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S
ignal processing methods have significantly changed 
over the last several decades. Traditional methods 
were usually based on parametric statistical inference 
and linear filters. These frameworks have helped to 
develop efficient algorithms that have often been suit-

able for implementation on digital signal processing (DSP) sys-
tems. Over the years, DSP systems have advanced rapidly, and 
their computational capabilities have been substantially 
increased. This development has enabled contemporary signal 
processing algorithms to incorporate more computations. Con-
sequently, we have recently experienced a growing interaction 
between signal processing and machine-learning approaches, 
e.g., Bayesian networks, graphical models, and kernel-based 
methods, whose computational burden is usually high.

In this article, we review manifold-learning techniques based 
on kernels and graphs. Our survey covers recent developments 
and trends and presents ways to incorporate them into signal 
processing. We integrate theoretical viewpoints, such as com-
pact representations of signals and intrinsic metrics and 
models, together with practical aspects and concrete signal 

processing algorithms tackling challenging problems, e.g., 
transient interference suppression and acoustic source localiza-
tion. The prime focus is nonlinear signal processing using diffu-
sion maps, which is a recent manifold-learning method. Our 
hope is that this article will provide an insightful view of these 
novel methods and will encourage further research into this 
attractive and exciting new direction.

Motivation and Background
In a wide range of real-world applications, the observable data 
sets are controlled by underlying processes or drivers. As a 
result, these sets exhibit highly redundant representations, and 
a compact representation of lower-dimensionality exists and 
may enable a more efficient processing. For instance, molecular 
dynamics simulations of biologically significant macromole-
cules (e.g., proteins) provide a unique valuable tool for explor-
ing and developing new drugs and treatments [1]; such 
simulations describe the motion of a large number of atoms and 
often occur on time scales well beyond the computational reach 
of current solvers. Yet, by exploiting the (unknown) coherent 
structure of molecular motion, such processes can in principle 
be efficiently represented by only a few, well-chosen reaction 
coordinates—for example, by a small subset of critical dihedral 
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angles, rather than by each individual atom trajectory, as illus-
trated in Figure 1. Similar considerations arise in many signal 
processing applications. Hence, a fundamental problem is to 
reveal such latent structures and the associated coarse-grained 
variables, given their opaque high-dimensional manifestations 
(such as full atom trajectories). The uncovered latent structures 
can then be utilized to develop efficient processing algorithms.

The notion of low-dimensional representations is inherent 
to contemporary data analysis schemes and manifested 
via the proliferation of seminal 
computat ional  approaches , 
such as compressed sensing, 
sparse representations, and dic-
tionary learning [2], [3]. In par-
ticular, there has been a growing 
effort in recent years to derive 
analysis schemes based on low-
dimensional intrinsic geometry 
driven by measurements. These 
are called manifold-learning techniques and pave the way for 
a novel perspective to data analysis, where instead of relying 
on predefined models and representations, as in the other 
approaches, the geometry of the data set at hand is captured, 
and its parametrization is viewed as a data-driven model. The 
general formulation consists of a low-dimensional latent pro-
cess in a parametric domain, which is transformed into a set of 
probability density functions (pdfs) on a statistical manifold 
[4], [5]. Although statistical representations may be highly 
suitable for signal processing problems since they may suc-
cessfully describe random measurements and noise, in this 
article we focus on a special case in which the set of measure-
ments, and hence the manifold, is deterministic. Such an 
approach enables to process the measured signal directly with-
out prior knowledge on the distributions nor the need to esti-
mate them.

Manifold learning was first introduced in two pioneer papers 
published in the same issue of Science magazine in 2000: a 
paper by Tenenbaum et al. presenting the isometric feature 
mapping (ISOMAP) [6] and a paper by Roweis and Saul present-
ing locally linear embedding [7]. Following these contributions, 
many manifold-learning techniques have been proposed in the 
last decade. Among them we mention Laplacian eigenmaps [8], 
Hessian eigenmaps [9], and diffusion maps [10]. The core of 
manifold learning resides in the construction of a kernel based 

on the connections between the 
samples of a signal. The main idea 
is that eigenvectors of the kernel 
can be viewed as a compact repre-
sentation of the signal samples. 
Consequently, the data can be rep-
resented (embedded) in a Euclid-
ean space. In addition, the hope is 
that this new representation will 
capture the main structures of the 

data in few dimensions, thereby achieving dimensionality 
reduction. Diffusion maps, which were introduced by Coifman 
and Lafon [10], are of particular interest as they provide a gen-
eral framework that combines many of the other algorithms. 
Figure 1 presents a toy example demonstrating this goal. Con-
sider a data set of 15 images of a toy. As seen from the images, 
the sole degree of freedom, which should be revealed to “orga-
nize” the images, is the different rotation angle of the toy. This 
problem is nonlinear and challenging due to the large number 
of dimensions and small number of samples (images). Later in 
this article, we demonstrate how this angle can be recovered 
without any prior knowledge, treating the images merely as 
high-dimensional vectors.

