interference signals, and
makes the MSD behave like a matched signal
detector for a finite number of target signals. Yet,
the use of the squaring non-linearity by itself allows
for a better segregation of additive anomalous
targets from the background clutter. Furthermore,
the use of the squaring non-linearity reduces the
RFM prediction error variance [46, p. 96] and hence
results in a background clutter which can be
modeled by an RFM more accurately.

3.2. Single layer 2-D RFM

The SAR and GMRF models are widely used for
texture modeling and texture classification. These
models were also used for detection of target signals
in background clutter [5,10,13,25,35]. The models
represent a pixel in a given image as a weighted sum
of pixels at nearby locations and the prediction
error is referred as the innovations process. Under
the SAR model the innovations are assumed
uncorrelated, whereas under the GMRF model a
specific correlation is defined in accordance with the
Markovian assumption and the used weights. In
practice, the covariance of innovations, which is
derived from natural textures or from natural
textures’ wavelet coefficients, does not necessarily
follow the SAR or the GMRF models. This is
mainly a result of inappropriate choice of the
neighbor set. Chellappa and Kashyap [27,36]
showed that the quality of an image which is
synthesized from its SAR or GMRF models varies
considerably depending on the use of appropriate
neighbor set, since different neighbor sets account
for different textural patterns. Furthermore, corre-
lation between image pixels is prone to change when
a non-linearity is applied to the image, rendering it
difficult to choose the appropriate set of neighbor-
ing pixels. The squaring non-linearity achieves an
RFM with lower prediction error variance when-
ever a proper scaling of the modeled image is
fulfilled (see Appendix A). Yet, the resulting GMRF
covariance differs from the actual covariance of the
innovations. We demonstrate this in Fig. 1, using
the stone texture shown in Fig. 2. We observe that
the GMRF covariance exhibits better resemblance
to the actual innovations covariance when the
squaring non-linearity is applied. In order to over-
come this inconsistency, we formulate and use a
more generic RFM, taking into consideration the
correlation between pixels which is not accounted
for in the GMRF model. This moderates the need
for a proper choice of neighborhood for each
background texture and yields a more robust
detection algorithm when combined with the
proposed squaring non-linearity.

The infinite lattice RFM for a stationary image
yðvÞ with a zero mean is given by

yðvÞ ¼
X
r2R

yðrÞyðvþ rÞ þ eðvÞ, (3)

where R denotes a given set of indices representing
the neighborhood of a pixel, yðrÞ denotes the weight
coefficient of a neighbor r 2 R and eðvÞ is an
additive spatially correlated Gaussian noise se-
quence with zero mean and covariance K. The
weight coefficients fyðrÞgr2R and the innovations
covariance K are unknown parameters that need to
be estimated.

Let fyðvÞgv2O denote a finite stationary image,
defined on an M �M toroidal lattice O. Eq. (3) can
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Fig. 1. Innovations covariance example. GMRF (left column) vs. actual (right column). (a and b) Derived directly from the background

texture. (c and d) Derived from a layer of wavelet coefficients. (e and f) Derived from the same layer of wavelet coefficients after applying

the squaring non-linearity.
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then be rewritten as follows:

BðhÞy ¼ e, (4)

where

y ¼ col½yðvÞ; v 2 O�,

e ¼ col½eðvÞ; v 2 O�,

h ¼ col½yðrÞ; r 2 R�, ð5Þ
and col½ � denotes an operator which organizes
the entries in a column vector. The toroidal
lattice determines the boundaries of the image
such yðvþ ðM;MÞÞ ¼ yðvÞ. The M2 �M2 matrix
BðhÞ is a block-circulant matrix which contains the
weight coefficients. The neighborhood R can be
arbitrary as long as ð0; 0ÞeR and the resulting
block-circulant matrix BðhÞ is not singular. As such,
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Fig. 2. Natural texture of a stone.
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we require

lðv; hÞ ¼ 1�
X
r2R

yðrÞ cos r1
2pv1

M
þ r2

2pv2

M

� �
a0,

8v 2 O, ð6Þ

where lðv; hÞ denotes the eigenvalues of matrix BðhÞ

[37,47], v ¼ ðv1; v2Þ and r ¼ ðr1; r2Þ. A symmetric
neighborhood R results in a symmetric matrix BðhÞ

as well.
The problem of estimating the parameters of the

SAR and the GMRF models was previously
addressed in [5,9,25,36,39,48]. A computationally
efficient method for estimating the weight coeffi-
cients is derived using the least-squares (LS)
approach. The weight coefficients LS estimator
(LSE) is given by [9,36]:

bh ¼ X
v2O

wðvÞwðvÞT

" #�1 X
v2O

yðvÞwðvÞ

" #
, (7)

where

wðvÞ ¼ col½yðvþ rÞ; r 2 R�. (8)

Based on Eq. (7), the estimated weight coefficients
are not affected by the marginal variance of the
image, but rather on the spatial interaction bet-
ween neighboring pixels. The covariance K is then
given by

K ¼ E½eeT� � BðbhÞRBðbhÞT, (9)

where R ¼ E½yyT�.
Conventional RFM, such as the SAR, GMRF
and the proposed RFM, are intended to be used
with micro-textures. As such, these models may not
sufficiently describe the background clutter in
images with periodical patterns of period lengths
larger than the neighborhood R. However, they
should be appropriate for multi-resolution decom-
position layers of such images [25].

