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We consider the problem of recovering the underlying reflectivity signal from its seismic trace, taking into
account the attenuation and dispersion propagation effects of the reflected waves, in noisy environments.
We present an efficient method to perform seismic time-variant inversion based on the earth Q-model.
We derive theoretical bounds on the recovery error, and on the localization error. It is shown that the
solution consists of recovered spikes which are relatively close to spikes in the true reflectivity signal.
In addition, we prove that any redundant spike in the solution, which is far from the correct support,
will have small energy. The robustness of our technique is demonstrated using synthetic and real data

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The problem of decomposing a signal into its building blocks
(atoms) [1] is very common in many fields in signal process-
ing, such as: image processing [2], compressed sensing [3], radar
[4], ultrasound imaging [5], seismology [6-8] and more. In seis-
mic inversion, a short duration pulse (the wavelet) is transmit-
ted from the earth surface. The reflected pulses from the ground
are received by a sensor array and processed into a seismic im-
age [9]. Since reflections are generated at discontinuities in the
medium impedance, each seismic trace (a column in the seismic
two-dimensional (2D) image) can be modeled as a weighted su-
perposition of pulses further degraded by additive noise. Our task
is to recover the earth layers structure (the reflectivity) hidden in
the observed seismic image.

Previous works tried to solve the seismic inversion problem by
separating the seismic 2D image into independent vertical one-
dimensional (1D) deconvolution problems. The wavelet is modeled
as a 1D time-invariant signal in both horizontal and vertical di-
rections. Each reflectivity channel (column) appears in the vertical
direction as a sparse spike train where each spike is a reflector
that corresponds to a boundary between two layers (two different
acoustic impedances) in the ground. Then, each reflectivity chan-
nel is estimated from the corresponding seismic trace observation
apart from the other channels [6-14]. Utilization of sparse seismic
inversion methods - based on ¢; minimization problem solving -
can yield stable reflectivity solutions [7,12,13,15,16]. These ¢;-type
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methods and their resolution limits are studied thoroughly in sig-
nal processing and statistics research [5,17-25].

Multichannel deconvolution methods [26-34]| take into consid-
eration the horizontal continuity of the seismic reflectivity. Heimer
et al. [31] propose a method based on Markov Bernoulli ran-
dom field (MBRF) modeling. The Viterbi algorithm [35] is applied
to the search of the most likely sequences of reflectors concate-
nated across the traces by legal transitions. Ram et al. [33] also
propose two multichannel blind deconvolution algorithms for the
restoration of 2D seismic data. These algorithms are based on the
Markov-Bernoulli-Gaussian (MBG) reflectivity model. Each reflec-
tivity channel is estimated from the corresponding observed seis-
mic trace, taking into account the estimate of the previous reflec-
tivity channel or both estimates of the previous and the following
neighboring columns. The procedure is carried out using a slightly
modified maximum posterior mode (MPM) algorithm [36].

Although the typical seismic wavelet is time-variant, many in-
version methods rely on a model which does not take into consid-
eration time-depth variations in the waveform. However, the wave
absorption effects are not always negligible as the conventional as-
sumption claim. Seismic inverse Q-filtering [37-40] aims to com-
pensate for the velocity dispersion and energy absorption which
causes phase and amplitude distortions of the propagating and re-
flected acoustic waves. The process of inverse Q filtering consists
of amplitude compensation and phase correction which enhance
the resolution and increase the signal-to-noise ratio (SNR). Yet,
this process is generally computationally expensive and sometimes
even impractical.

Nonstationary deconvolution methods aim to deconvolve the
seismic data and also compensate for energy absorption, without
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knowing Q. Margrave et al. [41] developed the Gabor decovolution
algorithm. Chai et al. [42] also propose a method called nonsta-
tionary sparse reflectivity inversion (NSRI) to retrieve the reflectiv-
ity signal from nonstationary data without inverse Q filtering. Li
et al. [43] propose a nonstationary deconvolution algorithm based
on spectral modeling [44] and variable-step-sampling (VSS) hyper-
bolic smoothing.

We propose a novel robust algorithm for recovery of the un-
derlying reflectivity signal from the seismic data without a pre-
processing stage of inverse Q filtering. We prove that the solution
of a convex optimization problem, which takes into consideration
a time-variant signal model, results in a stable recovery. In addi-
tion we answer the following questions: To what accuracy can we
recover each reflectivity spike? How does this accuracy depend on
the noise level, the amplitude of the spike, the medium Q con-
stant and the wavelet’s shape? We prove that the recovery error is
proportional to the noise level. We also show how the error is af-
fected by degradation. The algorithm is applied to synthetic and
real seismic data. Our experiments affirm the theoretical results
and demonstrate that the suggested method reveals reflectors am-
plitudes and locations with high precision.

The paper is organized as follows. In Section 2, we review
the basic theory of earth Q model and the seismic inversion
problem. In Section 3, we present the main theoretical results.
Section 4 presents numerical experiments and real data results. Fi-
nally, in Section 5, we conclude and discuss further research.

2. Signal model
2.1. Reflectivity model

We assume the earth structure is stratified, so that reflections
are generated at the boundaries between different impedance lay-
ers. Therefore, each 1D channel (column) in the unknown 2D re-
flectivity signal can be formulated as a sparse spike train

X(t) =) cnd(t —tm), (1)

where §(t) denotes the Dirac delta function and Z;|cm| < oo. The
set of delays T = {tm} and the real amplitudes {c;} are unknown.

In the discrete setting, assuming the sampling interval is 1/N for
a given integer sampling rate N, and that the set of delays T = {tp,}
lie on the grid k/N, k € Z, i.e., t; = kyy/N where ky, € Z

X[kl =" cmd[k — k). (2)

where §[k] denotes the Kronecker delta function (see [45]).
We consider a seismic discrete trace of the form

y[k] :y(k/N) = Zcmgo.m<t _Ntm> = Zcmga,m[k — km]7 (3)

where {g; m} is a known set of kernels (pulses) for a possible set
of time delays T = {tn}, and a known scaling parameter ¢ > 0. In
Section 2.3 we discuss specific requirements for {g5, m}-

A time-invariant model assumes for simplicity that all kernels
are identical, i.e., g m(t) :g(g) Vm [5,23]. Hence, the model can
be represented as a convolution model. However, the shape and
energy of each reflected pulse highly depends on its correspond-
ing reflector’s depth in the ground. Therefore, an accurate model
should take into consideration a set of kernels {gs, m} which con-
sists of different pulses.