Over the last few years, we have pursued the development 
of geometric modeling and kernel methods and were able to 
identify two crucial bottlenecks that limit their integration 

[Fig1]  Parts (a) and (b) illustrate the degrees of freedom of high-dimensional signals. (a) An alanine dipeptide molecule consisting of 
ten atoms. The two rotation angles { and } are the main degrees of freedom of the molecule dynamics. Part (b) shows 15 images of a 
toy, each 127 169 3# #  pixels. The toy rotation angle is the sole degree of freedom in the set. (Figure courtesy of Carmeline Dsilva and 
Neta Rabin.)
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Over the last few years, we 
have pursued the development 

of geometric modeling and 
kernel methods and were able to 
identify two crucial bottlenecks 
that limit their integration into 
signal processing applications.
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into signal processing applications. First, the measurements 
are highly dependent on the measuring instrument and the 
ambient noise conditions. Thus, the analysis of the geometry 
of the measured signal at hand might be highly influenced by 
the measurement and instrumental modality, and to success-
fully apply this approach to signal processing, new robust 
methods, which capture the intrinsic geometry, should be 
developed. Second, the ability to sequentially handle stream-
ing data is another important aspect of signal processing. Cur-
rently, the common application of geometric analysis methods 
lies mainly in the areas of machine learning and data mining. 
Most of the research has been focused thus far on batch pro-
cessing tasks such as recognition, organization, clustering, 
and classification of (high-dimensional) data sets. Coping with 
streaming data raises challenging tasks. For example, data-
driven models must be extended accurately and efficiently to 
newly acquired observations, the acquired geometric informa-
tion might need to be combined with a statistical model, and 
the empirical representation should be used for processing. 
This article attempts to provide answers to these questions 
from both theoretical and practical perspectives. We provide 
the readers with a comprehensive review of a particular mani-
fold-learning approach, mainly diffusion maps, and demon-
strate its usefulness in signal processing and its relationship to 
other kernel methods. In addition, we present recent develop-
ments that expand the field of kernel methods and specifically 
designed to handle the aforementioned challenges of signal 
processing problems.

We begin by describing the geometric approach for data 
analysis and processing. In particular, we review diffusion maps 
in detail. We introduce the fundamental concept and ideas 
and describe the formulation and analysis. Following the 
introduction, we survey recent developments in geometric 
methods. Specifically, we focus on affinity metrics based on 
local models that are incorporated into a diffusion kernel that 
provides a global model for the signal. This emphasizes the 
essence of the proposed approach—exploiting both the local 
and the global structure of the data in the form of distance mea-
sures and a kernel, respectively. Then we attempt to provide 
answers to the paramount questions: how to incorporate the 
obtained geometric characterization into signal processing 
tasks, and how to combine the data-driven model with pre-
defined statistical models. We introduce two filtering schemes 
exploiting the special properties of diffusion maps. The first is 
based on nonlocal (NL) filters equipped with an intrinsic metric 
driven by kernels, and the second relies on linear projections on 
learned dictionaries. Finally, we present the application of the 
reviewed approaches to two challenging tasks in signal process-
ing: single-channel source localization and transient interfer-
ence suppression. In particular, we show that locating a sound 
source based on the geometry of recordings from a single-
channel is possible. It further implies that acoustic impulse 
responses can be indeed parameterized, a fact that deviates from 
the common belief in this field. In addition, we describe a solu-
tion to transient interference suppression. Transient 

interferences, e.g., keyboard typing, are examples to signals, 
which are often encountered in real-life speech processing 
applications and whose representations using temporal statisti-
cal models are poor. Thus, existing methods based on statistical 
signal processing are inefficient in suppressing transients. 
Instead, we show that techniques based on the geometric struc-
ture of transients provide natural solutions and yield state-of-
the-art results.

Geometric approach for  
data analysis and processing
Consider a set { }xi i

M
1=  of M (possibly high-dimensional) signal 

samples. In the general setting, i is merely an index of a sample 
in the data set and often denotes the time index of time series. 
For example, in the case of the images in Figure 1(b), M 15=  
and xi is a column stack representation of a single image. The 
diffusion framework consists of the following steps: 

1)	construction of a weighted graph G on the signal at hand 
based on a pairwise weight function k that measures the 
affinity between samples.
2)	definition of a Markov process on the graph G via a con-
struction of a transition matrix that is derived from k.
3)	nonlinear mapping of the samples into a new embedded 
space based on a parametrization of the graph, which forms 
an intrinsic representation of the signal. 

We note that Steps 1 and 3 are usually common steps in typical 
manifold-learning techniques. We will elaborate now on the var-
ious steps.

Building a graph 
We construct the graph G on the samples of the signal. Let 

( , )k x xi jv  be a kernel or a weight function representing a notion 
of pairwise affinity between the samples, with a scale parameter 

.v  The kernel has the following properties: 1) symmetry: 
( , ) ( , );k kx x x xi j j i=v v  2) nonnegativity: ( , ) ;k 0x xi j $v  and 3) 

locality: given a positive scale parameter ,02v  ( , )k 1x xi j "v  
for x xi j % v-  and ( , )k 0x xi j "  for .x xi j & v-  For exam-
ple, a Gaussian kernel ( , ) { / }expk 2x x x xi j i j

2 2v= - -v  satis-
fies these properties. For simplicity, we omit the notation of the 
scale v when referring to the kernel .k

Setting the scale has a great importance and has been a 
subject of many studies; e.g., see [11]. A small scale intensifies 
the notion of locality, however, it may result in a poorly con-
nected graph. On the other hand, a large scale guarantees graph 
connectivity but makes the kernel insensitive to variations in 
the distances. In practice, the scale is often determined as the 
empirical standard deviation of the data set, however, there exist 
analytic methods for setting the scale, which we will not address 
in this article.

