
ARTICLE IN PRESS
0165-1684/$ - se

doi:10.1016/j.sig

$This work

Fund.
�Tel.: +972 4

E-mail addre
Signal Processing 86 (2006) 698–709

www.elsevier.com/locate/sigpro
Speech spectral modeling and enhancement based on
autoregressive conditional heteroscedasticity models$

Israel Cohen�

Department of Electrical Engineering, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel

Received 10 November 2004; received in revised form 8 June 2005; accepted 8 June 2005

Available online 20 July 2005
Abstract

In this paper, we develop and evaluate speech enhancement algorithms, which are based on supergaussian generalized

autoregressive conditional heteroscedasticity (GARCH) models in the short-time Fourier transform (STFT) domain. We

consider three different statistical models, two fidelity criteria, and two approaches for the estimation of the variances of

the STFT coefficients. The statistical model is either Gaussian, Gamma or Laplacian; the fidelity criteria include

minimum mean-squared error (MMSE) of the STFT coefficients and MMSE of the log-spectral amplitude (LSA); the

spectral variance is estimated based on either the proposed GARCH models or the decision-directed method of

Ephraim and Malah. We show that estimating the variance by the GARCH modeling method yields lower log-spectral

distortion and higher perceptual evaluation of speech quality scores (PESQ, ITU-T P.862) than by using the decision-

directed method, whether the presumed statistical model is Gaussian, Gamma or Laplacian, and whether the fidelity

criterion is MMSE of the STFT coefficients or MMSE of the LSA. furthermore while a gaussian model is inferior to the

supergaussian models when USING the decision-directed method, the Gaussian model is superior when using the garch

modeling method.

r 2005 Published by Elsevier B.V.
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1. Introduction

Statistical modeling of speech signals in the
short-time Fourier transform (STFT) domain has
e front matter r 2005 Published by Elsevier B.V.
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recently received much attention, but is still a
puzzling problem [1]. Ephraim and Malah [2]
proposed to model the individual STFT expansion
coefficients of the speech signal as zero-mean
statistically independent Gaussian random vari-
ables. It enables to derive useful minimum mean-
squared error (MMSE) estimators for the short-
term spectral amplitude (STSA), as well as the log-
spectral amplitude (LSA) [2,3], and it underlies
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the design of many speech enhancement algo-
rithms, e.g. [4–8]. Martin [9] considered a Gamma
speech model, under which the real and imaginary
parts of the STFT coefficients are modeled as
independent and identically distributed (iid) Gam-
ma random variables. He assumed that distinct
expansion coefficients are statistically indepen-
dent, and derived their MMSE estimators. He
showed that the Gamma model yields higher
improvement in the segmental signal-to-noise ratio
(SNR) than the Gaussian model.

Lotter et al. [7] proposed a parametric prob-
ability density function (pdf) for the magnitude of
the expansion coefficients, which approximates,
with a proper choice of the parameters, the
Gamma and Laplacian densities. They derived a
maximum a-posteriori (MAP) estimator for the
speech spectral amplitude, and showed that under
Laplacian speech modeling the MAP estimator
demonstrates improved noise reduction compared
with the STSA estimator of Ephraim–Malah.
Martin and Breithaupt [10] showed that MMSE
estimators for the STFT coefficients under Lapla-
cian speech modeling have similar properties to
those estimators derived under Gamma modeling,
but are easier to compute and implement. Statis-
tical models based on hidden Markov Processes
(HMPs) try to circumvent the assumption of
specific distributions [11,12]. The probability dis-
tributions of the speech and noise processes are
estimated from long training sequences of the
speech and noise samples, and then used jointly
with a given fidelity criterion to derive an
estimator for the speech signal. Unfortunately,
the HMP-based speech enhancement relies on the
types of training data [13]. It works best with the
trained type of noise, but often worse with other
type of noise. Furthermore, improved perfor-
mance generally entails more complex models
and higher computational requirements.

Recently, we introduced a novel approach
for statistically modeling speech signals in the
STFT domain [14]. This approach is based on
generalized autoregressive conditional heterosce-
dasticity (GARCH) modeling, which is widely
used for modeling the volatility of financial time-
series such as exchange rates and stock returns
[15,16]. Similar to financial time-series, speech
signals in the STFT domain are characterized by
heavy tailed distributions and volatility clustering.
Specifically, when observing a time series of
successive expansion coefficients in a fixed fre-
quency bin, successive magnitudes of the expan-
sion coefficients are highly correlated, whereas
successive phases can be assumed uncorrelated.
Hence, the expansion coefficients are clustered in
the sense that large magnitudes tend to follow
large magnitudes and small magnitudes tend to
follow small magnitudes, while the phase is
unpredictable.
In this paper, we develop and evaluate speech