In noisy environments we consider a discrete seismic trace of
the form

YKl =" cngomlk — km] +nlk], [nl; <6, (4)
m

where n[k] is additive noise with |n|; = 3, |n[k]| < 8. Our objec-
tive is to estimate the true support K = {k;,} and the spikes’ am-
plitudes {cp,} from the observed seismic trace y[k].

2.2. Earth Q model

We assume a source waveform s(t) defined as the real-valued
Ricker wavelet.

s(t) = (1 - %w5t2> exp < - %a)ﬁtz), (5)

where wq is the most energetic (dominant) radial frequency [46].
We define the scaling parameter as o = a)al. Wang [47] showed
that given a travel time t, the reflected wave can be modeled as

u(t) = Re{%/ S(w) explj (ot —Kr(a)))]da)}, (6)
0
where S(w) is the Fourier transform of the source waveform s(t),
a(1_ | el”
kr(w) = ( ZQ)‘a)o‘ wty, (7)
22 (L) ~ L
yfntan 50)~ 70’ (8)

and Q is the medium quality factor, which is assumed to be fre-
quency independent [37]. Kjartansson defined Q as the portion of
energy lost during each cycle or wavelength.

Therefore, the expression of the earth Q filter consists of two
exponential operators that express the phase effect (caused by ve-
locity dispersion) and the amplitude effect (caused by energy ab-
sorption)

Jw |7V
U(t—tm,a)):U(t,a))exp<—]‘w‘ a)tm>
0

w |77 oty
exp| —|—| == |- 9
X exp ( ‘600 ‘ 2Q ) ®)
Summing these plane waves we get the time-domain seismic sig-
nal

Ut — ty) = %fU(tftm,w)dw. (10)

We can now define the known set of kernels (pulses) {gs, m} for
the seismic setting

ga.m(t—tm)Zu(t—tm)|g=wa1- (11)
2.3. Admissible kernels and separation constant

To be able to quantify the waves decay and concavity we recall
two definitions from previous works [5,23]:

Definition 2.1. A kernel g is admissible if it has the following
properties:

1. ge R is real and even.
2. Global Property: There exist constants ; > 0, [ =0, 1, 2, 3, such

that |g® ()] < % where g{)(t) denotes the I derivative of g.
3. Local Property: There exist constants &, 8 > 0 such that
(a) g(t) > 0 for all |t| < & and g(e) > g(t) for all |t| > e.

(b) g (t) < —p for all |t] < e.

In other words, the kernel and its first three derivatives are de-
caying fast enough, and the kernel is concave near its midpoint.

Definition 2.2. A set of points K C Z is said to satisfy the minimal
separation condition for a kernel dependent v > 0, a given scaling
o > 0 and a sampling spacing 1/N > 0 if

min |k — k;j| > Nvo.
kiokjek. i
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Fig. 1. Centered synthetic reflected wavelets and their derivatives, Q = 125, wg =
1007 (50H2) (a) g, m(t) 5 (b) g (6) ; () g ().

where vo is the smallest time interval between two reflectors with
which we can still recover two distinct spikes, and v is called the
separation constant.

Fig. 1 presents an example of the attenuating wavelets go, m(t
and their derivatives, gf,%(t) and ggz}n(t) for Q =125 and ty =

100, 250, 400, ..., 1900 ms (increment of 150 ms ). wg = 100w
(50 Hz). The pulses and their derivatives are moved to the ori-
gin so that it can be seen that there is a common value of ¢ and
B. Meaning that, for a sequence of kernels g m(t) as described
n (11), there exist two possible parameters (¢;, Bm) that deter-
mine the concavity of the reflected wave g, m(t), as defined in
Definition 2.1, such that there are two common constants &, 8 > 0
for all reflected waves. In other words

Em=¢& Vm (12)
and
Bm=p Vm. (13)

The reflected waves g5, im(t) are not symmetric, but remain flat at
the origin, i.e, ng:,, (t) ~ 0. So, it can be said that each of the re-
flected waves g5 m(t) is approximately an admissible kernel, and
all of these waves share two common parameters &, § > 0.

We would make one more assumption: g, m(€) > |go, m(t)| for
all |t| > e. Meaning that for [t| > & the absolute value of the kernel
does not increase beyond its value in t = ¢.

3. Seismic recovery
3.1. Recovery method and recovery-Error bound

The recovery of the seismic reflectivity could be achieved by
solving the optimization problem presented in the following theo-
rem. In addition, we also derive a bound on the recovery error.

Theorem 1. Let y be of the form of (4) and let {gs m} be a set of
admissible kernels as defined in Definition 2.1. If K satisfies the sep-
aration condition of Definition 2.2 for N > 0 then the solution X of

min)IIXIIm subject to  [|y[k] = cugo.m[k — km]lle, <8 (14)
m

xely (Z
satisfies

- 4p
X=X||le, < —6 15
|| ||131 = ﬂVO ( )

0 £ max {g (No)zao}
where
0o = Maxgom(0), yo=mingsm(0).
The dependance of x on the time k is not written for simplicity.
Proof. see Appendix A. O

Remarks

e This result guarantees that under the separation condition in
Definition 2.2, a signal of the form of (4), can be recovered by
solving the ¢; optimization problem formulated in (14). More-
over, a theoretical analysis of the recovered solution ensures
that the error is bounded by a relatively small value, which de-
pends mainly on the noise level and on the attenuation of the
wavelets and is expressed through the parameters Q and S.

e In the noiseless case where § =0, the recovery is perfect.
One would probably expect that the recovered solution would
slightly deviate from the true one, yet this is not the case. This
result does not depend on whether the spikes amplitude are
very small or very large.
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o If Y9 = ap we have the time-invariant case

- 4 1 )
e=xll, = 7 max { 5. (o2 s
As expected, in the time-invariant case our result reduces into
previous work results [5,23]. The recovery error is proportional
to the noise level §, and small values of g (flat kernels) result
in larger errors.

