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Facial Image Compression using Patch-Ordering-
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Abstract—Compression of frontal facial images is an appealing
and important application. Recent work has shown that specially
tailored algorithms for this task can lead to performance far
exceeding JPEG2000. This letter proposes a novel such com-
pression algorithm, exploiting our recently developed redundant
tree-based wavelet transform. Originally meant for functions
defined on graphs and cloud of points, this new transform has
been shown to be highly effective as an image adaptive redundant
and multi-scale decomposition. The key concept behind this
method is reordering of the image pixels so as to form a highly
smooth 1D signal that can be sparsified by a regular wavelet. In
this work we bring this image adaptive transform to the realm
of compression of aligned frontal facial images. Given a training
set of such images, the transform is designed to best sparsify the
whole set using a common feature-ordering. Our compression
scheme consists of sparse coding using the transform, followed by
entropy coding of the obtained coefficients. The inverse transform
and a post-processing stage are used to decode the compressed
image. We demonstrate the performance of the proposed scheme
and compare it to other competing algorithms.

Index Terms—Compression, patch-based processing, redundant
wavelet.

I. INTRODUCTION

I N RECENT years, facial images are being extensively used
and stored in large databases by social networks, web ser-

vices, or various organizations such as states, law-enforcement,
schools, universities, and private companies. Facial images are
also expected to be stored in digital passports and ID cards.
Thus, efficient storage of such images is beneficial, and their
compression is an appealing application. The limitation to a spe-
cific and narrow family of images increases their combined spa-
tial redundancy, and this allows algorithms that are specially tai-
lored for the task of facial image compression, to surpass gen-
eral purpose compression algorithms. More specifically, recent
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work [1]–[4] has shown that this kind of algorithms lead to per-
formance far exceeding JPEG2000 [5].
In this letter, we introduce a novel algorithm for compres-

sion of facial images that exploits our recently developed re-
dundant tree-based wavelet transform (RTBWT) [6]. This trans-
form was originally designed to represent scalar functions de-
fined on high-dimensional data clouds and graphs. However,
we have shown in [6], [7] that this transform is applicable to
an image by converting it to a graph-structure, producing an
image adaptive redundant and multi-scale decomposition that
is highly effective for sparsifying its content. In this work, we
bring this signal-adaptive transform to the realm of compression
of aligned frontal facial images.
Given a training set of aligned face images, we construct a

version of the RTBWT designed to sparsely represent these
family of images. We compress an image by applying on it
sparse coding using the RTBWT decomposition, quantizing the
coefficients in the obtained representation, and then applying
entropy coding. We decompress the image by placing the
entropy decoded coefficients in a sparse vector, applying the
RTBWT reconstruction, and applying a post-processing stage
to the result. We demonstrate the performance of the proposed
scheme both qualitatively and visually, and compare it to other
competing algorithms.
The letter is organized as follows: In Section II, we explain

how to calculate the RTBWT which sparsely represents a set
of face images, and how to use it to obtain a sparse representa-
tion for such images. Section III introduces our proposed image
compression scheme, and in Section IVwe present experimental
results that demonstrate its advantages.

II. THE SPARSIFYING TRANSFORM

A. Sparse Representation of Facial Images

Let be a column-stacked version of a face image, which
contains pixels. We assume that the image follows the
sparseland model [8], and therefore we can compress it by ob-
taining an efficient (sparse) representation for it. The sparseland
model suggests that the image can be sparsely represented
using a redundant matrix of size , which we
term a dictionary. More specifically, let denote the number
of nonzero entries in a coefficient vector . Then we expect that
the solution of

subject to (1)

should be sparse, i.e. . This means that the image
can be represented using a small number of columns (termed

atoms) from , with an error measured by the distance
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. Naturally, there exists a tradeoff between the number of
atoms used to represent and the size of the representation
error, i.e., the more atoms we use the smaller the error gets.
Problem (1) is an NP-hard problem, since it requires an exam-

ination of possible non-zero supports for . However,
the matching and the basis pursuit algorithms [9]–[11] can be
used quite effectively to obtain an approximation for the solu-
tion. In fact, these approximation techniques can be quite ac-
curate if the solution is sparse enough to begin with [12]–[16].
In this work we make use of the Orthogonal Matching Pursuit
(OMP) because of its simplicity [10] and efficiency.We next de-
scribe how we obtain the dictionary , which we use for spar-
sifying face images.

