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a b s t r a c t

Recent computational methods of wafer defect detection often inspect Scanning Electron

Microscope (SEM) images of the wafer. In this paper, we propose a kernel-based

approach to multichannel defect detection, which relies on simultaneous acquisition of

three different images for each sample in a SEM tool. The reconstruction of a source

patch from reference patches in the three channels is constrained by a similarity criterion

across the three SEM images. The improved performance of the proposed algorithm is

demonstrated, compared to a single-channel kernel-based defect detection method.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Defect detection in wafers is a critical component of
wafer manufacturing process. Various image processing
techniques have been introduced for automatic defect
detection in wafers [1–5]. Here we consider the problem
of defect detection in patterned wafers using Scanning
Electron Microscope (SEM) images. A wafer is irradiated
with a focused beam of electrons directed to scan its
surface. The analysis is carried out by moving the focused
beam of electrons in a sweeping (raster) scan over the
surface of the wafer. The energy exchange between the
electron beam and the sample generates the emission of
electrons and electromagnetic radiation which can be
detected to produce an image. A SEM tool that is
manufactured by Applied Materials can simultaneously
produce three different images for a given sample, namely
External1, External2 and Internal images. The external
images are acquired by detecting low energy secondary
ll rights reserved.
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electrons using external detectors placed by the two sides
of the electrons beam, and the internal image is acquired
by detecting high-energy backscattered electrons with a
detector placed above the sample. The external images
indicate the topography of the sample by light and
shadows as if a ‘‘light source’’ is directed to a sample
from top-left (External1) or top-right (External2). The
internal image provides information about edges and
material of the sample. Fig. 1 shows a SEM tool and
examples of External1, External2 and Internal images of a
patterned wafer. Arrows in the images point to faults in
the pattern associated with imperfect connections.

A semiconductor wafer typically contains many copies
of the same electrical component (denoted as ‘‘dies’’) laid
out in a matrix pattern. A reference set of SEM images for
one die is obtained by acquiring images of a random
neighboring die, which is verified to be clear of defects. A
common approach for defect detection utilizes the
reference images for comparison with the inspected
(source) images [6–10]. This method does not require a
defect learning process, and identifies the defects accord-
ing to the differences between the source images and their
reference images. However, the reference images need to
be aligned with the source images, and even if the
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Fig. 1. (a) Scanning Electron Microscope; (b) External1 image of a wafer, acquired by a SEM tool from top-right direction; (c) External2 image of the same

wafer, acquired from top-left direction; and (d) Internal image of the same wafer, acquired from top direction. Arrows in the images point to defects.
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registration technique (e.g., [11–13]) is perfect, pattern
variations between source and reference images may yield
large differences that obscure the differences associated
with defects.

Recently, we introduced a defect detection procedure,
which avoids image registration and is robust to pattern
variations [14]. The method is based on anisotropic kernel
reconstruction of the source image using its reference
image. The source and reference images are mapped into a
feature space, where every feature from the source image
is estimated by a weighted sum of neighboring features
from the reference image. We used patches around pixels
as features and showed that patches originating from
defect regions are not reconstructible from the reference
image, and hence can be identified.

In this paper, we extend the kernel-based approach to
multichannel defect detection, which relies on the
simultaneous acquisition of three different images for
each sample in the SEM tool. The proposed method
assumes that if a pattern-originated region in the source
wafer is similar to certain regions in the reference wafer,
then this similarity is maintained across the three SEM
images. Accordingly, the reconstruction of a source patch
from reference patches in the three channels is con-
strained by a consistency criterion that the locations of
reference patches, which are most similar to the source
patch, are identical in the three channels. We show that
the proposed defect detection under constrained multi-
channel reconstruction is more advantageous than the
single-channel defect detection method.

This paper is organized as follows. In Section 2, we
briefly review the single-channel kernel-based defect
detection method and discuss the motivation for a
multichannel defect detection approach. In Section 3, we
introduce an algorithm for multichannel defect detection
and demonstrate its performance. In Section 4, we address
some open issues and future research, and conclude in
Section 5.
2. Background and problem formulation

In this section, we review the single-channel kernel-
based defect detection algorithm [14], and discuss some of
its drawbacks in the case of non-periodically patterned
wafers.