enhancement algorithms which are based on
supergaussian GARCH models. We consider three
different statistical models, two fidelity criteria,
and two approaches for the estimation of the
variances of the STFT coefficients. The statistical
model is either Gaussian, Gamma or Laplacian;
the fidelity criteria include MMSE of the STFT
coefficients and MMSE of the LSA; the spectral
variance is estimated based on either the proposed
GARCH models or the decision-directed method
of Ephraim and Malah [2]. We show that
estimating the variance by the GARCH modeling
method yields lower log-spectral distortion (LSD)
and higher perceptual evaluation of speech quality
(PESQ) scores (ITU-T P.862) than by using the
decision-directed method, whether the presumed
statistical model is Gaussian, Gamma or Lapla-
cian, and whether the fidelity criterion is MMSE of
the STFT coefficients or MMSE of the LSA.
Furthermore, a Gaussian model is inferior to
Gamma and Laplacian models if the speech
variance is estimated by the decision-directed
method. However, a Gaussian model is superior
in the case speech variance is estimated by using
the GARCH modeling method. Additionally,
MMSE–LSA estimators yield lower LSD and
higher PESQ scores than MMSE estimators of
the STFT coefficients, whether the variance is
estimated by using the GARCH modeling method
or the decision-directed method. A subjective
study of speech spectrograms and informal listen-
ing tests confirm that the quality of the enhanced
speech obtained by using the GARCH modeling
method is significantly better than that obtainable
by using the decision-directed method.
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The paper is organized as follows. In Section 2,
we present supergaussian GARCH models for
speech signals in the STFT domain. In Section 3,
we discuss the problems addressed in this work. In
Section 4, we derive recursive estimators for the
STFT expansion coefficients of the speech signal.
Finally, in Section 5, we evaluate the performances
of MMSE estimators for the STFT coefficients
and LSA under Gaussian, Gamma and Laplacian
models, and compare the GARCH modeling
method to the decision-directed method.
2. Statistical models

In this section, we introduce supergaussian
GARCH models for speech signals in the STFT
domain using the GARCH modeling approach
proposed in [14].

Let x and d denote speech and uncorrelated
additive noise signals, and let y ¼ xþ d represent
the observed signal. Applying the STFT to the
observed signal, we have in the time-frequency
domain

Y tk ¼ X tk þDtk, (1)

where t is the time frame index (t ¼ 0; 1; . . .) and k

is the frequency-bin index (k ¼ 0; 1; . . . ;K � 1).
Let Htk

0 and Htk
1 denote, respectively, hypotheses

of signal absence and presence in the noisy spectral
coefficient Y tk, and let stk denote a binary state
variable which indicates signal presence or ab-
sence, i.e., stk ¼ 0 under Htk

0 , and stk ¼ 1 under
Htk

1 . Let s2tk¼
n

EfjDtkj
2g denote the variance of a

noise spectral coefficient Dtk, and let
ltk¼

n
EfjX tkj

2jHtk
1 g denote the variance of a speech

spectral coefficient X tk under Htk
1 . The variances

of the speech coefficients are hidden from direct
observation, in the sense that even under perfect
conditions of zero noise (Dtk ¼ 0 for all tk), the
values of fltkg are not directly observable. There-
fore, the approach proposed in [14] is to assume
that fltkg themselves are random variables, and to
introduce conditional variances which are esti-
mated from the available information (e.g., the
clean spectral coefficients through frame t� 1,
or the noisy spectral coefficients through frame t).
Let Xt

0 ¼ fX tkjt ¼ 0; . . . ; t; k ¼ 0; . . . ;K � 1g re-
present the set of clean speech spectral coefficients
up to frame t, and let ltkjt¼

n
EfjX tkj

2jHtk
1 ;X

t
0g

denote the conditional variance of X tk under Htk
1

given the clean spectral coefficients up to frame t.
Then, our statistical models in the STFT domain
rely on the following set of assumptions:
(1)
 Given fltkg and fstkg, the speech spectral
coefficients fX tkg are generated by

X tk ¼
ffiffiffiffiffiffi
ltk

p
V tk, (2)

where fVtkjH
tk
0 g are identically zero, and

fV tkjH
tk
1 g are statistically independent com-

plex random variables with zero mean, unit
variance, and iid real and imaginary parts:

Htk
1 : EfVtkg ¼ 0; EfjV tkj

2g ¼ 1,

Htk
0 : V tk ¼ 0. ð3Þ
(2)
 The pdf of V tk under Htk
1 is determined

by the specific statistical model. Let V Rtk ¼

RfVtkg and V Itk ¼ IfVtkg denote, respec-
tively, the real and imaginary parts of V tk.
Let pðVrtkjH

tk
1 Þ denote the pdf of Vrtk

(r 2 fR; Ig) under Htk
1 . Then, for a Gaussian

model [9]

pðVrtkjH
tk
1 Þ ¼

1ffiffiffi
p
p exp �V 2

rtk

� �
, (4)

for a Gamma model

pðVrtkjH
tk
1 Þ ¼

1

2
ffiffiffi
p
p

3

2

� �1=4

jVrtkj
�1=2

� exp �

ffiffiffi
3

2

r
jVrtkj

 !
ð5Þ

and for a Laplacian model

p VrtkjH
tk
1

� �
¼ exp �2jVrtkj

� �
. (6)
(3)
 The conditional variance ltkjt�1, referred
to as the one-frame-ahead conditional variance,
is a random process which evolves as a
GARCHð1; 1Þ process:

ltkjt�1 ¼ lmin þ mjX t�1;kj
2 þ dðlt�1;kjt�2 � lminÞ,

(7)
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where

lmin40; mX0; dX0; mþ do1 (8)

are the standard constraints imposed on the
parameters of the GARCH model [16]. The
parameters m and d are, respectively, the
moving average and autoregressive parameters
of the GARCH(1,1) model, and lmin is a lower
bound on the variance of X tk under Htk

1 .