3.3. Multi-resolution feature space

Let O be the M �M support lattice for a mean
normalized image fyðvÞgv2O. Let fyjðvÞgj¼1;...;m denote
the jth layer wavelet coefficients obtained from the
image using an RDWT with ðm� 1Þ=3 levels. Let
yðvÞ denote the resulting multi-resolution image
with m layers. The multi-resolution image yðvÞ is
defined over the same support as image yðvÞ and is
given by

yðvÞ ¼ ½y1ðvÞ; y2ðvÞ; . . . ; ymðvÞ�
T. (10)

The wavelet coefficients at different layers are nearly
de-correlated for most images and the transform
can be thought of as an approximation for the
Karhunen–Loéve transform (KLT) [49]. We utilize
the KLT as a mean for reducing the feature space,
using only relevant layers in the detection scheme.
Let K denote a matrix whose columns are p

eigenvectors taken from the covariance matrix of
yðvÞ; 8v 2 O. The KLT result, denoted as tðvÞ, is
given by

tðvÞ ¼ KTyðvÞ ¼ ½t1ðvÞ; t2ðvÞ; . . . ; tpðvÞ�
T; 1pppm,

(11)

where ftkðvÞgk¼1;...;p denote the generated uncorre-
lated image layers. The resulting local energy
measures, denoted as zðvÞ, are given by

zðvÞ ¼ ½z1ðvÞ; z2ðvÞ; . . . ; zpðvÞ�
T, (12)

where

zkðvÞ ¼ t2kðvÞ; k ¼ 1; . . . ; p. (13)

We assume that each layer in zðvÞ is statistically
homogeneous and follows the 2-D RFM. Therefore,
the kth layer satisfies (Eq. (3)):

zkðvÞ � mzk
¼
X
r2R

ykðrÞ½zkðvþ rÞ � mzk
� þ ekðvÞ,

(14)

where R denotes the neighborhood, ykðrÞ denote the
weight coefficients, mzk

denotes the expected value of
zkðvÞ and ekðvÞ denotes the resulting innovations
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process. By applying the 2-D RFM to all layers
using model parameters which are estimated for
each layer separately, we produce a multi-resolution
RFM. The multi-resolution RFM innovations,
denoted as eðvÞ, are then given by

eðvÞ ¼ ½e1ðvÞ; e2ðvÞ; . . . ; epðvÞ�
T

¼ zðvÞ �
X
r2R

HðrÞzðvþ rÞ

 !

� I�
X
r2R

HðrÞ

 !
l, ð15Þ

where

l¼
n
½mz1

; mz2
; . . . ;mzp

�T, (16)

HðrÞ ¼
n
diagðy1ðrÞ; y2ðrÞ; . . . ; ypðrÞÞ. (17)

We use the multi-resolution RFM innovations
(formulated in Eq. (15)) as the feature space for
the proposed anomaly detection algorithm.

4. Anomaly detection algorithm

Scharf and Friedlander introduced in [24] the
MSD, formulating a class of problems for detecting
subspace signals in subspace interference and
broadband white Gaussian noise, laying the frame-
work for detecting anomalies which are assumed to
lie within a known subspace. Kraut et al. [26]
formulated an MSD for detecting subspace signals
in colored Gaussian noise with a known covariance
structure. Goldman and Cohen [25] have further
improved the MSD scheme and formulated a multi-
resolution MSD for the detection of subspace
signals in subspace interference and colored Gaus-
sian noise with a known covariance structure,
corresponding to the GMRF innovations. Here we
develop a multi-resolution MSD for detecting
subspace signals in subspace interference and
colored Gaussian noise, corresponding to the
multi-resolution RFM innovations that were pre-
sented in Section 3.3.

A block diagram of the proposed algorithm is
presented in Fig. 3. Let fyðv; sÞgs2O0

denote a N �N

image chip, taken from image yðvÞ
� �

v2O around the
spatial location v. Image chips under hypotheses H0

and H1 are given by

H0 : yðv; sÞ ¼ xðv; sÞ þ gðv; sÞ,

H1 : yðv; sÞ ¼ xðv; sÞ þ gðv; sÞ þ hðv; sÞ, ð18Þ
where xðv; sÞ, gðv; sÞ and hðv; sÞ are the image chips of
the background clutter, interference signal and
target signal, respectively, around the spatial loca-
tion v. We assume that the chip xðv; sÞ conforms to a
multi-resolution RFM with model parameters that
were derived from the whole image. We further
assume that the chip size is sufficient for containing
the innovations of shapes which span the target and
interference signals, taking into consideration
RDWT and RFM margins. Therefore, the multi-
resolution chip decomposition, denoted as yðv; sÞ, is
given by

H0 : yðv; sÞ ¼ xðv; sÞ þ gðv; sÞ,

H1 : yðv; sÞ ¼ xðv; sÞ þ gðv; sÞ þ hðv; sÞ, ð19Þ

where xðv; sÞ, gðv; sÞ and hðv; sÞ are the multi-
resolution chip decompositions of the background
clutter, interference signal and target signal, respec-
tively. Let zkðv; sÞ denote the chip’s kth layer local
energy measures, which under hypotheses H0 and
H1 is given by