Pattern to pattern comparison is the most suitable
technique for a SEM-based inspection system. This
comparison could be performed by using a reference
image that is obtained from another random die of the
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Fig. 2. Non-registered reference images of the wafer images presented in Figs. 1(b)–(d): (a) External1 image (b) external2 image and (c) Internal image.

Fig. 3. Difference images of the internal source and reference images vs. different sizes of local registration neighborhood: (a) ½0;0� � ½0;0�;

(b) ½�1;1� � ½�1;1�; (c) ½�3;3� � ½�3;3�; (d) ½�5;5� � ½�5;5�; and (e) ½�1;1� � ½�1;1� with overlaid true and false detections.
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same wafer, which is verified to be clear of defects. Fig. 2
shows the examples of reference images to the images
shown in Figs. 1(b)–(d). In many existing methods [6–10],
the reference image is aligned with the source image and
the defect detection procedure relies on their difference.
However, the pattern in the reference image is generally
not identical to the pattern in the source image and even if
the alignment is perfect, pattern variation differences are
still significant. These differences may be as intense as
differences caused by defects and may cause false
detections.

Figs. 3(a)–(d) demonstrate the difference images,
created by global alignment of the inspection and
reference images of the Internal channel (Figs. 1(d) and
2(c), respectively) and local alignment of every pixel
in various-sized neighborhoods. The improved difference
image is calculated for every pixel according to the
minimal difference between the inspected pixel and
the reference pixels within the chosen neighborhood.
Fig. 3 demonstrates that the local registration cannot
deal with the pattern variations problem. Differences
caused by pattern variations may be reduced by increas-
ing the size of the local registration neighborhood, but
then the differences associated with defects are also
suppressed.
Onishi et al. [5] presented a more robust algorithm,
which tries to overcome the problem of slight distortion
or rotation misalignment between the source and the
reference patterns by using gray-scale morphological
dilation of the reference and inspected images. The
difference image is calculated according to the minimal
distance between the reference and the inspected images
in the dilation range. However, this technique can only
manipulate slight mis-registration and pattern variations,
and does not exploit the neighborhood replication of a
periodic pattern. Fig. 4 shows the differences between the
source images from Fig. 1 and their reference images after
an alignment by the above algorithm. Clearly, defect
detection by thresholding the difference images is
characterized by high false and missed detection rates
due to pattern variations.

Recently, we introduced a different defect detection
method [14], which is more robust to pattern variations.
Pixels in the source and reference images are mapped into
a feature space. This mapping is flexible and there are
many interesting choices for the possible features, as
discussed in [14,15]. In this application, every pixel is
represented by an intensity gray level vector, constructed
from a square neighborhood (a patch) of fixed size ½sx � sy�

around the pixel. Let s denote a pixel from the source
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Fig. 4. Difference images with overlaid defect detection results (denoted by light rectangulars). Pattern variations between the acquired wafer images

(shown in Figs. 1(b)–(d)) and their reference images (shown in Fig. 2) generate non-negligible differences and high false detection rate: (a) External1
image (b) external2 image and (c) internal image.
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image with coordinates ði; jÞ and let x denote a respective
feature vector. Every source feature x is reconstructed
using reference features, fxig

m
i¼1, which represent all

the m pixels from a search region in the reference image.
The search region Ns of the pixel s is given by
Ns ¼ fs0js0 2 nkðsÞg, where nkðsÞ is the set of k spatial
nearest neighbors of s in the image domain. The
reconstruction of the source feature x is obtained accord-
ing to the similarity measure kðxi; xÞ:

x̂ ¼
Xm

i¼1

kðxi; xÞP
jkðxj; xÞ

xi, (1)

and the total similarity of the source patch x to the pattern
is defined as

1

m

Xm

i¼1

kðxi; xÞ, (2)

where kðx; yÞ ¼ G�ðx; yÞ � e�1=2ðkx�yk22=�Þ is the Gaussian
kernel [16]. If the total similarity is close to zero, which
indicates that the source patch cannot be well recon-
structed from the pattern, represented by patches of the
reference image, then the presence of a defect is declared.