In the time-variant setting most cases comply with 2’—3 <
(No )2,

Then, the recovery error is bounded by

4(No )2 @,
B Y

A smaller Q (which corresponds to a stronger degradation) re-
sults in higher ‘;‘,—8 ratio and smaller B values. We will hereafter

1% —x]le, <

refer to the ratio % as the degradation ratio. Hence, the bound
on the error in a time-variant environment implies that the er-
ror increases as Q gets smaller, which corresponds to a higher
degradation ratio ;’ﬁ—o . As in the time-invariant case, the error is
linear with respect to the noise level 4. Also, the error is sensi-
tive to the flatness of the kernel near the origin. Namely, small
B results in an erroneous recovery.

3.2. Resolution bounds

Theorem 2. Assume X[k]=1)", Emdlk —km] is the solution of
(14) where K 2 {Em} is the support of the recovered signal.

Let y be of the form of y[k] = >, cm&o.m[k — km] + n[k], |n|; <
8 and let {gs m} be a set of admissible kernels with two common

(o7

C}+/(J3/4

If K satisfies the separation condition for N > 0, then the solution
X satisfies:

parameters ¢, B > 0, with ¢ > § =

Ll eR: k|~ Ne, Vkmek | cm| = 2213‘05
Any redundant spike in K which is far from the correct support K
will for sure have small energy. R
2. For any km € K if |cm| > Dy, then there exist km e K such that

1.

2D5 (NO')ZOl()
B(len] -4

(’A(m —km)? <

where

_ 28 2,0 1 C2,m
Da = ?(% + D ma"{?’ (No)2gn (0) D

- ~2
302 @yav? - 2G) + B (1+ )p
=

(3y2v2 — 12G) (3yov? — 272Co)

and

G = maxCyp, 1=0.1.2,3.

This implies that for any k;m e K with sufficiently large ampli-
tude cm, under the separation condition, the recovered support loca-
tion km € K is close to the original one. The solution X consists of a
recovered spike near any spike of the true reflectivity signal.

Proof. see Appendix B. O

0.9 * ¥

0.8 fe) i

0.7f **% 0000 1

0.6 *® OO0 1

0.4} o 1

Rate of Success
o
(&}
.
.

0.3 * 3k ok % Kk i

0.2 * [oNeNe] i

01} *¥000 ¥ Q=200

O Q=100

0 0.5 1 1.5 2 25 3

Fig. 2. Support detection vs. the separation constant v. Rate of success is the aver-
age number of perfect recoveries out of 10 experiments.

4. Experimental results
4.1. Synthetic Data

We conducted various experiments in order to confirm the the-
oretical results. To solve the ¢; minimization in (14) we used CVX
[48].

First, we try to estimate the minimal separation constant v for
various Q values. We generate a synthetic reflectivity column, with
sampling time T; =2 ms. The reflectivity is statistically modeled
as a zero-mean Bernoulli-Gaussian process [28]. The support was
drawn from a Bernoulli process with p=0.2 of length L, =220
taps, , and the amplitudes were drawn from an i.i.d normal dis-
tribution with standard deviation v = 10. Then, we create the syn-
thetic seismic trace in a noise-free environment, and try to recover
the reflectivity by solving (14). Namely, we increase v until we get
an exact recovery in the noise-free setting. Fig. 2 presents the re-
sults for Q = 100, 200. The initial wavelet was a Ricker wavelet
with wg = 1007, i.e., 50 Hz. We repeat the experiment 10 times
for each value of v. The success rate is 1 if the support’s recov-
ery is perfect for all 10 experiments. As can be seen, the minimal
separation constant for Q = 200 is v = 1.9 whereas for Q = 100 we
have v =2.5.

Fig. 3 presents the recovery error [|X —x||¢, as a function of the
noise level & for different Q values - Q = o0, 500, 200, 100. Ts =
4 ms and L; = 176. As in Fig. 2, the reflectivity is statistically mod-
eled as a zero-mean Bernoulli-Gaussian process. Under the sepa-
ration condition, the minimum distance between two spikes satis-
fies the minimal separation condition. The reflectivity is shown in
Fig. 4(a). The initial wavelet was a Ricker wavelet with wy = 1407,
i.e., 70 Hz. Two seismic traces with SNR= oo and SNR = 15.5dB,
are shown in Fig. 4(b) and (c) respectively. The recovered signals
from this traces are shown in Fig. 4(d) and (e). As can be seen in
Fig. 3 the error is linear with respect to the noise. This implies
that the bound we derived in Theorem 1 is reasonable. The the-
oretical bound is always greater or equal to the empirical error.
As Q gets smaller, 8 - which is common to all reflected pulses -
becomes significantly smaller. Hence, the theoretical bound slope
becomes significantly larger compared with the empirical one. It
can be seen also in the experimental results that as Q gets smaller
the error gets bigger. Table 1 presents the theoretical and practical
parameters.
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Fig. 4. 1D synthetic tests of (a) True reflectivity. (b),(c) Synthetic trace with 50 Hz Ricker wavelet and SNR= oo, 15.5 dB respectively, Q = 200. (d),(e) Recovered 1D channel

of reflectivity signal.

Table 1

Synthetic example: theoretical and estimated parameters:
Q, the degradation ratio ‘;—g B, M% - the bound
slope computed from known parameters (by Theorem
1 [1R=x|l, < 4(’\:,—”’2%26), and the estimated slope com-

puted from the experimental results in Fig. 3(a).