H0 : zkðv; sÞ ¼ t2kðxðv; sÞÞ þ t2kðgðv; sÞÞ

þ 2tkðxðv; sÞÞtkðgðv; sÞÞ,

H1 : zkðv; sÞ ¼ t2kðxðv; sÞÞ þ t2kðgðv; sÞÞ

þ 2tkðxðv; sÞÞtkðgðv; sÞÞ þ t2kðhðv; sÞÞ

þ 2tkðxðv; sÞÞtkðhðv; sÞÞ

þ 2tkðgðv; sÞÞtkðhðv; sÞÞ, ð20Þ

where tkð�Þ ¼ ½tð�Þ�k and

tðxðv; sÞÞ ¼ KTxðv; sÞ,

tðgðv; sÞÞ ¼ KTgðv; sÞ,

tðhðv; sÞÞ ¼ KThðv; sÞ: ð21Þ

Let nkðvÞ denote the column stack representation of
the chip’s kth layer RFM innovations. Let zkðvÞ

denote the column stack representation of zkðv; sÞ,
the chip’s kth layer local energy measures. Based on
(4), (5) and (14), nkðvÞ is given by

nkðvÞ ¼ DkzkðvÞ � mzk
1�

X
r2R

ykðrÞ

 !
, (22)

where Dk¼
n
BðykðrÞÞ. From (20), zkðvÞ and conse-

quently DkzkðvÞ contain derived components from
the background texture, interference signals, target
signals and the interaction among them. Hence,
proper formulation of an MSD allows detection of
target signals within nkðvÞ.

Let fhðlÞðsÞgs2O0; l¼1;...;uh
and fgðlÞðsÞgs2O0; l¼1;...;ug

denote sets of orthogonal image chips which span
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Fig. 3. Block diagram of the proposed anomaly detection algorithm.
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the target and interference signals, respectively. Let
fx
ðlÞ
j ðsÞgs2O0; l¼1;...;ux

denote a set of image chips
which characterize the jth layer of the background
natural texture multi-resolution decomposition. We
use ux significant eigenvectors, derived from the
estimated covariance matrix of a jth layer chip. Let
hðlÞðsÞ and gðlÞðsÞ denote the multi-resolution chip
decomposition of hðlÞðsÞ and gðlÞðsÞ, respectively, and
let xðlÞðsÞ ¼ ½x

ðlÞ
1 ðsÞ;x

ðlÞ
2 ðsÞ; . . . ;x

ðlÞ
m ðsÞ�

T. We define
hAki and hBki as the kth layer MSD subspaces,
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each spanned by the columns of the full-rank
matrices Ak and Bk, respectively [24]. We define
ckðvÞ as the whitened measurements, derived from
nkðvÞ as follows:

ckðvÞ ¼ K�1=2k nkðvÞ, (23)

where under the assumption of sparsely placed
target signals and interfering signals

Kk � E½nkðvÞnkðvÞ
T
�. (24)

Based on (22) and (23), ckðvÞ is formulated under
hypotheses H0 and H1 as follows:

H0 : ckðvÞ ¼Ak/kðvÞ þ ekðvÞ,

H1 : ckðvÞ ¼ BkwkðvÞ þAk/kðvÞ þ ekðvÞ, ð25Þ

where ekðvÞ denotes the whitened RFM innovations
which are derived from the chip’s background
texture and /kðvÞ and wkðvÞ are the coordinates of
the interference and target signals components with
respect to subspaces Ak and Bk, respectively.

The interfering subspace Ak should account for
the interfering signals, the interaction among
them and the interaction between them and the
background clutter. Therefore, subspace Ak is the
span of
PðekðvÞjH0Þ

½K�1=2k Dkakðg
ð1ÞðsÞÞ; . . . K�1=2k Dkakðg

ðugÞðsÞÞ;

K�1=2k Dkbkðg
ð1ÞðsÞ; gð2ÞðsÞÞ; . . . K�1=2k Dkbkðg

ð1ÞðsÞ; gðugÞðsÞÞ;

..

. ..
.

K�1=2k Dkbkðg
ðug�2ÞðsÞ; gðug�1ÞðsÞÞ; . . . K�1=2k Dkbkðg

ðug�2ÞðsÞ; gðugÞðsÞÞ;

K�1=2k Dkbkðg
ðug�1ÞðsÞ; gðugÞðsÞÞ;

K�1=2k Dkbkðg
ð1ÞðsÞ;xð1ÞðsÞÞ; . . . K�1=2k Dkbkðg

ðugÞðsÞ; xð1ÞðsÞÞ;

..

. ..
.