The above detection procedure, when applied to
periodically patterned wafer images, does not require
image registration and is robust to pattern variations.
Registration of a reference image relative to the source
image is not required, as long as reference patches are
taken from a wide search region that covers at least one
pattern period. Furthermore, a source patch does not have
to be identical to one reference patch, but could be a
combination of several patches to overcome the problem
of pattern variations. The presented procedure not only
compares the gray level in a single point but incorporates
the information of the neighborhood, using patches as
features. For periodic patterns, the search region is often
more than one period of the pattern, in order to increase
the number of potentially similar reference patches. It
should be noticed that the proposed algorithm is invariant
to rotation of the inspected wafer, because the source and
reference images are acquired from neighboring dies on
the same wafer and their patterns will be rotated
similarly. However, if a reference pattern is rotated
relatively to the source pattern, the performance may
degrade, depending on the rotation angle and pattern
characteristics.
Unfortunately for non-periodic patterns, the single-
channel kernel-based detection method is insufficient,
lacks robustness to pattern variations and is characterized
by high false detection rate. Fig. 5 shows the reconstruc-
tion of the three images from Figs. 1(b)–(d) using their
reference images from Fig. 2, where non-reconstructible
regions are marked and identified as defects. In all the
three channels, there are some false detections, which
are associated with differences between the source and
the reference images, rather than with defects. Our
objective is to eliminate such false detections by exploit-
ing relations between the three channels.

3. Multichannel detection

In this section, we discuss the statistical interpretation
of the single-channel kernel-based method, which facil-
itates its extension to multichannel. Then we introduce
the multichannel kernel-based algorithm for defect
detection.

3.1. Constraint of consistent similarity between channels

Let pðxÞ denote a probability density function of a
random variable X, and let fxig

m
i¼1 represent the samples of

X. A non-parametric estimate of pðxÞ can be obtained by
Parzen method [17] and is given by

p̂�ðxÞ ¼
1

m

Xm
i¼1

b�ðkx� xikÞ, (3)

where b� is a normal density with zero mean and variance
�. Ruiz and Lopez-de-Teruel [18] noted that a Parzen
estimator can be related to the kernel similarity measure
presented in (2) by

p̂�ðxÞ ¼ xT
X �
~1m, (4)

where xX ¼ ðkðx1; xÞ; kðx2; xÞ; . . . ; kðxm; xÞÞ
T is referred to as

empirical kernel map [19]. We denote xX as a within-

similarity map between the sample of X and x. ~1m denotes
an m-dimensional column vector with all components
equal to m�1. Features originated from defects will have
low similarity to the pattern, represented by reference
features, and hence can be identified. We aim to perform
multichannel detection using joint similarity between
source features x, y and z and their reference features
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Fig. 5. Reconstructed wafer images with overlaid defect detection results obtained by using single-channel kernel-based algorithm (suspicious regions

are denoted by light rectangulars). High false detection rate results from sensitivity to pattern variations: (a) External1 image (b) external2 image and (c)

internal image.

Channel

Pattern-Originated Source Patch Defect-Originated Source Patch

Source Image Source Image

External1

External2

Internal

Reference Image Reference Image

Fig. 6. Example of similarity consistency between channels. The figure shows four columns of External1, External2 and Internal images. In the left column,

a source patch that is free of defects is delineated by a rectangular. The second column shows the corresponding reference images, and the patches that

are most similar to the source patch. In the third column, a source patch that contains a defect is delineated by a rectangular. The fourth column shows the

corresponding reference images, and the most similar patches. For defect-free source patches, the locations of the most similar reference patches are the

same in all channels (cf. second column). For a defect source patch, the locations of the most similar reference patches may be different in each channel