Based on the kernel, we form a weighted graph ,G  where 
the samples are the graph nodes and the weight of the edge 
connecting node xi to node x j is ( , ).k x xi j  A kernel with a 
notion of locality (Property 3) defines a neighborhood 
around each sample xi of radius v (in other words, samples 
x j s.t. x xi j

2 2 v-  are weakly connected to ).xi  Thus, the 
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choice of the specific kernel function should be application 
oriented to yield meaningful connections and represent 
perceptual affinity. In practical applications, the Euclidean 
distance in the kernel can be replaced by any application-
oriented metric. Alternatively, the kernel may be based on 
the Euclidean distance between features of the signal. It is 
worthwhile to note that the construction of the graph based 
on a kernel with a notion of locality is different than global 
methods. For example, principal component analysis (PCA) 
does not rely on a graph and is solely based on global statisti-
cal correlations between samples in the entire set. Kernel 
PCA proposed by Scholkopf et al. [12], on the other hand, 
is similar to diffusion maps since both methods rely on 
local connections conveyed by a kernel. However, the fol-
lowing steps will distinguish between diffusion maps and 
kernel PCA.

Constructing a Markov chain
A classical construction in spectral graph theory, as described by 
Chung [13], is employed and the kernel is normalized to create 
a nonsymmetric pairwise metric, given by ( , ) ( , ) /p kx x x xi j i j=  

( ),d xi  where ( ) ( , )d kx x xi i jj

M

1
= =

=
/  and is often referred to as 

the degree or the local density of .xi  Using the nonnegativity 
property of the kernel, which 
yields that ( , ) ,p 0x xi j 2  and since 

( , ) ,p 1x xi jj

M

1
=

=
/  the function 
p may be interpreted as a transi-
tion probability function of a Mar-
kov chain on the graph nodes. 
Specifically, the states of the Mar-
kov chain are the graph nodes { }xi  
and ( , )p x xi j  represents the proba-
bility of transition in a single Markov step from node xi to node 

.x j  We note that p is not described in a conventional conditional 
probability notation to emphasize its role as a nonsymmetric 
pairwise metric and also maintaining the common notation 
from the literature.

The underlying assumption of this approach is that the 
observations are samples of a continuous-time propagation 
model, which implies a particular organization of the samples. 
Thus, the objective of the graph is to quantify the pairwise 
connections between the samples and to uncover the global 
propagation model. For more details, see [10] and [14].

Laplacian Eigenmaps, Diffusion 
Maps, and Diffusion Distance
Let K denote the kernel matrix, where its (i, j)th element is 

( , ),k x xi j  and let P D K1= -  be the transition matrix corre-
sponding to ,p  where D is a diagonal matrix with the diagonal 
elements ( ).d xi  Propagating the Markov chain t steps forward 
corresponds to raising P to the power of .t  We also denote the 
probability function from node xi to node x j in t steps, which 
corresponds to ,Pt  by ( , ).p x xt i j

Applying a singular value decomposition (SVD) to P yields a 
complete sequence of left and right singular vectors ,j j{ }" , 

and singular values { },jm  which are nonnegative and bounded by 
1 due to the normalization. The singular values are sorted in a 
descending order such that .10m =  The corresponding right 
singular vector is trivial and equals to a column vector of ones 

.10} =

The right singular vectors of the transition matrix P are used 
to obtain a new data-driven description of the M vectors { }xi  via 
a family of mappings that are termed diffusion maps [10]. 
Let ( )xt iW  be the diffusion mappings of the samples into a 
Euclidean space ,R,  defined as

	 ( ) ( ), , ( ) ,i ixt i
t t T
1 1 f} }m mW = , ,6 @ 	 (1)

where , is the new space dimensionality ranging between 1 and 
.M 1-  Diffusion maps has therefore two parameters, which 

have to be set by the user: t and the dimension .,  The former 
corresponds to the number of steps of the Markov process on 
the graph, since the transition matrices P and Pt share the same 
singular vectors, and the singular values of Pt are the singular 
values of P raised to the power of .t  The latter indicates the 
intrinsic dimensionality of the data. Many studies in the litera-
ture investigate the problem of intrinsic dimensionality from 
different perspectives, e.g., a geometric point of view was 

applied by Kégl [15]. Here, we 
mention a heuristic approach, 
exploiting the fact that the eigen-
values are a part of the diffusion 
maps embedding. The dimension 
may be set according to the decay 
rate of the eigenvalues, as the 
coordinates in (1) become negligi-
ble for a large .,  In practice when 

the underlying representation is dominant and the ambient 
noise is relatively low, we expect to see a distinct “spectral gap” 
in the decay of the eigenvalues. Such a gap is often a good indi-
cator of the intrinsic dimensionality of the data and its use is a 
common practice in spectral clustering methods. However, in 
many (noisy) cases the spectral gap might not be distinct, and 
hence, the tendency to overestimate the dimensionality may 
increase the chance of diffusion maps to include the true 
intrinsic representation. We note that as t increases, the decay 
rate of the singular values also increases (they are confined in 
the interval [0, 1]). As a result, we may set , to be smaller, 
enabling the capture of the underlying structure of the samples 
in fewer dimensions. Thus, we may claim that a larger number 
of steps usually brings the samples closer in the sense of the 
affinity implied by ,Pt  and therefore, a more “global” structure 
of the signal is revealed. An example to the ability of diffusion 
maps to capture the degrees of freedom in a signal is demon-
strated by the images of the toy in Figure 2.

It is worthwhile noting that diffusion maps are reduced to 
Laplacian eigenmaps [8] when the eigenvalues are discarded 
from the mapping (using merely the eigenvectors). It implies 
that Laplacian eigenmaps carry the information on the underly-
ing model and the temporal dynamics without the information 

It is worthwhile noting that 
diffusion maps are reduced 

to Laplacian eigenmaps when 
the eigenvalues are discarded 

from the mapping (using merely 
the eigenvectors).
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revealed by the Markov process. In addi-
tion, we emphasize that manifold-learn-
ing methods, e.g., Laplacian eigenmaps 
and diffusion maps, typically use the 
eigenvectors themselves as a nonlinear 
representation of the data. This is a major 
difference from kernel PCA, in which the 
data is linearly projected on the obtained 
eigenvectors of the kernel.