(4)
 The noise spectral coefficients fDtkg are zero-

mean statistically independent Gaussian ran-
dom variables. The real and imaginary parts of

Dtk are iid random variables �N 0;
s2

tk

2

� �
.

The first assumption implies that the speech
spectral coefficients fX tkjH

tk
1 g are conditionally

zero-mean statistically independent random vari-
ables given their variances fltkg. The real and
imaginary parts of X t under Ht

1 are conditionally
iid random variables given ltk, satisfying

p Xrtkjltk; Htk
1

� �
¼

1ffiffiffiffiffiffi
ltk

p p Vrtk ¼
Xrtkffiffiffiffiffiffi
ltk

p

����Htk
1

� �
,

r 2 fR; Ig. ð9Þ
3. Problem formulation

The problem of spectral enhancement is gen-
erally formulated as deriving an estimator X̂ tk for
the speech spectral coefficients, such that the
expected value of a certain distortion measure is
minimized. Let dðX tk; X̂ tkÞ denote a distortion
measure between X tk and its estimate X̂ tk, and let
ct represents the information set that can be
employed for the estimation at frame t (e.g., the
noisy data observed through time t). Let p̂tk ¼

PðHtk
1 jctÞ denote an estimate for the signal

presence probability, let l̂tk ¼ EfjX tkj
2jHtk

1 ; ctg

denote an estimate for the variance of a speech
spectral coefficient X tk under Htk

1 . Then, we
consider an estimator for X tk which minimizes
the expected distortion given p̂tk, l̂tk and the noisy
spectral coefficient Y tk:

min
X̂ tk

E dðX tk; X̂ tkÞjp̂tk; l̂tk;Y tk

n o
. (10)
In particular, restricting ourselves to a squared
error distortion measure of the form

d X tk; X̂ tk

� �
¼ gðX̂ tkÞ � ~gðX tkÞ
�� ��2, (11)

where gðX Þ and ~gðX Þ are specific functions of X

(e.g., X jX j log jX j; ejffX ), the estimator X̂ tk is
calculated from

g X̂ tk

� �
¼ E ~gðX tkÞjp̂tk; l̂tk;Y tk

n o
¼ p̂tkE ~gðX tkÞjH

tk
1 ; l̂tk;Y tk

n o
þ ð1� p̂tkÞE ~gðX tkÞjH

tk
0 ;Y tk

	 

. ð12Þ

The design of a particular estimator for X tk

requires the following specifications:
�
 Functions gðX Þ and ~gðX Þ, which determine the
fidelity criterion of the estimator.

�
 A conditional pdf pðX tkjltk;H

tk
1 Þ for X tk under

Htk
1 given its variance ltk, which determines the

statistical model.

�
 Estimators l̂tk and cs2tk for the speech and noise
spectral variances, respectively.

�
 An estimator q̂tk ¼ PðHtk

1 jc
0
tÞ for the a priori

signal presence probability, where c0t ¼ ctnY tk

represents the information set known prior to
having the measurement Y tk.

In this work we consider MMSE estimators for the
spectral coefficients and the LSA under Gaussian,
Gamma and Laplacian models, while the speech
spectral variance is estimated based on either the
proposed GARCH models or the decision-directed
method of Ephraim and Malah [2].
Generally, given an estimate for the a priori

signal presence probability, the (a posteriori)
signal presence probability can be obtained from
Bayes’ rule:

p̂tk ¼
q̂tkPðY tkjH

tk
1 ;c

0
tÞ

q̂tkPðY tkjH
tk
1 ;c

0
tÞ þ ð1� q̂tkÞPðY tkjH

tk
0 ;c

0
tÞ
.

(13)

However, to simplify the comparisons between the
speech enhancement algorithms, we focus on
implementations that assume speech presence
(i.e., p̂tk ¼ 1) whenever 20 log10jX tkj4�, where � ¼
maxtk f20 log10jX tkjg � 50 confines the dynamic
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range of the log-spectrum to 50 dB. In the other
time-frequency bins, p̂tk is set to zero. Further-
more, we assume knowledge of the noise variance
s2tk, which in practice can be estimated by using the
Minima Controlled Recursive Averaging approach
[6,17]. Our objectives in this work are as follows:
�
 Develop speech enhancement algorithms which
are based on supergaussian GARCH models.

�
 Evaluate estimators for the speech variance
which are based on GARCH models, with a
comparison to variance estimation by the
decision-directed method.

�
 Compare the performances of MMSE spectral
and LSA estimators under Gaussian, Gamma
and Laplacian models, while estimating the
speech spectral variance by using the GARCH
modeling or the decision-directed method.