(cf. fourth column).
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fxig
n
i¼1, fyig

n
i¼1 and fzig

n
i¼1 (from External1, External2 and

Internal images, respectively).
We assume that if a pattern-originated region in the

source wafer is similar to certain regions in the reference
wafer, then this similarity is maintained across the three
SEM images. Accordingly, the similarity between a source
patch and its reference patches in the three channels is
constrained by a consistency criterion that the locations of
reference patches, which are most similar to the source
patch, are identical in the three channels. The consistent
similarity concept for three channels is demonstrated in
Fig. 6. The figure shows four columns of External1,
External2 and Internal images. In the left column, a source
patch that is free of defects is delineated by a rectangular.
The second column shows the corresponding reference
images, and the most similar patches (for each channel,
the patches in the reference image that are most similar to
the source patch are identified by rectangulars). In the
third column, a source patch that contains a defect is
delineated by a rectangular. The fourth column shows the
corresponding reference images, and the most similar
patches. It turns out that the locations of the most similar
reference patches are the same for all channels in case the
source patch is free of defects (cf. second column).
However, in case the source patch contains a defect, the
locations of the most similar reference patches may be
different for each channel (cf. fourth column). Consistent
similarity is an additional characteristic that may be used
to enhance multichannel distinction between defective
and pattern-originated regions.

For clarity of presentation, first we consider two-
channel consistent similarity, and then extend the
formulation to three channels. Based on a data sample
X ¼ fx1; . . . ; xmg, the general form of a kernel density
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estimator is given as p̂�;gðxÞ ¼
Pm

i¼1 gib�ðkx� xikÞ, where gi

are non-uniform weighting coefficients. According to the
relation from (4) between Parzen’s estimator and the
similarity measure, the weighting coefficients gi could be
regarded as a priori estimation of a similarity between a
reference patch xi and a source patch x. Without any a

priori assumptions about these similarity relations, a zero-
order estimation of gi is gð0Þi ¼ 1=m; 8i.

Under the assumption of consistent similarity between
the channels, we consider the following first-order
refinement of gi:

gð1Þi ¼
kðyi; yÞPm
i¼1kðyi; yÞ

, (5)

where x and y relate to the same pixel s in two different
channels and fyig

m
i¼1 are the reference patches in the

second channel. Hence, we can write the conditional
estimated probability of a patch x to arise from the pattern
statistics, given a within-similarity map of a respective
patch y from the second channel, as follows:

p̂ðxjyÞ ¼
Xm

i¼1

gð1Þi kðxi; xÞ. (6)

Note that if kðyi; yÞ ¼ K ; 8i, then gð1Þi reduces to gð0Þi and (6)
reduces to (4).

Hence, we define the joint similarity measure of two
channels as

Jxy ¼ p̂ðx; yÞ ¼ p̂ðxjyÞp̂ðyÞ

¼
Xm

i¼1

kðxi; xÞ
kðyi; yÞP

kðyi; yÞ

 !
1

m

X
kðyi; yÞ

� �
¼

1

m
xT

X � yY .

(7)

The single-channel similarity measure, given by (2),
answers the question whether a source image has similar
patches in its reference search region. The joint similarity
measure answers whether the similar patches locations
in the first channel are consistent with the similar
patches locations in the second channel. This measure
from (7) is symmetric, p̂ðy; xÞ ¼ ð

Pm
i¼1 kðyi; yÞkðxi; xÞ=P

kðxi; xÞÞ ðð1=mÞ
P

kðxi; xÞÞ ¼ð1=mÞyT
Y � xX¼ð1=mÞxT

X � yY ¼

p̂ðx; yÞ, and bounded between zero and one. However, it
disobeys the triangle inequality (i.e. it is non-metric
distance), which often happens in the case of distance
functions that are robust to outliers and noise [20]. It can be
shown that its negative natural logarithm is a probabilistic
distance [21]. For the convenience of presentation we adopt
its positive natural logarithm as a likelihood measure.