K�1=2k Dkbkðg
ð1ÞðsÞ;xðuxÞðsÞÞ; . . . K�1=2k Dkbkðg

ðugÞðsÞ; xðuxÞðsÞÞ�;

(26)
where akð�Þ is the column stack representation of
akð�Þ, given by

akðg
ðlÞðsÞÞ ¼ ½akðg

ðlÞðsÞÞ�s¼
n

t2kðg
ðlÞðsÞÞ, (27)

bkð�; �Þ is the column stack representation of bkð�; �Þ,
given by

bkðg
ðl1ÞðsÞ; gðl2ÞðsÞÞ ¼ ½bkðg

ðl1ÞðsÞ; gðl2ÞðsÞÞ�s

¼
n

tkðg
ðl1ÞðsÞÞtkðg

ðl2ÞðsÞÞ,
bkðg
ðl1ÞðsÞ;xðl2ÞðsÞÞ ¼ ½bkðg

ðl1ÞðsÞ;xðl2ÞðsÞÞ�s

¼
n

tkðg
ðl1ÞðsÞÞtkðx

ðl2ÞðsÞÞ ð28Þ

and tkð�Þ is defined in (20) and (21).
The target subspace Bk should account for the

target signals, the interaction among them, the
interaction between them and the background
clutter and the interaction between them and the
interfering signals. However, this formulation of the
target subspace Bk increases dramatically its
dimensionality. We recall that the MSD detection
performance is adversely affected by the dimension-
ality of its target subspace [3,4]. Therefore, we
assume that the interaction among target signals,
the interaction between them and the background
clutter and the interaction between them and the
interfering signals are negligible, searching only for
a particular signature under hypothesis H1. Hence,
subspace Bk is the span of

½K�1=2k Dkakðh
ð1ÞðsÞÞ; . . . K�1=2k Dkakðh

ðuhÞðsÞÞ�, (29)

where akð�Þ is defined in (27). We note that under
this formulation of subspaces, scaled image sets can
be used for the purpose of characterizing the target
and interference signals in spite of the introduced
non-linearity that is used in the process of feature
space creation.

Based on (25) and subspace formulations (26) and
(29), we formulate the detection problem as a
likelihood ratio test (LRT) between hypotheses H0

and H1. The likelihood ratio (LR) is given by

LkðvÞ ¼
n
2 log

PðekðvÞjH1Þ
. (30)
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We assume that the whitened innovations ekðvÞ

follow the 2-D RFM and therefore ekðvÞ�Nð0; IÞ.
We derive the generalized LR (GLR) from (30)
using the maximum likelihood (ML) estimates of
ekðvÞ under hypotheses H0 and H1. Let PAk

and
PAkBk

denote the projection operators onto sub-
spaces hAki and hAk;Bki, respectively. Subspace
hAki is spanned by the columns of matrix Ak and
subspace hAk;Bki is spanned by the columns of the
concatenated matrix ½Ak;Bk�. The projection op-
erators PAk

and PAkBk
are given by [4,24]:

PAk
¼ ½Ak�½½Ak�

T½Ak��
�1½Ak�

T,

PAkBk
¼ ½Ak;Bk�½½Ak;Bk�

T½Ak;Bk��
�1

�½Ak;Bk�
T. ð31Þ

Let
d

eH0

k ðvÞ and
d

eH1

k ðvÞ denote the ML estimates of
ekðvÞ under hypotheses H0 and H1, respectively.
These estimates are obtained by subtracting the
components which lie in the target and interference
derived subspaces from the sample vector ckðvÞ as
follows:d
eH0

k ðvÞ ¼ ðI� PAk
ÞckðvÞ ¼

n
P?Ak

ckðvÞ,d
eH1

k ðvÞ ¼ ðI� PAkBk
ÞckðvÞ ¼

n
P?AkBk

ckðvÞ, ð32Þ

where ? denotes the projection operator onto the
orthogonal complement subspace, i.e., ðPAk

ckðvÞÞ
T

ðP?Ak
ckðvÞÞ ¼ 0. Based on (30)–(32), the kth layer

GLR is given by

LkðvÞ ¼
d

eH0

k ðvÞ
T d
eH0

k ðvÞ �
d

eH1

k ðvÞ
T d
eH1

k ðvÞ (33)

and can be regarded as the difference between the
Mahalanobis distances under each hypotheses. We
develop Eq. (33) as follows:

LkðvÞ ¼ k
d

eH0

k ðvÞk
2 � k

d
eH1

k ðvÞk
2,

¼ ckðvÞ
T
ðP?Ak

� P?AkBk
ÞckðvÞ,

¼ ckðvÞ
T
ðPAkBk

� PAk
ÞckðvÞ. ð34Þ

We define the MSD’s kth layer SNR as the ratio
between the energy of the signal which does not lie
in the interference subspace and the background
innovations covariance in the kth layer. Therefore,

SNRðk; vÞ ¼
n
½BkwkðvÞ�

TP?Ak
½BkwkðvÞ�,

¼ ½BkwkðvÞ�
TðI� PAk

Þ½BkwkðvÞ�. ð35Þ

The quadratic form of the kth layer GLR may be
thought of as the norm-squared of ðPAkBk

� PAk
Þ

ckðvÞ. Hence, LkðvÞ is chi-square distributed with r
degrees of freedom [4,24,50]:

Lk�
w2r ð0Þ under H0;

w2r ðSNRðk; vÞÞ under H1;

(
(36)

where r ¼ uh and SNRðk; vÞ is the non-centrality
parameter of the chi-square distribution under
hypothesis H1. The number of degrees of freedom
r is also the rank and trace of the idempotent
operator ðPAkBk

� PAk
Þ [51].