Q L B W % Estimated slope
00 1 1.5 0.862 0.567

500 1.75 0.77 294 0.89

200 3.8 0.36 13.67 1.71

100 9.44 0.094 129.7 3.53

We compare the proposed solution to the blind deconvolution
SOOT algorithm of Repetti et al. [16]. Fig 5. presents the results
with noise level o0 =0.01 (SNR =12.9 dB), Q =500, Ts =4 ms,
and an initial Ricker wavelet with wg = 507, i.e., 25 Hz. The origi-

nal reflectivity section is depicted in Fig 5.(a). The estimated reflec-
tivities, obtained by SOOT, and by solving the ¢; minimization in
(14) using CVX [48] , for the seismic data in Fig. 5(b), are shown in
Fig. 5(c) and (d) respectively. The results demonstrate that sparse
recovery methods that do not take into consideration the attenuat-
ing and broadening nature of the wavelet, tend to annihilate small
reflectivity spikes, especially in the deeper part of the reflectivity
section.

Solving the ¢; minimization in (14) using CVX [48], the average
processing time of a data set of 100 x 100 on Intel(R)Core(TM)i7-
5600U@2.60 GHz is 40.8 s.

4.2. Real data

We applied the proposed method, to real seismic data from a
small land 3D survey in North America (courtesy of GeoEnergy
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Time [sample]
Time [sample]

Inc., TX) of size 380 x 160, shown in Fig. 6(a). The time inter-
val is 2 ms. Assuming an initial Ricker wavelet with wy = 1407
(70 Hz). We estimated Q = 80 using common midpoints (CMP) as
described in [49]. Then, using (6)-(11) we estimated all possible
kernels and solved (14) using CVX [48]. The recovered reflectivity
section is shown in Fig. 6(b). The seismic data reconstructed from
the estimated reflectivity using the known sequence {g m(t)}, is
shown in Fig. 5(c). Visually analyzing this reflectivity section, it
can be seen that the layer boundaries in the estimate are clear
and quite continuous and smooth. It can also be seen that the re-
constructed seismic data fits the original given observation. Since
the ground truth is unknown, in order to measure the accuracy in
the location and amplitude of the recovered reflectivity spikes we
compute the correlation coefficient between the reconstructed data
to the given seismic data. In this example we have p;=0.967,
which indicates that the reflectivity is estimated with very high
precision. Fig. 7(a) shows the estimated reflectivity considering a
time-invariant model, using sparse spike inversion (SSI) [6]. The re-
sult for a time-varying model is shown in Fig. 7(b). It can be seen,
especially in the lower (deeper) half of the image, that the method
introduced in this paper produces much clearer results, since it
takes in to account the attenuating and broadening nature of the
waves as they travel further into the ground and back. Moreover,
in terms of correlation coefficients, for SSI we have o, ; = 0.89, im-
plying that considering a time-varying model indeed yields better
results.

5. Conclusions

We have presented a seismic inversion algorithm under time-
variant model. The algorithm both promotes sparsity of the solu-
tion and also takes into consideration attenuation and dispersion
effects resulting in shape distortion of the wavelet. The inversion
results are demonstrated on synthetic and real data, under suffi-
ciently high SNR. We derived a bound on the recovery ¢; error and
observed that the error increases as Q gets smaller. As in the time-
invariant case, the error is proportional to the noise level. Also, the
error is sensitive to the flatness of the kernel near the origin. Sim-
ulation results confirm the theoretical bound. We also proved that
under the separation condition, for any spike with large-enough
amplitude the recovered support location is close to the original
one. The solution consists of a recovered spike near every spike
of the true reflectivity signal. Any redundant spike in the recov-

Time [sample]
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Fig. 6. Real data inversion results: (a) Real seismic data (b) Estimated reflectivity (c) Reconstructed data.

50

100

Trace number

(c)

150



D. Pereg, I. Cohen/Signal Processing 137 (2017) 373-386 379

Time [sample]

250

350

50 100 150
Trace number

(a)

Fig. 7. Real data inversion results: (a) Estimated reflectivity - time-invariant model (SSI) (c) Estimated reflectivity - time-variant model.

ered signal, which is far from the correct support, has small en-
ergy. Future research can address the problem of model mismatch.
In addition we can elaborate the solution suggested in this paper
to non-constant Q layers model.

Appendix A

Proof of Theorem 1. The proof follows the outline of research in
[20,23].

Denote gm(t) 2 go.m|y=1. In a similar manner to [20,23], we
build a function of the form

q(t) =Y am@n(t — tm) + bmgly (t — tm).
m

The function q(t) satisfies

q(te) =1y Vtk eT,
q(”(tk) =0 Vtk eT,
vl =15

Its existence enables us to decouple the estimation error at tp
from the amplitude of the rest of the spikes. The magnitude of q(t)
reaches a local maximum on the true support. This will in turn
enable us to bound the recovery error. O

In the following proof we use the following proposition and two
lemmas.

Proposition 3. Assume a set of delays T2{tn} that satisfies the sepa-
ration condition, and let {gn} be a set of admissible kernels as defined
in Definition 2.1. Then, there exist coefficients {am} and {bn} such that

q(t) = Y angn(t — tm) + bngl’ (t — tm). (16)
m

lgt)|=1 Ve eT, (17)

and

qV(t) =0 VteT. (18)

50

100

Time [sample]

350

50 100 150
Trace number

(b)

The coefficients are bounded by
312

[la]le < EWRE Y-
3yov? —212Cy

37262
(3y2v2 — 126) Byev? — 22Gy)

I[b]]o <

where a2{an},b2{bn} are coefficient vectors and
G = max Gy, 1=0.1,2.3.
We also have

1

m = = .
~ (GE(v))?
o +2GE(v) + G

a

In other words, if the support is scattered, it is possible to build
a function q(t) that interpolates any sign pattern exactly.

Proof. The admissible kernel and its derivatives decay rapidly
away from the origin. The proofs of this Proposition, the Theorem
and the two Lemmas make repeated use of these facts.