4. Signal reconstruction

In this section, we assume that the model
parameters m, d and lmin are known, and derive
recursive estimators for the speech variance under
Gaussian, Gamma and Laplacian models. The
speech is subsequently reconstructed by using
MMSE spectral or LSA estimators.

4.1. Variance estimation

The speech variance estimation approach is
closely related to the variance estimation approach
introduced in [18,19]. We start with an estimate
l̂tkjt�1 that relies on the noisy observations up to
frame t� 1, and ‘‘update’’ the variance by using
the additional information Y tk. Then, the variance
is ‘‘propagated’’ ahead in time, following the
rational of Kalman filtering, to obtain a condi-
tional variance estimate at frame tþ 1 from the
information available at frame t. However, rather
than using a heuristic propagation step, we
propose propagation steps that are consistent with
the supergaussian GARCH models.
GSPðx; grÞ ¼
4

ðLrþ � Lr�Þ
2

ðL2
rþ þ 0:5ÞerfcxðLrþÞ þ

er
Assuming an estimate l̂tkjt�1 for the one-frame-
ahead conditional variance of X tk is available, an
estimate for ltkjt can be obtained by calculating its
conditional mean under Htk

1 given Y tk and l̂tkjt�1.
By definition, ltkjt ¼ jX tkj

2. Hence,

l̂tkjt ¼ E jX tkj
2jHtk

1 ; l̂tkjt�1;Y tk

n o
¼ E X 2

RtkjH
tk
1 ; l̂tkjt�1;Y Rtk

n o
þ E X 2

ItkjH
tk
1 ; l̂tkjt�1;Y Itk

n o
, ð14Þ

where we have used that Xrtk and Yr0tk are
independent for rar0 (r;r0 2 fR; Ig). Defining
the a priori and a posteriori SNRs, respectively, by

xtkjt�1¼
n ltkjt�1

s2tk
; grtk¼

n Y 2
rtk

s2tk
, (15)

we can write for Y rtka0 ðr 2 fR; IgÞ

EfX 2
rtkjH

tk
1 ; l̂tkjt�1;Yrtkg ¼ GSPðx̂tkjt�1; grtkÞY

2
rtk,

(16)

where GSPðx; grÞ represents the MMSE gain func-
tion in the spectral power domain [19]. The specific
expression for GSPðx; grÞ depends on the particular
statistical model. For a Gaussian model, the
spectral power gain function is given by

GSPðx; grÞ ¼
x

1þ x
1

2gr
þ

x
1þ x

 !
. (17)

For a Gamma model [19,20],

GSPðx; grÞ ¼
3

ðCrþ � Cr�Þ
2

�
expðC2

r�=4ÞD�2:5ðCr�Þ þ expðC2
rþ=4ÞD�2:5ðCrþÞ

expðC2
r�=4ÞD�0:5ðCr�Þ þ expðC2

rþ=4ÞD�0:5ðCrþÞ
,

ð18Þ

where Crþ and Cr� are defined by

Cr� ¼
n

ffiffiffi
3
p

2
ffiffiffi
x
p �

ffiffiffiffiffiffiffi
2gr

q
(19)

and DpðzÞ denotes the parabolic cylinder function
[21, Eq. 9.240]. For a Laplacian model [19],
ðL2
r� þ 0:5ÞerfcxðLr�Þ � ðLrþ þ Lr�Þ=

ffiffiffi
p
p

fcxðLrþÞ þ erfcxðLr�Þ
, (20)
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where Lrþ and Lr� are defined by

Lr� ¼
n 1ffiffiffi

x
p �

ffiffiffiffiffi
gr

p
, (21)

and erfcxðxÞ is the scaled complementary error
function, defined by

erfcxðxÞ ¼
n
ex2 2ffiffiffi

p
p

Z 1
x

e�t2 dt. (22)

Eq. (16) does not hold in the case Y rtk ! 0,
since GSPðx; grÞ ! 1 as gr! 0, and the condi-
tional variance of X rtk is generally not zero. For
Yrtk ¼ 0 (or practically for Yrtk smaller in
magnitude than a predetermined threshold) we
use the following expressions [19]: For a Gaussian
model

E X 2
rtkjH

tk
1 ; l̂tkjt�1;Yrtk ¼ 0

n o
¼

x̂tkjt�1

1þ x̂tkjt�1

s2tk,

(23)

for a Gamma model,

E X 2
rtkjH

tk
1 ; l̂tkjt�1;Yrtk ¼ 0

n o

¼

3D�2:5
ffiffiffi
3
p

=2
ffiffiffiffiffiffiffiffiffiffiffiffi
x̂tkjt�1

q� �
8D�0:5

ffiffiffi
3
p

=2
ffiffiffiffiffiffiffiffiffiffiffiffi
x̂tkjt�1

q� � s2tk ð24Þ

and for a Laplacian model,

E X 2
rtkjH

tk
1 ; l̂tkjt�1;Yrtk ¼ 0

n o

¼

ffiffiffi
2

p

r expð1=2x̂tkjt�1ÞD�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=x̂tkjt�1

q� �
erfcx 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
x̂tkjt�1

q� � s2tk.