Finally, the extension of (7) for three channels is

Jxyz ¼ p̂ðx; y; zÞ ¼ p̂ðx; yjzÞp̂ðzÞ

¼
Xm

i¼1

kðxi; xÞkðyi; yÞ
kðzi; zÞP

kðzi; zÞ

 !
1

m

Xm
i¼1

kðzi; zÞ

¼
1

m

Xm

i¼1

kðxi; xÞkðyi; yÞkðzi; zÞ (8)

and the corresponding joint likelihood to the pattern is
measured by

Lxyz ¼ logðJxyzÞ. (9)
3.2. Implementation of the algorithm

Algorithm 1.
Multichannel defect detection
1:
 for all s 2 O do fs—pixel index in the source images, O—image

support}
2: f
or all ch 2 CHANNELS do fCHANNELS ¼ ½External1; External2 and

Internal�g
3:
 p
s
ch ( a raster scan of the neighborhood window ½sx � sy� around

pixel s in the respective channel ch
f
ps
ch represents x, y and z feature vectors in the External1, External2

and Internal channels}
4:
 f
or all s0 2Ns do fs0—pixel index in the reference image,

Ns—search region neighborhood of sg

5:
 ps0

ch ( a raster scan of the neighborhood window ½sx � sy� around

pixel s0 in the respective channel ch
fps0

ch represents xi, yi and zi feature vectors in the External1,

External2 and Internal channels}
6:
 Ws0

ch ( expð�rðps
ch; p

s0

chÞ
2=2�chÞfr—Euclidean metric; Ws0

ch

refers to kðx; xiÞ, kðy; yiÞ and kðz; ziÞg
7: J
s ¼ S8s0P8chW
s0

ch
8: i
f logðJsÞot then

9:
 s
 2A fA is a set of defect}
Algorithm 1 summarizes the reconstruction and
decision procedures for multichannel defect detection.
To verify whether a pixel from a source image belongs to a
defect area, we execute the following steps. Patches
around each pixel in a source image are column-stacked
into vectors, which represent features for the reconstruc-
tion process (step 3). The same construction of features is
performed for each pixel in the reference search regions of
all the channels (step 5). The respective within-similarity

maps are calculated in every channel for the determined
search region (step 6), and the joint similarity measure is
calculated using (8) (step 7). Finally, the detection is
performed by thresholding the log likelihood values (steps
8 and 9). In our experiments the threshold was set to
detect the outliers of the log-likelihood values. It should
be noticed that the parameter that controls the trade-off
between miss-detection and false detection rates is not
the threshold, but the choice of similarity parameter, as
will be discussed in Section 4.

3.3. Experimental results

Fig. 8 shows the detection result for images from
Figs. 1(b)–(d) using joint likelihood measure. Thresholding
low likelihood values reveals the defect edges without
false detections, as presented on the Internal image. This
joint likelihood could be compared to the single channel
likelihoods from Figs. 7(a)–(c), which result in high false
detection rates (see Fig. 5). Additionally, the joint like-
lihood of all the three channels could be compared to the
likelihood measures based on the combination of only two
channels, which are presented in Figs. 7(d)–(f). Although
these similarity measures succeed to provide the same
detection like the joint similarity measure, their separa-
tion tolerance is lower (for Figs. 7(d) and (f)) or similar (for
Fig. 7(e)). The separation tolerance is calculated according
to the ratio between the range of threshold values that
allow the exact detection without false alarms and the
total range of the log-likelihood values.
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Fig. 7. (a)–(c) Single channel similarity measures, related to the reconstruction results from Fig. 5; (d)–(f) similarity measures based on the combination

of two channels: (a) External1 image (b) external2 image and (c) internal image (d) external1–external2 (e) external1–internal and (f) external2–internal.

Table 1
Detection and false detection results obtained by using the multichannel and single-channel algorithms.

Case Detection results Separation tolerance

Single channel detection Multichannel detection Single channel detection Multichannel

detection

External1 External2 Internal External1 External2 Internal

D FD D FD D FD D FD

1 1 (partial) 0 1 (partial) 0 0 1 1 0 0.3 0.3 0 0.5

2 0 2 0 1 1 0 1 0 0 0 0.4 0.3

3 0 2 1 0 0 2 1 0 0 0.35 0 0.3

4 1 0 1 4 0 1 1 0 0.1 0 0 0.2

5 0 1 1 0 0 1 1 0 0 0.1 0 0.1

6 2 of 2 45 1 (partial) of 2 1 1 (partial) of 2 5 2 of 2 0 0 0 0 0.1

7 8 of 9 0 9 of 9 45 2 of 9 0 9 of 9 0 0 0 0 0.1

1 Table 1 demonstrates that given the optimal thresholds for both

multichannel and single-channel algorithms, the multichannel algo-

rithm succeeds to detect all the defects, while the single-channel

algorithm can detect all the defects only with additional false alarms.