As we described before, the Markov 
process enables the integration of infor-
mation from the entire set into the affinity 
metric ( , )p x xt i j  between two individual 
samples. This advantage is further 
expressed in the following derivation of a 
new affinity metric between any two sam-
ples [10], which is defined as

	
( , ) ( , ) ( , )

( ( , ) ( , )) / ( ),

D p p

p p l

x x x x

x x x x

t i j t i t j

t i l t j l
l

M

2 2

2
0

1

0$ $

{

= -

= -

{

=

/ 	
(2)

for any .t  This metric is termed diffusion distance as it 
relates to the evolution of the transition probability distribution 

( , ).p x xt i j  It enables the description of the relationship between 
pairs of samples in terms of their graph connectivity (see 
Figure 3). Consequently, the main advantage of the diffusion 
distance is that local structures and rules of transitions are inte-
grated into a global metric.

It can be shown that the diffusion distance (2) is equal to the 
Euclidean distance in the diffusion maps space when using all 

M 1, = -  eigenvectors [10], i.e.,

	 ( , ) ( ) ( ) .D x x x xt i j t i t j
2 2W W= - 	 (3)

Thus, comparing between embedded samples using the Euclid-
ean distance conveys the advantages of the diffusion distance 
stated above. In addition, since the spectrum is fast decaying for 
large enough ,t  the diffusion distance can be well approximated 
by only the first few , eigenvectors. Thus, the diffusion distance 
can be efficiently approximated by the Euclidean distance 
between embedded samples in low dimensions (setting , to a 
small value). Enabling meaningful and efficient comparisons 
between samples makes the Euclidean distance in the new 
embedded space highly useful. In recent years, this metric was 
shown to be very effective in various applications from different 
fields [17], and in this article, we intend to apply it to transient 
interference suppression in speech signals.

Affinity Metrics Based on Local Models
One of the main advantages of kernel methods compared to 
classical PCA is the ability to “think globally, fit locally” [6], [7]. 
The kernel is usually based on an affinity metric between two 
samples representing local connections, and globally processed 
via, for example, the eigenvalue decomposition. Recent 

developments in this field have taken this approach another 
step forward. The fact that the same metric is used to measure 
affinity everywhere poses limitations. In addition, the common 
Gaussian kernel based on the Euclidean distance between the 
samples is often inadequate to signal processing tasks. In prac-
tice, measuring the same phenomena several times usually 
yields different measurement realizations. Also, the same phe-
nomena can be measured using different instruments or sen-
sors. As a result, each set of related measurements of the same 
phenomenon will have a different geometric structure, depend-
ing on the instrument and the specific realization, and as a 
result, different pairwise Euclidean distances. Thus, classical 
manifold-learning methods (including Laplacian eigenmaps and 
diffusion maps) provide parametrization of merely the observ-
able manifold rather than the desired underlying manifold; this 
is a significant shortcoming of a kernel based on a Gaussian.

[Fig2]  The 15 images from Figure 1(b) sorted according to the diffusion maps 
embedding. The diffusion maps are computed using the standard Gaussian kernel 
between the pixels of the images. The dimensionality of the embedding is set to ,1  
and thus, diffusion maps associate each image with a scalar. (Images courtesy of 
Neta Rabin.)

A B

C

[Fig3]  The Euclidean distance and the geodesic distance 
(shortest path) between points A and B are roughly the same as 
those between points B and C. However, the diffusion distance 
between A and B is much larger since it has to go through the 
bottleneck. Thus, the diffusion distance between two individual 
points incorporates information of the entire set, implying that 
A and B reside in different clusters, whereas B and C are in the 
same cluster. This example is closely related to spectral 
clustering. For details, see [16] and references therein.
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A possible way to circumvent the problem is to use applica-
tion-oriented features and then to compute the Euclidean dis-
tance between the features. Recent developments describe 
alternative ways by relying on universal distance measures 
based on local structures in the data, which are in turn inte-
grated in the graph to form a global model. In this section, we 
review two such methods.

Intrinsic Distance
In signal processing, the cases described above are often repre-
sented in a state-space. Let ii  be the underlying desired samples 
of the “state,” and let xi be the corresponding samples of the 
measurement, given by ( ),fxi ii=  where f  is a map (possible 
nonlinear and probabilistic) which relates the underlying 
samples to the measurement samples.

Singer and Coifman proposed to compute an intrinsic affin-
ity metric in the underlying (state) space from the measure-
ments [18]. They proposed to divide the measured samples of 
the signal into N  small neighborhoods or “clouds” representing 
N  typical states. Let { }x ,i j j be the set of samples from the ith 
cloud and let Ci be their empirical covariance matrix. In prac-
tice, these clouds can be computed in several way: 1) to be 
picked by hand according to prior information; 2) by a nearest 
neighbors search based on application-oriented features; and 3) 
in the case of time series, the clouds may be defined according 
to short windows in time around each sample .xi  Either way, the 
clouds should consist of measurement samples that correspond 
to similar underlying samples (“states”), which represent the 
local variability of the signal. Based on the partition to clouds, a 
pairwise distance is computed according to

	 ( , ) ( ) ( ).d 2
1x x x x C C x x, , , , , , ,i i i j i j i j i j

T
i i i j i j

2 1 1= - + -- -
l l l l l l l l^ h 	 (4)