We define the GLR for image chip yðv; sÞ, which is
derived using all layers, as follows:

LðvÞ ¼
Xp

k¼1

LkðvÞ,

¼
Xp

k¼1

ckðvÞ
T
ðPAkBk

� PAk
ÞckðvÞ. ð37Þ

It was previously mentioned that the wavelet
coefficients at different layers are nearly de-corre-
lated for most images [49]. Therefore, the GLR is
the sum of p independent chi-square distributions.
As such, it is also chi-square distributed with q

degrees of freedom,

LðvÞ�

w2qð0Þ under H0;

w2q
Pp
k¼1

SNRðk; vÞ

� �
under H1;

8><>: (38)

where q ¼ p � uh. The non-centrality parameter of
the chi-square distribution is zero under hypothesis
H0, and it equals

Pp
k¼1 SNRðk; vÞ under hypothesis

H1. The detection statistic will be maximized when a
target is centrally located in the processed image
chip.

We define the decision rule for distinguishing
between the two hypotheses as a threshold criterion,
converting the GLR grayscale image into a binary
image. The GLRT is given by

LðvÞ_
H1

H0

Z. (39)

The threshold parameter Z determines both the
probability of detection PD and the probability of
false alarm PFA. The detection rate in (2) is given for
each image chip yðv; sÞ by

PDðvÞ ¼ 1� P w2q
Xp

k¼1

SNRðk; vÞ

 !
pZ

 !
. (40)

The appropriate false alarm is given by

PFAðvÞ ¼ 1� Pðw2qð0ÞpZÞ. (41)
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Fig. 4. Image chips used for the target subspace. Each chip has

16� 16 pixels.
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The false alarm rate in (41) is uniquely defined by
the threshold Z and the dimensionality q. The
detection rate in (40) is a monotonically increasing
function of the GLR non-centrality parameter for a
given false alarm rate and dimensionality q. This is
expected since the GLR non-centrality parameter is
defined as the sum of the MSD’s layers SNR and
high SNR values represent a better segregation of
the anomalous targets. The detection rate is also a
monotonically decreasing function of the dimen-
sionality q for a given false alarm rate and MSD’s
layers SNR values. This is also expected since the
dimensionality represents the available a priori

information about the targets and this information
decreases as we increase the rank of the subspace [4].
We note that the detection and false alarm rates
cannot be easily found for the general case due to
possible statistical dependency between the different
layers and inconsistency with the Gaussian assump-
tion. However, the detector performance can be
evaluated using extensive computer simulations, as
we present in Section 5. Since not all layers of the
feature space usually contribute the same amount of
information to the detection process, it may be
beneficial to use only a subset of those layers [40],
aiming for the reduction of false alarms and
dimensionality. Criterion for selecting the subset
of layers is application dependent. This selection
can be made a priori, thus reducing the computa-
tional complexity of the proposed method, or it can
be made based on in-process data such as layers
with highest average SNR, highest point SNR, etc.,
in which case the decision can only be made after
some calculations have been made. A SNR-based
criterion is given in Appendix B. Nevertheless, even
when utilizing all layers, the proposed scheme
outperforms other recently published algorithms,
as we present in Section 5.

5. Anomaly detection experimental results

In this section, we study the performance of the
proposed algorithm using a large set of background
textures. We first explore the effects of the KLT on
the performance of the proposed algorithm. Then
we explore the GLR non-centrality parameter of
the proposed algorithm, compared to its RDWT
equivalent. We investigate the receiver operating
characteristics (ROC) curves and the MSD perfor-
mance of the proposed algorithm, compared
to recently published work [25,45]. Finally, we
demonstrate the performance of the proposed
algorithm using a bank of low-dimensional sub-
space detectors.

5.1. Data generation

We have qualitatively investigated the perfor-
mance of the proposed algorithm using synthesized
anomalous targets, randomly placed in a set of 40
Brodatz-like textures [41]. The synthesized targets
were randomly created in a subspace spanned by the
image chips in Fig. 4 and were scaled to achieve
desired SNR values. Actual performance statistics
were derived using 250 synthesized anomalous
targets for each of the 40 Brodatz-like textures.
No interference subspace is assumed. The back-
ground textures were scaled to values within ½0; 1�
and then normalized to a zero mean, prior to
anomaly insertion. We have used the following
algorithm parameters:
�
 A neighbor set concurrent with NS7 in [27], given
by R ¼ f�Rh;Rhg, where Rh ¼ fð0; 1Þ; ð1; 0Þ;
ð1;�1Þ, ð1; 1Þ; ð0; 2Þ; ð2; 0Þ; ð�2; 1Þ; ð2; 1Þ; ð1; 2Þ;
ð�1; 2Þ; ð2; 2Þ; ð�2; 2Þ; ð3; 0Þ; ð0; 3Þ; ð1; 3Þ; ð3; 1Þ;
ð�1; 3Þ; ð�3; 1Þg.

�
 An image lattice size of M �M, where M ¼ 160.

�
 A chip size of N �N, where N ¼ 16.