Therefore, the optimal threshold was set under an assumption that there

are defects in the image. In our experiments we used the following

procedure: the likelihood image is normalized in the range of [0,1] and

pixels with likelihood values above 0.95 are considered to be defects

(this value was empirically chosen to achieve the best PD-FAR ratio for

all the algorithms).

M. Zontak, I. Cohen / Signal Processing 89 (2009) 1511–1520 1517
Note that in this example only the edges of the defects
are detected, because the patch window is relatively small
(11� 11 pixels in our example) compared to the whole
defect (which reaches up to 60 pixels in one of the two
dimensions in the presented example). The choice of the
patch sized is discussed in Section 4

The proposed kernel-based algorithm was successfully
applied to images with pattern variations, wherever the
algorithm that was based on the difference image failed.
The multichannel algorithm was also compared to a
single-channel algorithm that was based on the calcula-
tion of log-likelihood in every channel separately, without
similarity consistency constraint. The joint multichannel
detection outperformed separate detections, in the case of
non-periodic patterns and defects that were not evident in
all the channels. Table 1 shows several examples of the
comparison, which involve different patterns. The table
presents detection results, which include the number of
exact detections (D), the number of false detections (FD),
and the separation tolerance. In cases 1–5 the source
image contains only one defect, while in cases 6–7 the
source image contains several defects (two and nine,
respectively) of different sizes and shapes. In all the tested
cases, the threshold was set automatically for optimal
detection.1 The search region and the patch sizes were
identical for all cases. Similarity parameters were chosen
according to what is described in Section 4. In cases where
the detection was partial, i.e. only part of a defect was
detected, this was stated. The results show that the
performance of the single channel algorithm is not
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sufficient. The application of the single channel algorithm
to the External1, External2 or Internal channel yields either
low detection rate or high false detection rate. Further-
more, combing the single channel detection results by
‘‘AND’’ or ‘‘OR’’ operations over the three channels may
either increase the false detection rate or decrease the
detection rate. Compared to the single channel algorithm,
the multichannel algorithm enables to improve the
detection rate while decreasing the false detection rate.

4. Discussion

4.1. Choice of search region and features sizes

The performance of the proposed algorithm depends
on several parameters: size of a search region, patch size
and similarity parameter �. The minimal search region
should allow compensation for mis-registration; however,
in order to achieve robustness to pattern variations, it
should cover several periods of the pattern in the case of a
periodic pattern. Generally, for periodic and non-periodic
patterns, enlarging the search region increases the
number of potentially similar reference features to a
pattern originated source feature. This allows to enforce
higher similarity, by choosing a smaller �, which increases
the detection rate of defects. Hence, to achieve higher
detection and lower false detection rates, it is advanta-
geous to use a search region as wide as possible. However,
this is computationally disadvantageous and the choice
depends on the trade-off between the computational load
and the detection performance. For a detailed discussion
the reader can refer to [14].

In general, the predicted size of defects determines the
choice of a patch size. According to the ROC analysis
presented in [14], the optimum is achieved when a patch
captures not only the defect but also the surroundings as
well. Although surroundings incorporation in the patch is
important to achieve a contrast between normal and
abnormal areas, it is important to preserve dominance of
the defect over the surroundings. Hence, the patch size
should not be too small or too large, according to the
defect sizes. Relatively small sized patches are suitable for
capturing small defects, but also enable detection of edges
of large defects. Large patches, while suitable for large
defects, yield poor detection results for small defects.
Furthermore, the computational complexity increases as
the patch size increases. Hence, smaller patches are
generally preferable.