According to (17) and (18)

Zamgm(tk — tm) + bngy (6 — tm) = Vi,
m

and

Zamgg)(tk - tm) + bmgg)(tk - tm) = O,
m

for all t;, € T, where v}, € R so that |v| = 1.
Therefore, in matrix-vector formulation we express these con-
straints

Gy Gilfa |V
G Gy||b[—|0Of
where  (G)ym 20t —tn).1=0,1,2 and az{an}),b2{by),
vA{v,}.
We know that the matrix G is invertible if both G, and the

Schur complement of G,:
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S=Gy—Gq G;lcl are invertible [50]. We also know that a ma-
trix A is invertible if there exists o # 0 such that ||al — Al|« < ||,
where [|A||c = max; }_;|a; j|. In this case we also know that

1
A< ——m8m8 . 19
1A = T Tler =411 (19)
Denote
o = max|gf) (0)]. = min|gf (0)]
A=~y =max|gy (0)] — min gy (0.
We can observe that
lloa! = Gl = max [ 3 Igf2 & — t)| + 187 (0) — e |
¢ m#k
~ 1
< (; max —— + A
2 k%b+W—%V 2
~ 1
sGmax) ——————— + Ay
k oy} 1+ ((k—m)v)
Since
> 1 2
—— <E L 2
g T+ ()2 = o) 6v2 (20)
[loal = Galloo < 2GE(V) + Ay < ay. (21)
Which leads us to,
26,72 < (0 — Ay)6V2. (22)
Therefore,
)
2, G (23)
3]/2

The result is quite intuitive. Small values of y, (small Q values)
require a larger separation constant. The flattest kernel determines
the global separation requirements for perfect recovery.

Now, we can also derive

[latol = Sllo = Iletol — Go + G1G; ' G|

< |latol = Golloo + [1G11[2,11G5 oo (24)
In a similar manner to (21)
[latol = Golloo < 2GE (V) + Ao, (25)

and since gﬁ,})(O) ~0Vm
[|G1lloe < 2GE(). (26)
Using (19) and (21)

1165 1o < ! SR
20 7 g = llaal = Gallee ~ an — 2GE(V) — A,
N 27)
v2 —2GE(v)
So, we have
~ 2
ool = Sl < 2GE(V) + Ag + M
v2 —2GE(v)
)
tgofie 2],
Co(y2 —2GE(v))
< 4GE(V) + A,. (28)

The last inequality holds for
2CE(w) = Co(ya —2GE(W)).

Leading us to
3\)260)/2 > 72 (Clz + C~0C~2).
Which yields the condition
b2 T +GG)

- 3Coy2
Then, S is invertible if

4CoE(v) + Ao < o,
4CoE(v) < g — Ag = Yo.

2C~07T2
32 < Yo,

2 27T2C~0
> .
30

(30)
Here again it can be observed that small y values require a larger
separation constant v. Finally we get

[lotol = S]] < 4CoE(V) + Ag < Q. (31)

and S is invertible. So we have proved that q(t) exists under certain
conditions on the separation constant.
In addition a and b are given by

al [G G Ty

bl [G G 0f

a S v

M - [—GZ“G1S’V } (32)

Using (19) and (31) we have
1 1

Al < IS = < .
lall ISl loto| = [letol = Slloo = atg — 4CHE (V) — Ag
= % (33)
Yo —4GE(v)
Using (26) and (27) we also have
[1bllse < 1G5 1sol1G1loo /1S oo
2GE(v) (34)

= (2 = 2GEW)) (o — 4CE (1))

Assuming v, = 1, we get

aG= (V)= (S

]

Since S71S =1
Z(S_l)k.j(s)j,k =1
j

We also know

Z|(57])k,j(5)j,k| < Z|(57])k,j|2|(5)j.k|,
j j j

which leads us to

1
N
216Dl = sy
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Also, we can derive
Vk Y (S < ISl < 11Gollr + 11G: 1 311G3 14
J
where ||Al|; = max; }; |a; j].
We can observe that

1
Goll1 = t—t G —_—
[1Goll1 = max;|gm(k m)| < oo + Omale+(tk—tm)2

. 1 .
—_— 2CG0E(v).
< ao+C0m’gxk§:nl+((k_m)v)2 <ag+2GEW)

Similarly,

llaat = G 1y = max | 37 16 (6~ tw)| + |£52(0) —
k#m

. 1
_szaxzinrAz
m k;ém1+(tk_tm)

1

<G mrgx’;n TE (=m)? + Ay <2GEW) + A,.

Therefore,
1 1
G, = .
16211 = fo T Tl —Gally = 72— 2GE ()
And since g(”(O) ~0Vm

[1Gi]]1 < 2CLE(v). (35)
Which leads us to

= QGE(W)?)
[(S)jikl = 0t +2CoE (V) + —— ="
; " y2 — 2GE(v)
So finally
ag > 1 - . (36)

QGE®))?

g + ZCOE(V) + m

Hence, a,’s lower bound is inversely proportional to o/g. Numerical
experiments have shown that this bound is tight, meaning that the
smallest gy, is the exact reciprocal of the amplitude of the strongest
kernel in the observation signal. This result is significant since it
indicates that the bound on the recovery error is not merely stat-
ing the time-invariant result for the kernel with the worst con-
stants. The better kernels are also taken into account. It can be said
that the recovery error is proportional to the degradation ratio %
which is the ratio between the amplitude of the best kernel to the
amplitude of the worst kernel. O

Lemma 4. Under the separation condition with ¢ < v/[2, q as in
Proposition 3 satisfies |q(t) < 1] if 0 < |t — tm| < & for some tym € T.

Lemma 5. Under the separation condition with ¢ < v/[2, q as in
Proposition 3 satisfies |q(t) < 1] if |t —tm| > & VtmeT.