The distance in (4) is known as the Mahalanobis distance. We note 
that the rank of the local covariance matrices is equal to the 
intrinsic dimension and is often smaller than the ambient dimen-
sion of the measured data. Thus, we should use the pseudoinverse 
of the matrices in (4). In addition, the empirical rank of the matri-
ces may serve as additional indicators of the intrinsic dimension-
ality. Based on a local linearization of the measurement function 
,f  it was shown by Singer and Coifman [18] that the Mahalanobis 

distance approximates the Euclidean distance between samples of 
the underlying process to the second order, i.e.,

	 ( , ) ( ),d Ox x x x, , , , , , ,i j i j i i i j i j i j i j
2 2 4i i- = + -l l l l l l l 	 (5)

where ,i ji  and ,i ji l l are the underlying samples corresponding to 
x ,i j and ,x ,i jl l  respectively. The Mahalanobis distance is a metric 
between the measurements and can be empirically computed 
based on the available data; it inverts the measurement func-
tion, and therefore, intrinsic. Thus, it may be a very useful dis-
tance measure in signal processing applications that replaces 
the Euclidean distance in a Gaussian kernel.

We applied this approach to the problem of modeling 
convolution systems [19]. This problem has a key role in 

signal processing and has long been a task that attracted a 
considerable research effort. A predefined model is tradition-
ally developed for every type of system, and then the parame-
ters of the model are estimated from observations. We take a 
different approach. A given system is viewed as a black box 
controlled by several controlling parameters. By recovering 
these parameters, we reveal the actual degrees of freedom of 
the system and obtain its intrinsic modeling. These attrac-
tive features are extremely useful for system design, control, 
and calibration.

Musical instruments are examples of such systems, as each 
musical instrument is controlled by several parameters. For 
example, a flute is controlled by covering its holes. Formally, 
the parameter space can be written as a binary space, assum-
ing the flute has holes and each hole can be either open or 
covered. An important observation is that the output signal of 
the flute depends on the blow of air (the input signal) and the 
covering of the holes. However, the audible music (the notes) 
depends only on the covering of the holes. In other words, the 
played music depends solely on a finite set of the instrument’s 
controlling parameters. Another example worth mentioning is 
a violin. Violin music is determined by the length of the 
strings. In both examples, by recovering the controlling 
parameters of the musical instrument, we may naturally char-
acterize the music and identify the played notes. Furthermore, 
the intrinsic local metric enables to compare signals according 
to the values of their underlying parameters, thereby provid-
ing perceptual comparisons. In these examples, the clouds 
consist of different measurements of the same notes, which 
are represented by similar underlying states. It is worthwhile 
noting that the state is naturally determined by the problem, 
e.g., as the holes of a flute or length of strings of a violin, 
unlike traditional formulations in which the state is arbitrarily 
set. In addition, the use of such an intrinsic metric enables to 
recover the natural degrees of freedom in the system (the true 
number of holes or strings) and circumvents the need to use 
an over representation of the parameters, as is often required 
by common methods.

Local PCA Models
The second metric is based on trained local principal compo-
nents models [20], which are designed to filter the desired 
information from the observations [21], [22]. In diffusion 
maps, for example, the graph connects nodes with similar 
features. To enhance this property, we define a local data-
driven model in local neighborhoods or clouds. A well-known 
limitation of PCA is that it is linear and able to capture only 
the global structure of the signal, whereas given signals 
admit complicated structures. Thus, a low-dimensional linear 
subspace may not faithfully describe the information. How-
ever, a PCA-based approach may perform rather well when 
applied locally, i.e., on a data set sufficiently condensed in a 
small neighborhood. In this setting, it corresponds to defin-
ing a model for each local region separately. Incorporating 
these local models in the graph then provides integration of 
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all the acquired models. Capitalizing the connections 
between the entire set of data, rather than using a single 
local model, attains significantly improved results. We 
assume each cloud of samples represents a certain class of 
the signal and consists of several instances representing the 
variability of the class. 

As described above, in music, each class can represent a note 
and the cloud can consist of several different instances of that 
note. Let xir  be the empirical mean of the ith cloud and let Ci be 
the corresponding empirical covariance matrix of its samples. 
The pair ( , )x Ci ir  may be used as the learned model of the ith 
cloud. This implicit Gaussian representation is set for simplic-
ity. By employing PCA, the largest eigenvectors of ,Ci  which cor-
respond to the principal “parameters,” capture most of the 
information disclosed in each cloud. Hence, the dimensionality 
is significantly reduced by considering only the subspace 
spanned by a few principal eigenvectors. Let { }v ,i j j

L
1=  be the set 

of L such principal eigenvectors. Let Pi be a linear projection 
operator of each sample onto the ith local model, defined as

	 ( ) , ,P x x x x v v, ,i k i k i i j i j
j

L

1
= + -

=

r r/ 	 (6)

using the standard inner product. Based on the projection, we 
define a pairwise metric associated with the local model of the 
ith cloud as

	 ( , ) ( ) ( ) .d P Px x x xi k l i k i l= - 	 (7)

The linear projection in (6) extracts essential information and 
the local metric in (7) enables to adjust the kernel computation. 
We note that the cloud should be given to be able to use the 
correct metric.

Both local metrics described in this article exploit the infor-
mation stored in the local covariance of the samples. In the 
former approach, the covariance matrices are used to define an 
intrinsic metric between the samples by locally inverting the 
measurement function. In the latter, the covariance matrices 
are viewed as features or a local dictionary of the signal.