�
 An RDWT decomposition with two levels, using
the Symlet wavelets with eight taps.

The image lattice size and chip size are adequate for
assuming cKk ’ Kk when using the ML estimator for
the innovations covariance [52]. RFM parameters
were estimated as described in Section 3.3. Anomaly
detection was then performed using information
from all layers, as detailed in Section 4.

5.2. SNR and SNER

The SNR and signal-to-noise energy ratio
(SNER) of a single resolution analysis provide a
reference point for investigating the performance of
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Fig. 6. GLR non-centrality parameter vs. the sum of RDWT

layers SNR values, under the hypothesis H1. Results are averaged

over a set of 40 Brodatz-like textures.
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multi-resolution algorithms. We define the SNR as
the ratio between the energy of the anomalous
target signal and the energy of the background
clutter with respect to the background clutter
covariance. Based on (18), the SNR around the
spatial location v is given by

SNRðvÞ ¼ kC�1=2hðvÞk2, (42)

where hðvÞ denotes the column stack representation
of the target chip hðv; sÞ and C denotes the
background clutter covariance of a background
image chip. We define the SNER as the ratio
between the energy of the anomalous target signal
and the energy of the background clutter. Using
(18), the SNER around the spatial location v is
given by

SNERðvÞ ¼ khðvÞk2=kxðvÞk2, (43)

where xðvÞ denotes the column stack representation
of the background chip xðv; sÞ. Under the frame-
work of synthesized anomalous targets and Bro-
datz-like textures, using the algorithm parameters as
stated above, the resulting averaged SNER value for
a given SNR value is: SNER � SNR� 26:3 ðdBÞ.
This is the outcome of the correlation between
pixels in the background clutter, indicating that the
use of a RFM, such as the proposed RFM, is in
place. The proposed detection scheme utilizes this
spatial information of both anomalous targets and
background clutter, further improving the SNR.
Therefore, the proposed detection scheme outper-
forms energy-based detectors which ignore available
spatial information.
Fig. 5. ROC curves of the proposed algorithm for various values of p-n

textures. Results are given for various SNR values: (a) 16 dB, (b) 18 dB
5.3. Performance analysis

In [25], it was argued that the use of eigenvectors
associated with the highest eigenvalues yields better
detection results, whereas in [8,10] it was argued
that rare anomalous targets reside in the subspace
spanned by eigenvectors associated with the lowest
eigenvalues. Chang and Chiang have shown in [8]
that the RX detector [1] is mainly affected by data
associated with smaller eigenvalues. Since both the
RX detector and the MSD use a similar Bayesian
umber of layers after KLT, averaged over a set of 40 Brodatz-like

, and (c) 20 dB.
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framework, we have expected similar results. Fig. 5
shows averaged ROC curves of the proposed
algorithm for various KLT configurations and
SNR values. We achieved better averaged detection
performance using eigenvectors associated with the
lowest eigenvalues rather then the highest eigenva-
lues when considering a minimum required value for
the detection rate. Furthermore, the use of addi-
tional layers improves the detection performance.
This improvement is due to additional information
which is concealed in each layer. The best averaged
detection performance was achieved without apply-
ing the KLT and when all layers were used.
Therefore, we have not used the KLT in the rest
of our analysis.
Fig. 7. MSD performance. Proposed algorithm vs. competing algo

dimensionality, averaged over a set of 40 Brodatz-like textures. Res

and (c) 10�4.

Fig. 8. ROC curves for the proposed algorithm vs. competing algorithm

are given for various SNR values: (a) 16 dB, (b) 18 dB, and (c) 20 dB.
Theoretical MSD performance is highly affected by
the MSD’s GLR non-centrality parameter, as can be
seen in (40). Fig. 6 shows the averaged GLR non-
centrality parameter for various SNR values along with
the RDWT equivalent of a multi-resolution MSD
framework which is employed directly on the RDWT
coefficients. We observe that the GLR non-centrality
parameter exceeds single resolution analysis SNR
values for SNR values larger than approximately
15dB. Furthermore, the GLR non-centrality para-
meter exceeds its RDWT equivalent values for SNR
values larger than approximately 22dB. Therefore, we
could expect for improved detection results whenever a
certain minimum SNR threshold is assured. This is
demonstrated in Fig. 7 using theoretical curves for
rithm [25] and theoretical results with equal target subspace

ults are given for various false alarm rates: (a) 10�2, (b) 10�3,

s [25,45], averaged over a set of 40 Brodatz-like textures. Results
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Fig. 9. An example of detection improvement in low SNER environment using a background natural texture of a stone with an additive

squared shaped synthetic anomaly in its center. The synthetic anomaly was created using image chips taken from a texture of metal, not

having visual resemblance with the stone texture. The anomaly was scaled to achieve: (a) SNR ¼ 24 dB, (b) SNR ¼ 30 dB. Corresponding

anomaly detection results using various methods: (c and d) proposed algorithm, (e and f) Goldman and Cohen [25]. In both methods the

detection was performed using a target subspace which was created from the same image chips that were used for synthesizing the

anomaly. The white target mark is attached only to the highest value in each detection image.
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single resolution and multi-resolution (MR) analyses.
The theoretical curves were calculated using (40) and
(41) and the averaged GLR non-centrality parameter
values, as given in Fig. 6. The minimum SNR threshold
is both anomaly and background texture dependent.
We formulate the desired minimum SNR threshold for
each layer in Appendix B. A layer which contains a dim
target signal contributes to the GLR less than a layer
with a clear target signal and might even introduce
undesired false alarms to the detector. Although this
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Fig. 10. GLR distribution example using the stone texture shown

in Fig. 2.