ð25Þ

From (16) to (25), we can define a function
f ðl; s2;Y 2

rÞ such that

E X 2
rtkjH

tk
1 ; l̂tkjt�1;Yrtk

n o
¼ f l̂tkjt�1; s2tk;Y

2
rtk

� �
(26)
for all Y rtk. Substituting (26) into (14), we obtain
an estimate for ltkjt given by

l̂tkjt ¼ f l̂tkjt�1;s2tk;Y
2
Rtk

� �
þ f l̂tkjt�1;s2tk;Y

2
Itk

� �
.

(27)

Eq. (27) is the update step of the recursive
estimation, since we start with an estimate l̂tkjt�1

that relies on the noisy observations up to frame
t� 1, and then update the estimate by using the
additional information Y tk.
To formulate the propagation step, we assume

that we are given at frame t� 1 an estimate
l̂t�1;kjt�2 for the conditional variance of X t�1;k,
which has been obtained from the noisy measure-
ments up to frame t� 2. Then a recursive MMSE
estimate for ltkjt�1 can be obtained by calculating
its conditional mean under Ht�1;k

1 given l̂t�1;kjt�2

and Y t�1;k:

l̂tkjt�1 ¼ E ltkjt�1jH
t�1;k
1 ; l̂t�1;kjt�2;Y t�1;k

n o
. (28)

Substituting (7) into (28), we have

l̂tkjt�1

¼ lmin þ mE jX t�1;kj
2jHt�1;k

1 ; l̂t�1;kjt�2;Y t�1;k

n o
þ dðl̂t�1;kjt�2 � lminÞ. ð29Þ

Eq. (14) implies that EfjX t�1;kj
2jHt�1;k

1 ; l̂t�1;kjt�2;
Y t�1;kg ¼ l̂t�1;kjt�1. Substituting this into (29), we
obtain

l̂tkjt�1 ¼ lmin þ ml̂t�1;kjt�1 þ d l̂t�1;kjt�2 � lmin

� �
.

(30)

Eq. (30) is called the propagation step, since the
conditional variance estimates are propagated
ahead in time to obtain a conditional variance
estimate at frame t from the information available
at frame t� 1. The propagation and update steps
are iterated as new data arrive, following the
rational of Kalman filtering. The algorithm is
initialized at the first frame, say t ¼ 0, with
l̂0;kj�1 ¼ lmin for all the frequency bins,
k ¼ 0; . . . ;K � 1. Then, for t ¼ 0; 1; . . ., the esti-
mate l̂tkjt is calculated by using the update (27),
and l̂tþ1;kjt is subsequently calculated by using the
propagation (30).
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4.2. MMSE spectral estimation

An MMSE estimator for X tk is obtained by
using the functions

gðX̂ tkÞ ¼ X̂ tk; ~gðX tkÞ

¼
X tk under Htk

1 ;

GminY tk under Htk
0 ;

8<: ð31Þ

where Gmin51 represents a constant attenuation
factor. Substituting (31) into (12), we have

X̂ tk

¼ p̂tk GMSEðx̂tkjt; gRtkÞY Rtk þ jGMSEðx̂tkjt; gItkÞY Itk

h i
þ ð1� p̂tkÞGminY tk, ð32Þ

where x̂tkjt ¼ l̂tkjt=s2tk is an estimate for the a priori
SNR, grtk ¼ Y 2

rtk=s
2
tk ðr 2 fR; IgÞ are the a poster-

iori SNRs, and GMSEðx; gÞ represents the MMSE
spectral gain function under H1. The specific
expression for GMSEðx; grÞ depends on the parti-
cular statistical model. For a Gaussian model, the
gain function is the Wiener filter given by [22]

GMSEðxÞ ¼
x

1þ x
. (33)

For a Gamma model, the gain function is given by
[9]

GMSEðx; grÞ ¼
1

Crþ � Cr�

�
expðC2

r�=4ÞD�1:5ðCr�Þ � expðC2
rþ=4ÞD�1:5ðCrþÞ

expðC2
r�=4ÞD�0:5ðCr�Þ þ expðC2

rþ=4ÞD�0:5ðCrþÞ
,

ð34Þ

where Cr� are defined by (19). For a Laplacian
speech model, the gain function is given by [10]

GMSEðx; grÞ ¼
2

Lrþ � Lr�

�
LrþerfcxðLrþÞ � Lr�erfcxðLr�Þ

erfcxðLrþÞ þ erfcxðLr�Þ
, ð35Þ

where Lr� are defined by (21). Note that when
the signal is surely absent (i.e., when p̂tk ¼ 0),
the resulting estimator X̂ tk reduces to a con-
stant attenuation of Y tk (i.e., X̂ tk ¼ GminY tk).
This retains the noise naturalness, and is closely
related to the ‘‘spectral floor’’ proposed by Berouti
et al. [23].
4.3. MMSE log-spectral amplitude estimation