Incorporating the geometric 
information into sequential filtering schemes
Thus far, we have presented data-driven methods to obtain 
models to measured signals. In this section, we present ways 
to incorporate these models into sequential filtering. The abil-
ity to sequentially handle streaming data is an inherent aspect 
of signal processing, in which the data-driven geometric mod-
els must be extended accurately and efficiently to newly 
acquired observations. However, the common derivation of 
geometric analysis methods takes the form of batch process-
ing. In this section, we begin with a presentation of an exten-
sion scheme that enables efficient sequential processing. Then 
we present two filters that incorporate the extracted geometric 
representation by exploiting the diffusion distance and that 
the eigenvectors of the Markov matrix form a complete ortho-
normal basis of the signals, respectively. We note that the 

latter is not a unique property of diffusion maps and therefore 
it can be replaced by other manifold-learning methods.

Sequential Processing
Recently, we have proposed an extension method that relies 
on a probabilistic interpretation of the kernel [21]. Let { }xiu  be a 
set of samples available in advance. We refer to these samples 
as a training set that is used to learn the model. We define 
a nonsymmetric kernel A between any new unseen set of 
measurements { }x j  and the training set. The (j,i)th element 
of the kernel is defined as the probability of the unseen sample 
x j given it is “associated” with the ith local probability class, i.e.,

	 { },XPrA d
1 x xji

j
j j i!= 	 (8)

where Xi is the local probability class defined by the training 
sample ,xiu  and d j is a normalization factor such that .A 1ji

i
=/  

An example for a local probability class is a Gaussian ( , )N x Ci iu u  
defined in local clouds, as described in the previous section. It 
was shown by Kushnir et al. [23] that in such a case, A AT  is 
a Gaussian kernel for the training samples, which can be 
computed directly as described in the previous sections. In 
addition, AAT serves as an extended kernel defined on the 
unseen samples, whose ( , )thj jl  element is given by the 
probability of two unseen samples x j and x jl to be associated 
with the same local probability class, i.e., { , , }.XPr x x x xj j i j j!l l  
Thus, A enables to extend the kernel defined on the training set 
to new samples, and the SVD of A connects the right and left 
singular vectors of A with the eigenvectors of the kernels defined 
on the training and unseen sample, respectively. It is worthwhile 
noting that in the nonsymmetric kernel definition in (8) the 
local model is assumed to be known. As a result, we may use one 
of the local metrics described in the previous section.

The aforementioned analysis leads to a sequential processing 
algorithm: 1) in the training stage, the kernel is constructed 
based on training samples, and its eigen-decomposition is com-
puted; 2) in the test stage, given new samples, the kernel A 
between the training samples and the new samples is calculated 
(in case of a single new point, A is reduced to a vector); and 3) 
via the relationship implied by the SVD, the eigenvectors of the 
extended kernel are efficiently computed indirectly through the 
algebraic relationship

	 ,1 Aj
j

j{ }
m

= 	 (9)

circumventing the computation of the entire kernel and the 
eigenvalue decomposition. A particular attention should 
be given to the efficiency and low computational complexity of 
the extension in the test stage. Following is a description of the 
naïve computational cost (number of operations) for extending 
the representation to any new sample. Let M  be the number of 
training samples. Step 2 involves the computation of the affinity 
between the new sample and the training samples that yields 

( )O M  operations, and by (9), Step 3 yields ( )O M  operations 
as well.
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Nonlocal Filtering
NL filters enable signal enhancement and have been proven to 
be a simple and powerful method, in particular for image 
denoising [24]. The main idea in NL filtering is to explicitly use 
the fact that repetitive patterns appear in most natural signals. 
Specifically, an NL filter is given by

	 ( , ) ,px x x xi i j j
j

=t r/ 	 (10)

where xit  is the enhanced version of .xi  It implies that each sample 
of the signal xi is enhanced by weighted averaging over other 
“similar” samples x j according to an affinity metric (or kernel) .pr  
This results in combining together samples from different loca-
tions in time or space. Hence, this process is referred to as 
“nonlocal,” whereas “local” filtering is associated with processing 
of samples from adjacent locations. The affinity kernel, which 
determines the weights of the NL filter, is of key importance and 
has a direct impact on the attainable performance. Thus, we 
should search for a metric that compares the underlying 
parameters of the sample and is robust to measurement noise.

We presented the diffusion 
distance (2) as a global measure 
between samples that incorporates 
information on the underlying 
parameters and conveys percep-
tual connections as captured by 
diffusion maps. In addition, we 
showed that it can be empirically 
computed based on the diffusion maps embedding (3). Thus, it is 
natural to define a new affinity kernel based on the diffusion dis-
tance, e.g., as

	 ( , ) ( , ) /expk Dx x x xi j t i j
2 2f= -r " ,	 (11)

	 ( , ) ( , ) ( , )p k kx x x x x xi j i j i l
l

=r r r/ 	 (12)

and use it in the NL filter (10). We note that the Gaussian kernel 
implies that remote samples, whose diffusion distances are 
greater than ,f  have negligible weights, and therefore can be 
discarded. Thus, in practice, the NL filter may be computed 
based merely on the nearest neighbors.

Graph-based Processing
Next, we present a graph-based framework for sequential process-
ing, which relies on the eigenvectors acquired by diffusion maps. 
This approach offers sequential filtering compared to the batch 
NL filtering. By orthogonality, the set of the eigenvectors { }j j}  
forms a complete basis for any real function defined on the sam-
ples. In particular, let ( )i xk i  be a function that extracts the kth 
coordinate from the sample .xi  It implies that the kth component 
of xi can be expanded according to the set of eigenvectors as

	 , ( ),i i ix xi
k

k i j k j j
j

M

0

1

} }m= =
=

-

^ h /

where the inner product is defined as , ( ), ,i i xk j k 1 f_} 6  
( ) .i xk M j}@