4.2. Adjustment of the similarity parameter

The similarity parameter � determines the nearest
neighbors that take part in feature reconstruction and
pixel estimation. It controls the relation between the
distances in feature space and the corresponding weight-
ing factors. It is important to choose a sufficiently large �
to enable reconstruction of the source features from the
reference features, according to (1), even in case of pattern
variations (to prevent false detections). However, � should
be sufficiently small (high similarity constraint) to prevent
reconstruction of features related to defects and thereby
facilitate the distinction between pattern variations and
defects. In previous experiments [14], we adjusted this
parameter in a single channel, so that any reference
feature could be reconstructed from a large representative
set of reference features (excluding itself). We chose the
minimal � that provided good reconstruction results.

Since � represents the local scale of similarity, there is
no one scale value that is optimal for every point. For
example, we would like to have higher similarity require-
ment (smaller �) for smooth areas and lower similarity
requirement (larger �) for edges. In order to perform local
scaling, it is possible to apply an approach that is given in
[22], where given a number of neighbors, m, the distances
at each point are scaled so that the mth nearest neighbor
has a distance of 1; that is, we let rxða; bÞ ¼ rða; bÞ=rðx; xmÞ

(rxða; bÞ is the Euclidean metric), where xm is the mth
nearest neighbor to x. Since rx varies over the data set, to
make the weight matrix symmetric, they use the geo-
metric mean of rx and ry in the argument of the
exponential, i.e.

kðxi; xjÞ ¼ e
�rxi
ðxi ;xjÞrxj

ðxi ;xjÞ=�. (10)

This is called the self-tuning similarity weight. There is still
a similarity parameter in the weight, but a global � in the
self-tuning weights corresponds to some location depen-
dent choice of � in the standard exponential weights.

In our multichannel experiments, the similarity para-
meter is adjusted relatively in different channels. Pattern
variations between the source and the reference images
reduce the similarity of the source feature to its reference
features. Too small � applies high similarity requirement,
which may cause false detections due to pattern varia-
tions between the source and the reference images.

Often pattern variations are more disturbing in the
Internal channel, what can be, for example, observed by
comparing Figs. 1(b)–(d) and 2. It is important to
eliminate the influence of the channel with high pattern
variations on the detection procedure, by adjusting the
corresponding � to be relatively large. In the presented
examples we adjusted the similarity parameter according
to the global similarity of the source and reference images
in every channel, which is determined according to the
Bhattacharyya distance between the gray level histograms
of the images.

The Bhattacharyya measure can be used to compare
the similarity between two histograms as follows.
Let Ri be the frequency coded quantity in bin i for the
reference image histogram and Si a similar quantity
for the source image histogram. The Bhattacharyya
distance � logð

P
i

ffiffiffiffiffiffiffiffi
RiSi

p
Þ provides a measure of similarity

between the two histograms and hence between the source
and reference images. A successful utilization of the
Bhattacharyya measure for histogram matching and simi-
larity testing can be found in several applications [23,24].
Relying on our experiments, we propose to adjust the
similarity parameter between the channels according to

�k ¼ �a log
X

i

ffiffiffiffiffiffiffiffiffiffi
Rk

i Sk
i

q !
. (11)
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Fig. 8. Detection results using a joint similarity measure: (a) joint similarity Lxyz (the gray level represents the likelihood that a patch is similar to the

pattern) and (b) Internal image with overlaid detection results (denoted by light rectangulars).

2 The term 9d is due to the calculation of the joint exponent weight

that involves d subtractions, d squares, d� 1 sums and one multi-

plication, and is performed three times (three channels), which are

summarized twice; besides there are m exponents (each requires four

operations), which are summarized m� 1 ’ m times.
3 This is according to the fact that there are 112 stream processors

(SP) at 1.5 GHz with each SP being able to run at least two operations

(FLOPS) per clock.
4 The authors thank Mr. Yuri Pekelny for providing a CUDA

implementation of the algorithm.
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The above approach allows the relative adjustment of �
between the channels. The parameter a can be determined
using one of the procedures described above.