L. Shadhan, I. Cohen / Signal Processing 87 (2007) 3045–30623058
can be resolved by applying a proper threshold to the
GLR, the use of such layers affects the robustness of
the algorithm. We note that a larger GLR non-
centrality parameter is achieved when defining the
target subspace to contain interaction between target
signals. However, as a result, the target subspace
dimensionality is increased from q ¼ p � uh to q ¼ p�

uhðuh � 1Þ=2, degrading the overall performance.
Hence, we have omitted interaction between target
signals in the rest of our analysis.

We have tested the performance of the proposed
anomaly detection algorithm against two recently
published competing algorithms [25,45]. The algo-
rithm in [25] is based on a multi-resolution GMRF
and MSD. The algorithm in [45] is based on a multi-
resolution feature space and SHT using the Maha-
lanobis distance, not utilizing any available infor-
mation on the target signals other than their size.
The three algorithms were tested under the same
conditions, using the same parameters that are
described in Section 5.1. Fig. 7 shows plots of the
averaged probability of detection as a function of
SNR for fixed values of false alarm rates. Fig. 8
shows ROC curves for fixed values of SNRs. As
expected, the detection rate increases with the SNR.
The proposed algorithm outperformed the other
algorithms, demonstrating an averaged improve-
ment of up to approximately 2 dB when compared
to the algorithm presented in [25]. This improve-
ment is crucial in low SNR environments, as we
demonstrate in Fig. 9. Still, there is a margin
between the theoretical detection rate and the
experimental results. This margin results from
inconsistency between the Gaussian assumption
and the actual distribution of the innovations,
which exhibits heavier tails. As such, the back-
ground innovations should follow an elliptical
multivariate t-distribution and the kth layer GLR
(see (34)) then follows a univariate F-distribution
[53]. The resulting GLR then follows a mixture of p

F-distributions and a new threshold Z can be derived
to ensure a required false alarm rate. We demon-
strate this in Fig. 10 using the stone texture shown
in Fig. 2. A possible enhancement for achieving
closely Gaussian distributed feature space is the use
of a non-stationary local mean [1]. Under this
approach, (14) becomes

zkðvÞ � mzk
ðvÞ ¼

X
r2R

ykðrÞ½zkðvþ rÞ
� mzk
ðvþ rÞ� þ ekðvÞ, ð44Þ
where

mzk
ðvÞ ¼

P
r2Rz

zkðvþ rÞ

jRzj
(45)

and the window Rz is optimized to achieve

E½ðzkðvÞ � mzk
ðvÞÞ3� ¼ 0. (46)

However, this approach is useful only when the
window Rz is much larger than the anomalous
targets. The margin can also be explained by the use
of semi-homogenous textures as a background
clutter, which affects the covariance calculation.
Nevertheless, the proposed algorithm yields super-
ior detection results, implying that the proposed
statistical model better suites the underlaying back-
ground texture when considering natural textures.

5.4. Anomaly detection examples

We demonstrate the robustness of the proposed
algorithm using a diverse set of three Brodatz-like
texture images: fabric, raffia and woodgrain. Each
background texture contains two additive round
shaped synthetic anomalies with zero mean. The
synthetic anomalies for each background texture
were randomly created using image chips taken
from the two other textures. The anomalies were
scaled to achieve SNER ¼ 0 dB. Here we have used
an image lattice size of M �M, where M ¼ 192 and
a chip size of N �N, where N ¼ 24. An image with
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Fig. 11. An example of anomaly detection using a bank of subspace detectors, each best formulated for detecting a specific anomaly type.

(a–c) Background natural textures of a fabric, a raffia and a woodgrain correspondingly. Each background texture contains two additive

round shaped synthetic anomalies with zero mean. The synthetic anomalies for each background texture were created using image chips

taken from the two other textures. The anomalies were scaled to achieve SNER ¼ 0dB. (d–f) Anomaly detection results using the first

subspace detector. (g–i) Anomaly detection results using the second subspace detector. The subspace detectors were formulated based on

the same image chips that were used for synthesizing the anomalies. The white target mark is attached only to the highest value in each

detection image.
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various types of anomalies can be processed using a
bank of subspace detectors, each designed for
detecting a specific anomaly type [3]. Fig. 11 shows
the set of test images and the detection results of the
subspace detectors. All the anomalous targets were
detected. These results demonstrate the robustness
of the proposed model and detection algorithm,
allowing for the detection of various anomalies in
various background textures using the same multi-
resolution decomposition and neighbor set of pixels.