In speech enhancement applications, estimators
which minimize the mean-squared error of the
LSA have been found advantageous to MMSE
spectral estimators [2,3,24]. An MMSE–LSA
estimator is obtained by substituting into (12) the
functions

gðX̂ tkÞ ¼ log jX̂ tkj; ~gðX tkÞ

¼
log jX tkj under Htk

1 ;

logðGminjY tkjÞ under Htk
0 :

8<: ð36Þ

Assuming a Gaussian model and combining the
resulting amplitude estimate with the phase of the
noisy spectral coefficient Y tk yields

X̂ tk ¼ GLSAðx̂tkjt; gtkÞ

h ip̂tk

G
1�p̂tk

min Y tk, (37)

where gtk ¼ gRtk þ gItk denotes a posteriori SNR,

GLSAðx; gÞ ¼
n x
1þ x

exp
1

2

Z 1
W

e�x

x
dx

� �
(38)

represents the LSA gain function under Htk
1 which

was derived by Ephraim and Malah [3], and W is
defined by W¼n xg=1þ x. Similar to the MMSE
spectral estimator, the MMSE–LSA estimator
reduces to a constant attenuation of Y tk when
the signal is surely absent (i.e., p̂tk ¼ 0 implies
X̂ tk ¼ GminY tk). However, for a fixed value of the
a priori SNR, the LSA gain is a monotonically
decreasing function of g [3,25]. By contrast, the
gain function GMSEðx; grÞ for a Gaussian model is
independent of the a posteriori SNR, while for
Gamma and Laplacian speech models the gain
functions are increasing functions of the a poster-
iori SNR [19]. The behavior of GLSAðx; gÞ is related
to the useful mechanism that counters the musical
noise phenomenon [25]. Local bursts of the a
posteriori SNR, during noise-only frames, are
‘‘pulled down’’ to the average noise level, thus
avoiding local buildup of noise whenever it
exceeds its average characteristics. As a result,
the MMSE–LSA estimator generally produces
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Table 1

List of the evaluated speech enhancement algorithms
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lower levels of residual musical noise, when
compared with MMSE spectral estimators.
Algorithm

#

Statistical

model

Variance

estimation

Fidelity

criterion

1 Gaussian GARCH MMSE

2 Gamma GARCH MMSE

3 Laplacian GARCH MMSE

4 Gaussian Decision-

directed

MMSE

5 Gamma Decision-

directed

MMSE

6 Laplacian Decision-

directed

MMSE

7 Gaussian GARCH MMSE–LSA

8 Gaussian Decision-

Directed

MMSE–LSA

1Note that the LSD results in [14] are slightly different, since

a different formulation of the log-spectral distortion is used.
5. Experimental results

In this section, the performances of the MMSE
spectral and LSA estimators are evaluated under
Gaussian, Gamma and Laplacian models, while
the speech variance is estimated by using either the
GARCH modeling or the decision-directed meth-
od. The evaluation includes two objective quality
measures, and informal listening tests. The first
quality measure is LSD, in dB, which is defined by

LSD

¼
1

jH1j

X
tk2H1

ð20 log10jX tkj � 20 log10jX̂ tkjÞ
2

" #1=2
,

ð39Þ

where H1 ¼ ftkj20 log10jX tkj4�g denotes the set
of time-frequency bins which contain the speech
signal, jH1j denotes its cardinality, and � ¼
maxtk f20 log10jX tkjg � 50 confines the dynamic
range of the log-spectrum to 50 dB. The second
quality measure is the PESQ score (ITU-T P.862).

The speech signals used in our evaluation are
taken from the TIMIT database [26]. They include
20 different utterances from 20 different speakers,
half male and half female. The speech signals are
sampled at 16 kHz and degraded by white Gaus-
sian noise with SNRs in the range [0,20] dB. The
noisy signals are transformed into the STFT
domain using half overlapping Hamming analysis
windows of 32ms length. The Gaussian, Gamma
and Laplacian GARCH models (i.e., the para-
meters m, d and lmin) are estimated independently
for each speaker from the clean signal of that
speaker, as described in the Appendix. Eight
different speech enhancement algorithms are then
applied to each noisy speech signal, as summarized
in Table 1. The presumed statistical model is either
Gaussian, Gamma or Laplacian, the speech
variance is estimated by using either the GARCH
modeling method or the decision-directed method,
and the fidelity criterion is either MMSE of the
spectral coefficients or MMSE of the LSA. The
decision-directed estimate of the speech variance is
given by [2,25]

l̂
DD

tk ¼ max ajX̂ t�1;kj
2

	
þð1� aÞðjY tkj

2 � s2tkÞ; xmins
2
tk



, ð40Þ

where a ð0pap1Þ is a weighting factor that
controls the trade-off between noise reduction and
transient distortion introduced into the signal, and
xmin is a lower bound on the a priori SNR. These
parameters are set to the values xmin ¼ �15dB and
a ¼ 0:98 as specified in [2,3,25]. The noise spectral
variance s2tk is estimated by averaging over time the
spectral power values of the noise signal itself.
Speech presence is determined (i.e., p̂tk ¼ 1) when-
ever 20 log10jX tkj4�. The attenuation factor Gmin

during speech absence is �20dB. In practice, the
noise signal is unknown, and the noise spectral
variance can be estimated by using the Minima