The constructed graph captures the underlying structure of 
the signal. Consequently, there exists a subset of , eigenvectors 
which represents the desired information and form a dictionary, 
whereas the rest of the eigenvectors represent noise. For sim-
plicity, we assume that this subset consists of the leading eigen-
vectors, i.e., { } .j j 0

1} ,
=
-  In practice, the appropriate eigenvectors 

might have to be identified manually. A corresponding filter to 
extract the underlying structure from measurements is defined 
by a linear projection onto the eigenvectors spanning the 
underlying parameters subspace, i.e.,

	 , ( ),s i ii
k

j k j j
j 0

1

} }m=
,

=

-

t / 	 (13)

where si is the desired component in the noisy .xi  We note that 
compared to the previous nonlinear approach (NL filters based 
on diffusion maps), this processing scheme is based on linear 
projections. In this sense, it is similar to the popular kernel 
PCA [12]. The new concept lies in the construction of the 
kernel, which can be based on one of the intrinsic affinity 

metrics, and will be demonstrated 
in the next section. In addition to 
sequential processing, the graph-
based filter is characterized 
by low computational complexity. 
By (13), obtaining each enhanced 
coordinate costs ( )O M,  opera-
tions, and hence, the total com-

putational burden to filter each sample is ( ),O n M,  where n is 
the dimension of xi .

Applications to Source 
Localization and Speech Enhancement
The key idea of this novel framework is to combine classical 
statistical methods with data-driven geometric analysis meth-
ods when dealing with real-world applications. We show that 
capturing the geometric structure of the signals enriches the 
a priori assumed statistical model and enables good perfor-
mance. The results presented here indicate that such a 
combination may be more powerful than strictly model- 
driven approaches.

Single-channel Source Localization
Assume that a set of single-channel recordings of an unknown 
source from unknown locations is available, and we aim to find 
the different locations of the source. At a first glance, this task 
seems impossible without the spatial information provided by 
multichannel recordings. To find the position of an acoustic 
source in a room, the source signal is usually picked up with a 
microphone array, and the relative delays between pairs of 
microphone signals are determined. In reverberant rooms, the 
problem becomes especially challenging since relative room 
impulse responses between the microphones have to be esti-
mated. Various models of room impulse responses exist in the 
literature, in which the acoustic path between a source and a 

Nonlocal filters enable signal 
enhancement and have been 

proven to be a simple and 
powerful method, in particular 

for image denoising.
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microphone in an arbitrary enclosure is usually modeled as a 
long impulse response. Unfortunately, these responses are 
often difficult to estimate since they consist of a large number 
of variables.

We observe that a single-channel recording depends on 
merely few underlying acoustic parameters, e.g., the room 
dimensions, the positions of the source and microphone, as well 
as the reflection coefficients of the walls, floor, and ceiling. 
Thus, a single-channel recording 
stores the spatial information on 
the source location, and if we were 
able to characterize the measure-
ments by the underlying room 
parameters, we would be able to 
recover the position of the source. 
In addition, it implies that the 
room reverberations may help 
locating the source, unlike in traditional methods, where rever-
berations usually reduce the localization performance.

In a recent paper [25], we presented a method for locat-
ing a source based on diffusion maps and the Mahalanobis 
distance (4). This method is a specification of a more gen-
eral algorithm for recovering the parameters of convolution 
systems [19]. A similar approach has been applied to single-
channel source separation (see, for example, Roweis [26]). 
The following is a description of the experiment that tests 
the localization on real recordings [25]. Inside a reverber-
ant room, an omnimicrophone was positioned in a fixed 
location. A 2-m long “arm” was connected to the base of 
the microphone and attached to a turntable that controlled 
the horizontal angle of the arm. A speaker was located on 
the far end of the arm. Thus, the turntable controlled the 
azimuth angle of the sound played by the speaker with 
respect to the microphone. Figure 4 depicts the recording 
room setup. 

Several recordings from different angles were performed. 
From each angle, a zero-mean and unit-variance white Gauss-
ian noise was played from the speaker. The movement of the 
arm along the entire range of angles was repeated several times. 
Due to small perturbations of the long arm, we assume that the 
exact location is not maintained. Thus, the different measure-
ments from the same angle are viewed as a “cloud” of samples. 
Those clouds are used for the computation of the Mahalanobis 

distance. The azimuth angle con-
stitutes the sole degree of freedom 
in this experiment, as the rest of 
the room parameters, including 
the location of the microphone, 
are fixed. Thus, the dimension of 
the diffusion maps embedding is 
set to .1  For more details regard-
ing the experimental setup and 

the algorithm, we refer the readers to [25] and references 
therein. 

We note that the setting of the problem is equivalent to the 
example presented in Figures 1 and 2. The measured acoustic 
signals correspond to the different images of the toy. The posi-
tion of the source plays a similar role as the angle of the toy in 
the images. Therefore, diffusion maps may reveal the underly-
ing parameters and thereby characterizing the training mea-
surements according to the position of the source.

In Figure 4, we show a scatter plot of the values of the 
obtained leading eigenvector 1}  as a function of the azimuth 
angle. It is worthwhile noting that the leading eigenvector is 
equivalent to the diffusion maps embedding when the dimen-
sion is set to .1  We observe that the embedding organizes the 
measurements according to the azimuth angle. In addition, the 
relationship between the eigenvector and the angle is close to 
linear. Thus, this geometric approach was able to reveal and 
recover the position of the source using single-channel 
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[Fig4]  (a) The setup of the recording room at Bar-Ilan University. (b) A scatter plot of the obtained embedding of each measurement as 
a function of the position azimuth angle.
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measurements. Based on this embedding, the source position 
may be easily estimated using training “pivot” measurements 
from known locations [25].