6. Conclusion

We have introduced a multi-resolution feature
space and a corresponding unsupervised anomaly
detection method. The multi-resolution feature
space is based on the RDWT and a proposed
multi-resolution RFM which better describes the
background clutter in natural images than other
models such as the SAR and GMRF. Our detection
method is based on a multi-resolution MSD
classifier, formulated for detecting subspace targets
in multi-resolution RFM innovations. The MSD
enables the incorporation of a priori information
into the detection process. A priori information
includes the target and interference characterizing
subspaces, and multi-resolution layers which are
most significant to the detection process. We have
investigated the influence of different parameters on
the detection performance, and compared the
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performance of the proposed method to competing
methods. We have demonstrated the robustness of
the proposed algorithm using a bank of subspace
detectors applied to various background textures.
The results show the capability of the proposed
method to detect a variety of targets in diverse
background clutter patterns using the same multi-
resolution decomposition and neighbor set of pixels.
The proposed algorithm can be used in conjunction
with texture segmentation algorithms for detection
of anomalous targets in multi textural patterns.
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Appendix A. Image scaling for reduced prediction

error

Let x denote a column stack representation of an
image with zero mean. Let d denote a scaling
adjustment factor. Let y denote the scaled image
y ¼ dx. Let hx denote the RFM weight coefficients
of image x and BðhxÞ denote the appropriate RFM
matrix. Based on (4) and (7), the RFM innovations
are given by

ey ¼ BðhxÞy ¼ dBðhxÞx ¼ dex. (47)

We define zy and zx by

½zx�i ¼ ½x�
2
i � E½½x�2i �,

½zy�i ¼ ½y�
2
i � E½½y�2i � ¼ d2½zx�i, ð48Þ

where ½��i denotes a vector element in the ith row.
Let hzx denote the RFM weight coefficients of

image zx and BðhzxÞ denote the appropriate RFM
matrix. From (4), (7) and (48), the RFM innova-
tions are given by

ezy ¼ Bðhzx Þzy ¼ d2Bðhzx Þzx ¼ d2ezx . (49)

The innovations covariances follow

cov½ey� ¼ BðhxÞ cov½y�BðhxÞ
T

¼ d2BðhxÞ cov½x�BðhxÞ
T
¼ d2 cov½ex�,

cov½ezy � ¼ BðhzxÞ cov½zy�BðhzxÞ
T

¼ d4Bðhzx Þ cov½zx�BðhzxÞ
T
¼ d4 cov½ezx �. ð50Þ

In order to achieve smaller prediction error, we
require ½cov½ezy ��i;ip½cov½ey��i;i, where ½��i;j denotes
the matrix element in the ith row and the jth
column. This results in the following requirement:

jdjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½cov½ex��i;i
½cov½ezx ��i;i

s
. (51)

Using (51), the squaring non-linearity achieves a
RFM with lower prediction error variance when-
ever a proper scaling of the modeled image is
performed and the same neighbor set is used.
Appendix B. SNR criterion for improved

performance

A simple SNR criterion can be applied on each
RDWT layer for determining whether or not
the proposed algorithm yields improved detection
results when compared to a multi-resolution
analysis without the squaring non-linearity. The
criterion is given for a specific set of anomalous
targets and a background clutter. Decomposition
layers which do not conform to this criterion might
degrade the performance of the proposed algorithm.
This allows for an a priori selection of layers that are
employed for computing the GLR. Other anomaly
detection algorithms may be used for the remaining
layers, followed by a fusion process of detection
results.

Let c denote the target subspace coefficients
vector. Let r denote an SNR adjustment factor. Let
A denote the target subspace in an RDWT layer.
Let S denote the background clutter covariance in
an RDWT layer. The SNR of a target signal vector
y ¼ rðAcÞ in an RDWT layer is then given by

yTS�1y ¼ r2ðcTATS�1AcÞ. (52)

We define subspace B using the squaring non-
linearity such ½B�i;j ¼ ½A�

2
i;j, where ½��i;j denotes the

matrix element in the ith row and the jth column.
We define the signal vector z using the squaring
non-linearity such ½z�i ¼ ½y�

2
i , where ½��i denotes the

vector element in the ith row. We define the
coefficients vector f using the squaring non-
linearity such ½f�i ¼ ½c�

2
i , where ½��i denotes the

vector element in the ith row. Hence,

z ¼ r2ðBfÞ þ r2ðresidualÞ. (53)

Let D denote the RFM operator. Let e denote the
RFM innovations vector. Let L denote the back-
ground clutter RFM innovations covariance in an
RDWT layer. We have

e ¼ Dz ¼ r2ðDBÞfþ r2DðresidualÞ. (54)
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The MSD’s layer SNR is then given by

ðPDBeÞTL�1ðPDBeÞ � r4ðfT
ðDBÞTL�1ðDBÞfÞ,

(55)

where PDB denotes the projection operator onto the
subspace spanned by the columns of ½DB�. We
define the criterion as

yTS�1ypðPDBeÞTL�1ðPDBeÞ. (56)

The criterion is satisfied as long as

jrjX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cTATS�1Ac

fT
ðDBÞTL�1ðDBÞf

s
. (57)

Using (57), the proposed algorithm achieves im-
proved detection results whenever the SNR is above
a certain threshold. This threshold depends on the
type of anomalous targets, background clutter and
multi-resolution layers.
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