Controlled Recursive Averaging approach [17].
Furthermore, the speech presence probability is
estimated from the noisy spectral measurements [6].
Table 2 shows the results of the LSD obtained

by using the different algorithms for various SNR
levels.1 The results of the PESQ scores are
presented in Table 3. The results show that:
�
 The MMSE–LSA estimator yields lower LSD
and higher PESQ scores than the MMSE
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Table 2

Log-spectral distortion obtained by using different variance estimation methods (GARCH modeling method vs. decision-directed

method), statistical models (Gaussian vs. supergaussian) and fidelity criteria (MMSE vs. MMSE–LSA)

Variance estimation: GARCH modeling method Decision-directed method

Statistical model: Gaussian Gamma Laplacian Gaussian Gamma Laplacian

Fidelity criterion: MMSE MMSE–LSA MMSE MMSE MMSE MMSE–LSA MMSE MMSE

0 7.77 4.85 8.03 7.91 18.89 11.35 17.76 18.14

Input 5 5.78 4.04 6.93 6.45 17.29 11.03 15.73 16.26

SNR 10 4.14 3.27 5.35 4.85 13.87 9.13 11.83 12.48

[dB]: 15 2.50 2.25 3.23 2.92 9.19 6.05 6.95 7.59

20 1.30 1.28 1.55 1.44 4.88 3.13 2.88 3.34

Table 3

PESQ scores obtained by using different variance estimation methods (GARCH modeling method vs. decision-directed method),

statistical models (Gaussian vs. supergaussian) and fidelity criteria (MMSE vs. MMSE–LSA)

Variance estimation: GARCH modeling method Decision-directed method

Statistical model: Gaussian Gamma Laplacian Gaussian Gamma Laplacian

Fidelity criterion: MMSE MMSE–LSA MMSE MMSE MMSE MMSE–LSA MMSE MMSE

0 2.52 2.55 2.47 2.48 1.91 2.21 1.98 1.96

Input 5 2.97 2.98 2.90 2.91 2.30 2.61 2.38 2.36

SNR 10 3.37 3.38 3.28 3.31 2.70 2.99 2.77 2.75

[dB]: 15 3.67 3.69 3.59 3.62 3.09 3.31 3.17 3.15

20 3.88 3.89 3.83 3.85 3.53 3.64 3.62 3.60
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spectral estimators, whether the variance is
estimated by using the GARCH modeling
method or the decision-directed method.

�
 An MMSE spectral estimator derived under a
Gamma statistical model performs better than
MMSE spectral estimators derived under Gaus-
sian or Laplacian models, but only if the speech
variance is estimated by the decision-directed
method. However, if the speech variance is
estimated by using the GARCH modeling
method, a Gaussian model is preferable to
Gamma and Laplacian models.

�
 Speech variance estimation based on GARCH
modeling yields lower LSD and higher
PESQ scores than those obtained by using the
decision-directed method, whether the statis-
tical model is assumed Gaussian, Gamma
or Laplacian, and whether the fidelity criterion
is MMSE of the spectral coefficients or
MMSE–LSA.
�
 The best performance in terms of minimum
LSD and maximum PESQ scores is obtained
when using the GARCH modeling method, a
Gaussian model and an MMSE–LSA estima-
tor. The worst performance is obtained when
using the decision-directed method, a Gaussian
model and an MMSE spectral estimator.

It is worthwhile noting that it is difficult, or even
impossible, to derive analytical expressions for
MMSE-LSA estimators under Gamma or Lapla-
cian models. The GARCH modeling method
facilitates MMSE-LSA estimation, while taking
into consideration the heavy-tailed distribution.
6. Conclusion

We have introduced speech enhancement algo-
rithms which are based on supergaussian GARCH
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models in the STFT domain. We assumed that the
conditional variances of the STFT expansion
coefficients are random variables, and that the
one-frame-ahead conditional variance evolves as a
GARCHð1; 1Þ process. The variance of an expan-
sion coefficient is recursively estimated by iterating
propagation and update steps following the
rational of Kalman filtering. We compared our
variance estimation approach to the decision-
directed method of Ephraim and Malah by
evaluating the performances of MMSE spectral
estimators under Gaussian, Gamma and Lapla-
cian models, and MMSE–LSA estimator under a
Gaussian model. We showed that the MMSE–L-
SA estimator yields lower log-spectral distortion
and higher PESQ scores than the MMSE spectral
estimators, whether the variance is estimated by
using the GARCH modeling method or the
decision-directed method. Furthermore, a Gamma
model is preferable when using the decision-
directed method, but a Gaussian model is prefer-
able when using the GARCH modeling method.
This is particularly important since it is difficult or
even impossible to find analytical expressions for
MMSE–LSA estimators under Gamma or Lapla-
cian models. While the decision-directed method
necessitates the derivation of the MMSE–LSA
estimator under a Gamma model, the GARCH
modeling method enables to retain the MMSE–L-
SA estimator derived under a Gaussian model.