Proof of Lemma 4. Assume t € R and t, <t <t + ¢ for some ¢, €
T, and that q(t,) = 1. (The proof is the same for t, —¢ <t <¢t, or
v, = —1). We also assume that T satisfies the separation condition
with & < v/2. Therefore, we have |t —tm| > 5 for m # k. Then, for
[=0,1,2,3 we have

SlgR -t <>

msk mek 14+ (t - tm)

=G).

mak 1+ ((k— m)v/z)

~ 4 .
< 8GE(W) = §C1F- (37)

Using this estimate, as well as (33), (34) and (36), and the admis-
sible kernels’ properties we obtain

q@ (1) = Zamgﬁ)@ — tm) + bmgly (t — tm)
< akg,?)(t —t) +llall Y g (t — tw)]
m#k
+ IIbIIwZ gt (t = tm)|
- B 8GE(v)
T o+ 26EW) + 7;262?(';)&2) Yo —4CGE(v)

16C3(2E(v) + DHGE(v)
(v2 = 2GE(W)) (o — 4GE(v))

For sufficiently large v that depends on the parameters of gn(t) we
can approximate

(38)

@ <-L£. (39)

By the Taylor remainder theorem [51], for any ¢, <t < t; + € there
exists t, < & < t such that

a(0) = (6 + 4V (€~ ) + 542 E) (€~ 6" (40)

Since by construction g (t,) = 0.
For sufficiently large v

q(t) <1- Z%O(t—tk)z. (41)

So we have shown that q(t) < 1.
To show that q(t) > —1

q(t) = Z g (t — tm) + bmgla (tk — tm)

v

akgk(t - tk) - ||a||oc Z |gm(t - tm)|
m+k

bl 3 1857 €~ o)

_ 8GE®W)

QGEW))? —4CE(v
sery 1o T AGE(D)

_ 16G(2E(v) + DGE(v)
(v2 —2GE()) (o — 4CE(v))
Hence, for sufficiently large v and y we’ve shown that

8 (e)
ap + 26E(W) +

v

q(t) > -1, for t,<t<ty+e, (42)

and

lqit)] <1 |t —te] <€, tpeT. (43)
O

Proof of Lemma 5. Assume t ¢ R and |t —tpy| > ¢ for all ty;, € T,
since € < v/2, we have |t — ty| > v/2. Then, from (16), the admis-
sible kernel’s properties, (33) and (34), we can write

lg(O] <l all Y lgm@ —ta)| + 1 b 1l D 18w (¢ —tm)].  (44)

Let us denote
M = argmin [gn (0)]. (45)
By assumption

gt —ty)
Yo

< 1.
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We recall,

Yo = 8x(0),

Moreover, since |t —tp,| > €

0~ Za(t —ts) - gm(8)'
Yo Yo

By the Taylor remainder theorem and the properties of gn(t), we
know

2
0 < gn(e) =gn (@) - Lo
Therefore,
191 < llall (8 ~ ta) + 3 lgn(C ~ tw)])

m#

bl Y1857 €~ )

_ &t —tq) + 8GE(V) 16C2E2(v)
Yo —4GE (V) (V2 = 2GE()) (yo — 4GE(v))
(46)
Finally, we can conclude that for sufficiently large v,
2
a0l <1-5- (47)

O

Now, we can complete the proof of Theorem 1. Assume X is
the solution of the optimization problem in (14). X obeys ||&][,, <
[x[]e

Dtlenote the error h[k] £ X[k] — x[K].

Now separate h into h = hg + hyc, where hy’s support is in the
true support K2{kn}. If hxy =0, then h =0, since hy =0and h # 0
would imply that hyc # 0 and |[|%]]¢, > [Ix]]e, .

Under the separation condition, the set T =
tj=vo fori#j.

We've shown in Proposition 3 that there exists q of the form
(16) such that

{tm} satisfies t; —

attw) = (%) = sgn(hlinl) Vi <T. (48)

By assumption, we choose vy = sgn(hg (tm)).
In addition, q also satisfies |q(t)] < 1 for t&T.

We then define
k
) +bmg1('r})a<t_ I\rln)

o (t) = q(é) Zamgm(r<

So that

Go (k) 2 g ("’") — sgn(hlkn]) Vkn < K.
and
lgs (k)| <1 Vk¢K.

Denote g'}) [k] £ gﬁ,})(,( )- Consequently, we can obtain

) an[k]h[k](
keZ
‘ é (kmie;(amgm o (k= km) + bng y (k — km)>h[k])]
= ||a||o<>‘ sz: (Zm:gm(r[k —k ]h[k])‘

+libll] Y (L gt [k—kmm[k])) (49)

keZ m

We also have,

Slk— km]h[k]‘
1
= ‘ ;gm,a[k — km]X[K] — Xm:gm,(,[k - km]x[k]‘]
= V1K1 = S gl — k(K] = (VK] = 3 g [k~ i $1KT)|
< 1K = X gnalk — knolk]|

+|yt = X gnalk ~ knlatha| <25, (50)

Since,

IVIK] = x[K]|, = |yK] = 3 cmgmar [k — knl|, <.

and also,

VK] = R[K]l1 = |y[k] = > Cnmo [k — km]l1 < 6.

As mentioned above {g} is a set of admissible kernels. Therefore,

gk — kil = [gf? ()| = — O (1)
o 1+ (k km)
Under the separation condition we have [k —kj| >
Nvo  Vk;, k; € K. Hence, for any k we have
Y 2a+Ew)). (52)

ok 1+ (ttn)?
Since we know

2
N T

Z1—1—(nv)2 =EM)= 6v2°

Then,
3 )Z(gm [k—km]h[k])‘ <G YKL Y
kneK ' keZ 1 kez, ke 1+ (45az)
<26, (1 +EW))||hll;.
Hence,

| Y aulkinlil| < 26llall + 261+ EO)IblIl Bl (53)

kez

On the other hand,
| S aothanikd| = | 5 qo KIChlk] + el k)
keZ ! keZ 1

= > lao [Kh[K]l; —

keZ
> || h1<||1

|G [kl [K]l;
- kg{;{l%[’dl [l Pyee [R5 (54)

Combining (53) and (54) we get,
I helly —
<24 Utllgo

maxlq(,[kll Il eIl
+2G(1+EW)) |l bll Il Al

We've shown in the proof of lemma 4 that for |k — k| < eNo,
for some k;, € K

9011 = a0 (3 )\51—%.
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And by (47) for |k — ky| > eNo for all ky, € K

il =|a(5 ) [ =1- 52

So we can conclude

B
max |qq [K]| = 1 - 7 (56)

where p £ max{ %, (No)2aqt.
Substituting (56) into (55) we get,

[1hillr - (1 - fo)HhKCHl <28|lalles +2G (1 +EW)|[bl || Ih] 1.