4.3. Reduction of the feature space dimension

We notice that using a Euclidian distance, the joint
similarity measure given in (8) could be viewed as a single
similarity measure with a combined feature:

Jxyz ¼
1

m

Xm

i¼1

k�x ðxi; xÞ � k�y ðyi; yÞ � k�z ðzi; zÞ

¼
1

m

Xm

i¼1

Break

where the combined feature is

s! v ¼

ffiffiffiffiffiffiffiffiffi
�y�z
p

xffiffiffiffiffiffiffiffiffi
�x�z
p

yffiffiffiffiffiffiffiffiffi�x�y
p

z

2
64

3
75 (12)

and the combined similarity parameter is � ¼ �x�y�z. The
dimension of the joint feature space is tripled compared to
that of the single feature space, which is disadvantageous
from the computational point of view. This dimension
could be reduced by observing that both External channels
incorporate depth information. Hence, creating one depth
map image from two External images will reduce the
dimension, while preserving the existing information.

4.4. Computational complexity

The computational complexity of the proposed algo-
rithm is Oðn �m � dÞ, where n denotes the number of pixels
in the image, m denotes the number of reference features
and d is a feature dimension. Although the implementa-
tion of the algorithm, as presented in Algorithm 1 on
typical home computer results in high computational
load, a reduction in complexity can be achieved by some
modifications. For example, a multi-scale implementation,
similar to that proposed for image denoising applications
[25], may be advantageous in our framework. The main
idea is first to perform a search in the coarsest scale and to
continue the search in finer scales only in regions that
were found similar in coarser scales. The proposed
algorithm can also be combined with the standard state-
of-the-art wafer defect detection algorithms, to reduce the
false alarm rate without increasing the missed detection
rate. Suspicious regions are first detected by a conven-
tional defect detection algorithms. Subsequently, the
reconstruction procedure is applied only to patches
around the suspicious pixels using the proposed algo-
rithm, and regions that are not reconstructible are
identified as defects.

Additionally, the implementation of the proposed
algorithm can be accelerated by parallel calculation of
the log-likelihood from (9). Consider a problem in three
channels, where a search region contains m reference
features of size d. The number of operations for each pixel
is mðð9dþ 2Þ þ ð4þ 1ÞÞ.2 The example presented in Fig. 8
was processed using a search region of 49� 49 pixels and
patch size 11� 11 pixels, which requires 0:0026 Giga-
FLOPs (FLOP ¼ operation) per pixel. The standard Graphi-
cal Processing Unit model GeForce 8800 GT [26] has
336 GigaFLOPs/s theoretical performance.3 Hence, the
theoretical limit for computational rate is 128 KPPS (kilo
pixels per second), not considering memory bandwidth
that is relatively negligible in the given algorithm. The
computation rate of a preliminary implementation4 of the
joint detection procedure, using the parameters stated
above (d ¼ 11� 11 and m ¼ 49� 49) and GeForce
8800 GT Graphical Processing Unit, has reached 31 KPPS.
Hence, the run time of the algorithm for images presented
in Figs. 1(b)–(d) (each image has 530� 460 pixels) was 8 s.
This result can be improved by implementation optimiza-
tion and by using state-of-the-art hardware.
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5. Summary

We have proposed an algorithm for automatic defect
detection in wafers using three channels of SEM images.
The kernel-based detection algorithm exploits the peri-
odic nature of the wafer pattern and compensates for
pattern variations and miss-registration. If the inspected
pattern is not periodic, the proposed method exploits the
multichannel information to compensate for pattern
variations. We have introduced a kernel-based similarity
measure that quantifies similarity relations between the
inspected patch and its reference patches under the
assumption that the locations of similar patches in the
search regions are invariant for all the channels. We have
demonstrated improved performances of the constrained
multichannel detection compared to the single channel
detection in the case of non-periodic pattern. The
detection procedure based on a consistent similarity
constrain is advantageous over simple integration of the
detection results in different channels, because it allows
compensation for pattern variations. The proposed ap-
proach is also appealing for defect detection in periodic
patterned wafers, even when defects are observable in
distinct channels. Future research directions may include
developing a depth map from the External channel images,
which will allow the reduction of the feature space
dimension without the loss of the existing information.
Additionally, local spatial adjustment of the similarity
parameter �will enable improving the detection of weakly
noticed defects in smooth regions and robustness to
pattern variations nearby edges.
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