It should be noted that the experimental results
in this work are obtained under the assumption
that signal presence is perfectly detected, that the
noise spectral variance is known, and that the
clean speech is available for the estimation of the
model parameters. In practice, under signal pre-
sence uncertainty, the quality of the enhanced
speech may be lower due to miss-detection of
speech components ( p̂tko1 under Htk

1 ), and some
residual musical noise may be generated due to
false-detection of speech components ( p̂tk40
under Htk

0 ). In addition, estimating the model
parameters from the noisy signal would degrade
the performance due to model mismatch. Never-
theless, the experimental results show the potential
of the proposed approach, and motivate a further
research on the estimation of the signal presence
probability and the model itself.
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Appendix

For completeness, we briefly repeat the model
estimation method employed in [14], with further
consideration of the supergaussian GARCH mod-
els. Let XT

0 denote the set of clean speech spectral
coefficients employed for the model estimation, let
H1 ¼ ftkjstk ¼ 1g denote the set of time-frequency
bins where the signal is present, and let / ¼

½m; d; lmin� denote the vector of unknown para-
meters. Then, for a Gaussian model, the logarithm
of the conditional density of X tk given the clean
spectral coefficients up to frame ðt� 1Þ can be
expressed as [14]

log p X tkjX
t�1
0 ;/

� �
¼ �
jX tkj

2

ltkjt�1
� log ltkjt�1 � log p; tk 2H1.

ð41Þ

For a Gamma model we have

log pðX tkjX
t�1
0 ;/Þ

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2ltkjt�1

s
ðjX Rtkj þ jX ItkjÞ

�
1

2
log jX Rtk X Itkj �

1

2
log ltkjt�1

�
1

2
log

3

32p2
ð42Þ

and for a Laplacian model we obtain

log pðX tkjX
t�1
0 ;/Þ

¼ �
2ffiffiffiffiffiffiffiffiffiffiffiffi
ltkjt�1

p ðjX Rtkj þ jX ItkjÞ � log ltkjt�1. ð43Þ

For sufficiently large sample size, the spectral
coefficients of the first frame make a negligible
contribution to the total likelihood. Therefore, the
values of l0;kj�1 in the first frame are initialized to
their minimal value lmin, and the log-likelihood is
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maximized when conditioned on the first frame.
The log-likelihood conditional on the spectral
coefficients of the first frame is given by

Lð/Þ ¼
X

tk2H1\t2½1;T �

log p X tkjH
tk
1 ;X

t�1
0 ;/

� �
. (44)

Substituting either (41), (42) or (43) into (44) and
imposing the constraints in (8) on the estimated
parameters, the maximum-likelihood estimates of
the model parameters are obtained by solving the
following constrained minimization problems: For
a Gaussian model [14]

minimize
l̂minm̂;d̂

X
tk2H1\t2½1;T �

jX tkj
2

ltkjt�1
þ log ltkjt�1

� �
, (45)

for a Gamma model

minimize
l̂min; m̂;d̂

X
tk2H1\t2½1;T �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2ltkjt�1

s
ðjX Rtkj þ jX ItkjÞ

"

þ
1

2
log jX RtkX Itkj þ

1

2
log ltkjt�1

#
, ð46Þ

and for a Laplacian model

minimize
l̂min;m̂;d̂

X
tk2H1\t2½1;T �

�
2ffiffiffiffiffiffiffiffiffiffiffiffi

ltkjt�1

p ðjX Rtkj þ jX ItkjÞ þ log ltkjt�1

" #
, ð47Þ

where the above minimizations are subject to the
constraints

l̂min40; m̂X0; d̂X0; m̂þ d̂o1. (48)

For given numerical values of the parameters,
the sequences of conditional variances fltkjt�1g are
calculated from (7) and used to evaluate the series
in (45), (46) or (47). The result is then minimized
numerically by using the Berndt et al. [27]
algorithm as in Bollerslev [28].
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[25] O. Cappé, Elimination of the musical noise phenomenon

with the Ephraim and Malah noise suppressor, IEEE

Trans. Acoust., Speech Signal Process. 2 (2) (April 1994)

345–349.

[26] J.S. Garofolo, Getting started with the DARPA TIMIT

CD-ROM: an acoustic phonetic continuous speech data-

base, Technical report, National Institute of Standards and

Technology (NIST), Gaithersburg, Maryland (prototype

as of December 1988).

[27] E.K. Berndt, B.H. Hall, R.E. Hall, J.A. Hausman,

Estimation and inference in nonlinear structural

models, Ann. Economic Social Measurement 4 (1974)

653–665.

[28] T. Bollerslev, Generalized autoregressive conditional

heteroskedasticity, J. Econometrics 31 (3) (April 1986)

307–327.


	Speech spectral modeling and enhancement based on autoregressive conditional heteroscedasticity models
	Introduction
	Statistical models
	Problem formulation
	Signal reconstruction
	Variance estimation
	MMSE spectral estimation
	MMSE log-spectral amplitude estimation

	Experimental results
	Conclusion
	Acknowledgements
	Appendix
	References