(57)

Moreover, we know that

[1xIl1 = [IR[]1 = lIx+ hll1 = [|x + hell1 + [[hg ]|
> [|x[l1 = [[hkll1 + kel 1

Which leads us to
[lhgll1 = [1hgellq.

Combining this with (57) leads us to
[lhllr = [lhkllt + [[hgellr < 2[[hgell1

< 4Fp(BIIaIIOwZC](l+E(v))||b||oo||h||1)_ (58)

So we have,

IIh]lx < 4pllall . (59)
B —4pCi(1+EW))||bl|w

Using (33) and (34)

36py2
DT D2 (60)

hll, <
10l = 55707,

D; =37T2(/3€2+2/3C~0+4C~1p), D, =
O

7T4(2,0C~] — /36260)

Appendix B

Proof of Theorem 2. To prove Theorem 2 we use the following
two Lemmas.

Lemma 6. Assume a set of delays T2{t,} that satisfies the separation
condition
min |k —k;| = Nvo.

ki kjeK.izj

Let {gm} be a set of admissible kernels as defined in Definition 2.1 or
asymmetric approximately admissible kernels as described in Section
2.2. Then, for any ty € T there exist coefficients {a,} and {b,} such
that the function

t—t t—t
m(t) = Zakgm< k) +bkg§})(7") (61)
k
obeys
qm(tm) =1,
Qm(t') =0 Vt' € T\{tm},
gl (t) =0 Vi,
Com(t = tm)?
1= ()] < 2=t g (62)

Zm(0)o?

Com(t —t))?
lgm(£)] < g’;(oi)afz, Vt; e T\{tm}, [t —tj] <e0, (63)
lgm(t)| <1 —&me® |t —tj| > €0, VtjeT, (64)
B
5n = 2 (0)°

These results also for all 0 < &’ < e.

Remark Notice that here we have a set of different admissible ker-
nels, each function qm(t) is based on a different kernel {gm(t)} and
it decouples the estimation error at one location tp, from the am-
plitude of the rest of the support. It is designed to obey < qm,x >%

[ qm®)x(t)dt = ci.

Lemma 7. Assume K that satisfies the separation condition of
Definition 2.2 for N > 0, then

Z |C?n|m1n {82, d(km,K)} < 2D3O{()87

N. 2
fnek (No) p
where
dk,K) = mm (kn — k)2.

Proof of Lemma 6. We impose

m(tm) = 1,
qm(tj) =0 Vt; e T\{tn},
gl (t) =0 Vi,

@ (tm =Y _
Zakgm( )+bg ( = )—1
and

Za g(”( ) + by (2)<L ; tk) =0, tjeT\{tn}

In matrix form,

EHEE!

where ey, is a vector with one nonzero entry at the location corre-
sponding to ty, a2{an},b2{bn} and (D)), £ ,(f,)(t t") 1=0,1,2.
As we mentioned in Proposition 3, we know that the matrix D is
invertible if both D, and the Schur complement of D,:

S=Dg— D1D51D1 are invertible [50]. We also know that a ma-
trix A is invertible if there exists « # 0 such that ||al — A||~x < |o],
where [|A|c = max; )" |a; j|. In this case we have

1
A oo <
la| = el = Allo

Using the properties of an admissible kernel and the separation
condition, we can write

-t
857001 = Dall = max 3 |g<2>( ~ m)|

ECme Z
By

G.m 1
=57 M TG mne
m#k

m)v)?2

Recall that

Zl+(n )? =Ew) =

2
N 7T
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Therefore,

2C;
g (0) = Dol < =3™

E(v). (65)

Meaning that D, is invertible if sz(v) |g(2)(0)|.

This yields the condition
2 > 2C2 m7T2
3|gi (0)]o
This implies that as m increases and gm(t) loses more energy, in

order to achieve the correct recovery by ¢; optimization, the min-
imum distance between two adjacent spikes should be larger.

(66)

|1&m (0)I — S||co = ||gm(0)] — Dy +D1D£1D1||w
< |1gm(0)I = Do|lo + [ID1[12,11D5 || - (67)
In a similar manner to (65)
[1gm (0)] = Dol|oe < 2ComE (V). (68)
And since gm(O) ~0Vm
2C
D1l = =_E(v). (69)
Using (19) and (65) we get
105"l < ! ! .
220~ 1820~ Dyl ~ 120 Z2=E(v)
(70)
So, we have
(BL2E(v))?
[1gm (O) = S||oe < 2ComE(V) + <
lgi2’ (0)] — 222E(v)
- 2c0,mE(v)[1 ]
c0m<|g<2><0>| mE())
< 4Gy mE(v). (71)
The last inequality holds for
2 C2 + ComC:
2 > ( ()zm 2,m) (72)
302Comlgiy (0)]
If in addition
2

~ 302g,(0)

Here again it can be observed that small gn(0) values require a
larger separation constant v. Then finally we have

[lgm (0)] = S|l < 4ComE(V) < gm(0) (74)

and S is invertible.
Furthermore, a and b are given by

a| Dy D4 - €t

b|  |Di D, 0o

a I

[b] - [_D;msletm] (75)

Using (19) and (74) we have
1

< -1 <
2l = 1571 = g @) =TT = 871
1
= gn(0) — 4ComE(V)’ .