Transient Interference Suppression
The enhancement of speech signals is of great interest in many 
applications ranging from speech recognition to hearing aids 
and hands-free mobile communication. Although this problem 
has been studied for several 
decades, many aspects remain 
open and require further research. 
Here, we address the open prob-
lem of transient interference sup-
pression and, in particular, 
suppression of repeating transient 
appearances, e.g., keyboard typing 
and construction operations. 
Transient interference is an example of a signal that does not 
have a good statistical description, however, exhibits a very dis-
tinct geometric structure. Indeed, common speech enhance-
ment algorithms fail to deal with transient interferences since 
their statistical noise estimation components assume (quasi)sta-
tionarity and are not designed to track rapid variations which 
characterize transients [27], [28].

Recently, we devised an algorithm that infers the geometric 
structure of the transient interference based on the fact that a 
distinct pattern appears multiple times [29], [30]. The main 
component of the algorithm is the estimation of the power 
spectral density (PSD) of the transient interference. Diffusion 

maps are utilized to compute a robust metric for comparison 
via the diffusion distance (11), (12). In particular, it enables the 
clustering of different transient interference types. In fact, the 
assumption is that the samples of the noisy speech are coarsely 
distributed similarly to the points in Figure 3, i.e., samples con-
taining the repeated transient events exhibit a distinct struc-
ture. Hence, they appear in two clusters according to the 
presence of transient events, which can be implicitly identified 

by the embedding. The diffusion 
distance is then combined with 
NL filters (10) and enables to 
enhance the repeating pattern of 
the transients by averaging over 
similar instances. On the other 
hand, the speech samples are very 
different from each other. Hence, 
such a NL process yields a 

destructive averaging of speech samples that reduces their 
amplitudes. This estimate of the PSD of the transient interfer-
ence is the missing ingredient in traditional speech enhance-
ment algorithms. Thus, it is added to the estimate of the PSD of 
the stationary noise and processed using the widely used mini-
mum log spectral amplitude filter [28].

Figure 5 depicts the diffusion maps embedding. Although we 
may detect the transients by observing the spectrogram, their 
PSD content does not exhibit any distinct structure that enables 
to separate them according to the transient presence. However, 
we observe a clear clustering in the embedding implying that 
diffusion maps is able to capture the transient presence in few 
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[Fig5]  Transient interference suppression experimental results. (a) Visualization of the diffusion maps embedding in three dimensions. 
Each point corresponds to a single time frame of the PSD of the noisy speech. This figure depicts points corresponding to speech 
contaminated by door knocks. The color of the points represents the frame content: frames containing transients appear in brown and 
frames without transients appear in blue. (b) Speech enhancement evaluation. Parts (c) and (d) show spectrograms of a noisy speech 
signal containing transient interferences (at .75 s, 1.4 s, 1.75 s, 2.9 s, and 3.3 s) and the enhanced speech signal.
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dimensions. Furthermore, it demonstrates that the Euclidean 
distance in this domain, which is equal to the diffusion distance, 
may successfully be used in an NL filter. 

The “geometric information” extracted by diffusion maps 
can also be incorporated for transient interference suppression 
by graph-based filters. Haddad et al. [22] combined the sequen-
tial processing scheme with the graph-based filters and used it 
to extract textures from images and to identify outliers and 
anomalies. We used the same technique to suppress transients 
[21]. In this application, the algorithm infers the transient 
structure in advance from training recordings which include 
typical transient interferences. For example, to suppress key-
board typing, representative training key strokes are divided 
into subsets—organizing strokes with similar sounds in the 
same subset. Then a local PCA model is computed for each 
subset and a new intrinsic metric is defined based on linear pro-
jections on the local models (7). This enables to construct a 
graph based on a kernel using the local metric. It is shown that 
the graph accurately captures the structure of typical transients, 
and its eigenvectors form a learned dictionary. In the test stage, 
the learned dictionary is sequentially extended to new incoming 
noisy samples by building a kernel between the training sam-
ples and the new incoming samples (8), (9). Then the graph-
based filter (13) is employed to extract the transients (by a 
linear projection on the “transient dictionary”) from the noisy 
speech and to provide accurate spectrum estimate. We note that 
the graph filter enables speech enhancement in a sequential 
manner unlike the batch algorithm based on the NL filter. In 
addition, it is more efficient and shown to be more robust to 
handling several transient interference types simultaneously 
[21] (audio samples are available at http://gauss.math.yale.edu/
rt294). In Figure 5, we also demonstrate the performance of the 
two algorithms. As shown, the enhanced speech exhibits signifi-
cant transient interference suppression while imposing very low 
distortion. We note that these algorithms present a solution to 
this problem for the first time.

Summary
To date, the common application of manifold learning 
lies mainly in the areas of machine learning and data 
mining. These methods are usually applied to tasks such as 
recognition, organization, clustering, and classification of 
(high-dimensional) data sets. In this article, we intended to 
show its potential usefulness in signal processing by describ-
ing challenging applications that could not be handled using 
traditional concepts and methods. We began this review by 
introducing the motivation and background of manifold 
learning with a focus on a particular method, namely diffu-
sion maps. Then we surveyed recent developments, which 
included local affinity metrics and filtering schemes. These 
developments play a key role in bringing manifold learning to 
signal processing, in particular, by enabling sequential and 
efficient processing of time series. Finally, we described two 
algorithms for acoustic source localization and speech 
enhancement that integrate manifold learning with 

traditional statistical signal processing. We believe that this is 
just the tip of the iceberg. Recently, we have been witnessing a 
growing effort to incorporate kernel methods into signal pro-
cessing. We are hopeful that this article has contributed 
insightful views to this effort and will stimulate further 
research in this emerging direction.
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