Using (69) and (70) we also have

Ibllse < 11D3 el ID1 1l 1S~ oo
2Cim
Ling(v)

A

< : (77)
(182 (0)] — ZZnE (1)) (gm(0) — 4Co mE (v))
And we can also derive
ag = (Siletm)k (0) (1 — (5*1 (S —gm(O)I)etm)k)
1
> g7 (1= 15 1lIS =2 ()l )- (78)
o1 _ 4CmE(v)
% > gm<0)< Zn(0) —4co,mE(v)) (79)

Fix ty € T and |t —t;| < eo. Under the separation condition
we have [t —t;| > % for t; e T\{t;}). Therefore, we have for | =
0,1,2,3:

t—t; G
) j Lim
> g ( = ) 21 -
J#k J#k +( )
G 1 4 2
= % : 7 =30m 15
2k 1+ ((k=jv/2)
(80)
Using this estimate, as well as (61) and the admissible kernels’
properties we obtain

g’ (Ol < lallee Y g5 € =t +[1blloo Y g (¢ — 1))
J J

< ||a||m(3c2mv2 ) +|g<2><r—rk>|)

@ (¢ —tk)|)

4
+11blle (3Cm 7,

~ 0?2 32

3Cmv2(3lgh (0)[v? = 12 22) + Gy nCam %
(31 (0)|v2 — 7222 (3|gn(0)|v2 — 272Com) /)
(81)

For sufficiently large v that depends on the parameters of gn(t) we
can approximate
|q(2)(t)| |t —t| < €0 teT 82
Kl < €0, kel (82)
By the Taylor Remainder theorem, for any t;; <t <ty + € there
exists tm < £ < t such that

1
qm(t) = qm(tm) + q(U(tm)(t —tm) + iq(z) &) - tm)?%. (83)
Since by construction g, (tm) = 1 and q(l)(tk) =0 we have
Cz.m 2
[1—gm(®)| < 2n(0)02 (t —tm)". (84)

In the same manner since qm(t;) = 0 for all t;, € T\{t;;} there exists
ty < & < tforany t;, <t <t,+ ¢ such that

Gn(6) = qm(te) +q (6) (¢ = t) + %q“’(&)(t — )?

= %q@(é)(t -t (85)
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Leading to

lam ()] = o (0) — = (t = ). (86)

Similar arguments hold for tm, —¢ <t <tmand ty, —e <t <t. O

Proof of Lemma 7. Set q[k] = q(%) k € z, where q(t) is given in
Proposition 3 and v;; = sgn(cm). By the Taylor Remainder theorem,
for any 0 < k — ky, < eNo there exists ka <n< % + € such that

alkl = a( )

) e () ()
Using (39)
jqlkll <1 - %(k—km)z.

We observe that

d(l?m, 1<)

. . A A B . 5
<q,X> < ¢ (km)| < Cm||1—- — min{e”,
q ;| mllq(km)| ;| ml o (NO')2

where

dk,K) = mln (kn — k).

qis de51gned to satisfy < q,x >=>", [cm| = [X]l¢, =
Moreover, we can apply (53) and get

<q.f—x> = ’Zq[k]h[k]‘

keZ
< 28|lal|o +2G (1 + E())||b]|||R]]1. (87)

1R1e, -

Therefore,
<(q,X — x> < 28D3 (88)
where
- ~2
3023y,v? - w2G) + O (1+ )
(3212 — 12G) (3yov? — 272(y)

Then we have

3 =

<qX>=<qR—X>+<q,Xx>
> [|X][e, —28Ds
> [1X]¢, —25Ds

> > |Gn| — 26Ds.
m

\Y

Which leads us to

a d (km, K) 2D3a9
2
E |cm|m1n{8, No )2 }5 8 8.

kmek
O

The first result of Theorem 2 is a direct corollary of Lemma 7.
It ensures that any false spikes in the recovered reflectivity, which
is far from the true support, have small energy.

Now, we shall proceed to prove the second result of Theorem 2.
Let us denote qpml[k]2 qm(’—,\j), k €7z, where qn(t) is given in
Lemma 6. Using qm(t) we can decouple the support-detection er-
ror at km, for one spike, from the rest of the support.

We can apply Theorem 1 and get

<qm,X—x><|X—Xx|; < %8. (89)

Where we have used that the absolute value of gn[k] is bounded
by one.

~ _ ao

Recall that we assumed € > & = /762”3/4,
Let us denote

Kfar 2 {n: |ky — km| > EN},

Roear 2 {n: |kn —km| < €N},

__B
fim = 4gm(0)

In other words, szar is the recovered support located far from the

true support, whereas Kpeqr is the recovered support located close
to the true support.
We then derive

| Y aglkl- Y & - aalkiD)|

{n:kneRya}

<l X

{n:kneRyar)

= Z |6n|min{ Em

{":fanknear}

allgmlkalll +1 "

{n'lzn EKnear}

52 G, md (kn, k) }

|6n||1_Qm[I€n|]|

"o (0)(No )2
fock &gm(0)(No)
A ; 4€mc2.md(f<ny k)
<>l mm{l, 72}
fnck B(No)
1 45,Gn . ) R
max{ 2’ (132)22/3} Z |nl mm{sz,d(kn,k)}
knek
1 4EmC2m 2D3O{0
Smax{g2 ,B(No)z} 8 1)
_ 2D30 1 Gom
-5 o)

gmlk] is designed to satisfy < qm,X >= cm.
So we can bound the difference between each spike amplitude
to the energy of the estimated spikes clustered tightly around it

by

el = ¥ fal<fe- ¥ @

{n:IQHERneur} {n:f(neknear}

= ‘< qm, X > —[< qm. X > — Z anm[Ign]
{n:kneRyar)

+ Z (1 _Qm[’é\n])]

{nkneRnear}

‘ <qmx—f>+ Y qullal
{n:kneRiqr)

- Y a-aalk)|

{n:kneRnear}
26

< ( +Dozmax{1
= B\n 0

CZ m
€2’ (No')2gm(0) } )
Denote

7 (o +oom 32 i )

Consequently, if [cm| > Dy, there exists at least one km € K so that
|k — km| < EN with |cm|—D4§Z ¢,

Dy =

{”:I}n€knear} Cn |
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Therefore, using Lemma 7 we get
2Ds0g

’Bz{n:ffnekneur} |6"|

- 2D;(No )%ag

" A(Jem| = Ds)

This concludes the proof.

Hence, this bound proves that solving the convex optimization
problem in (14) locates the support of the reflectivity with high
precision, as long as the spikes are separated by v and the noise
level is small with respect to the spikes amplitude. Moreover, the
bound on the support detection error depends only on the ampli-
tude of the corresponding spike cp, on Q, and on the signal length.
It does not depend on the amplitudes of the reflectivity in other
locations. O

(ki — km)? <

(90)
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