B. RTBWT-Based Dictionary for a Set of Images

Let , be a training set, which contains
the column-stacked versions of aligned1 face images, each
containing pixels. We wish to construct a redundant dictio-
nary using the images in this training set, which will enable
to sparsely represent them and similar facial images from a
different test set. We note that while other methods usually train
dictionaries which sparsely represent image patches, here we
wish to find a dictionary that will be used to represent the entire
image. To this end we make use of the redundant tree-based
wavelet transform (RTBWT) [6], [7].
The RTBWT is a data-adaptive transform, providing a sparse

and redundant representation for its input signal. In order to cal-
culate the transform for an image , it requires that each pixel
will be associated with a feature vector , and it is assumed that
under a distance measure (e.g. Euclidean distance),
proximity between two such feature vectors and implies
proximity between their corresponding pixels and . When
working with an image, the featuresmay be chosen to be patches
centered around the pixels of interest [6], [7]. The transform is
constructed by modifying the classical redundant wavelet trans-
form [17], [18]. Fig. 2 describes the decomposition scheme of
the RTBWT. The filters and are the scaling and wavelet de-
composition filters of a regular discrete wavelet transform, and
they are applied using cyclic convolution. The 2:1 decimators
denoted by and keep the odd and even samples of
their input, respectively. The signals and contain subsets
of the samples in the approximation and detail coefficient vec-
tors and in the th scale, respectively, where .
The operators make the difference between our proposed

wavelet decomposition scheme and the common redundant
wavelet transform [17], [18]. Each such operator produces
a permuted version of its input vector . This may be
interpreted as a linear and unitary operator given that vector.
The reordering operators increase the regularity of the ap-
proximation coefficient signals in the different levels of the
decomposition scheme and cause their representation with the
RTBWT to be more sparse. These operators are obtained by
organizing the feature vectors, calculated from the patches,
such that they are chained in the shortest possible path [6], [7],
[19], [20]. Thus, essentially an approximation to the solution
of the traveling salesman problem (TSP) [21] is obtained. For

1Geometrical pre-aligning of the facial images is crucial to any method that
aims for effective compression. Indeed, previous work [1], [2], [3] used this,
and here we assume the availability of an aligned set.

Fig. 1. Facial image encoding and decoding schemes.

Fig. 2. RTBWT decomposition scheme.

example, let denote the patches in their new
order, then is obtained by minimizing the measure

(2)

We note that the RTBWT reconstruction scheme is obtained in a
similar manner by adding the operators into the redun-
dant wavelet transform reconstruction scheme.
We now move to discuss the specifics of facial image com-

pression. We first average the images in the training set and ob-
tain a mean face image. This image contains information shared
by all the images in the training set, and therefore we subtract it
from every training image in order to obtain amore efficient rep-
resentation for it. Next, since we want the transform to sparsely
represent all the images in the training set, we need to asso-
ciate a single feature point with every set of pixels that are
located in the same index in each of the training images. Thus,
we construct a matrix , which contains in its rows the
images , and choose its th column to be the feature vector
associated with the th pixel in all of the training images.

Note that this is different from the common practice mentioned
above of using spatial patches, and in our scheme, the same per-
mutation operators are applied to all train images. We choose
the distance function to be the Euclidean distance. Having de-
fined the feature points and the distance function, we use them to
construct the RTBWT according to the scheme described above,
and in [6], [7].
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We next denote by and the matrices that apply the
RTBWT decomposition and reconstruction, respectively, and
choose our dictionary to be a version of , whose atoms
have been normalized to have a unit norm. We note that because
of its large size, the matrix is not explicitly calculated nor
stored. Instead, in order to multiply vectors by and
within the OMP algorithm, it is required to apply the RTBWT
reconstruction and decomposition schemes, respectively, on
these vectors.

III. FACIAL IMAGE COMPRESSION SCHEME

Our proposed facial image encoding and decoding schemes
are shown in Fig. 1. We assume that we are given training and
test sets containing aligned facial images. We average the im-
ages in the training set and subtract from them the mean image.
We calculate a dictionary from the resulting images as described
in the previous section, and then encode every one of these im-
ages using the following procedure: 1) We apply sparse coding
to the image using the OMP algorithm to obtain a small set of co-
efficient values and their corresponding indices. 2) We replace
the coefficient indices by the differences between the indices
of consecutive coefficients, split the coefficient values into low
and high ranges, and apply uniform quantization to the values in
each range. 3) We calculate two different Huffman tables, one
for the coefficient values and the other for their indices, relying
on the statistics of their occurrences in the sparse representa-
tions of all the images in the training set. All the aforementioned
calculations are done offline, and we assume that the obtained
RTBWT dictionary (along with its defining permutations) and
Huffman tables are known both to the encoder and the decoder,
along with the mean face image, and therefore they do not need
to be transmitted as side information.
Encoding an image from the test set starts with subtracting

from it the mean face image, and applying the same encoding
procedure that was applied above in order to find the significant
representation coefficients. We then perform entropy coding by
applying the corresponding Huffman tables to the resulting sets
of coefficient indices and values, and obtain the compressed
image. We decode such an image by first applying entropy de-
coding, thus obtaining the quantized coefficient values and the
index differences. We recover the coefficient indices from their
differences, and use them and the corresponding quantized coef-
ficient values to construct a sparse representation. The image is
reconstructed by simply applying the RTBWT reconstruction to
this sparse vector, and adding the mean face image to the result.
In order to further improve the quality of the obtained image,

we use a post-processing scheme, which is a variation on the one
proposed in [3]. This scheme consists of applying to the recon-
structed image different filters of size , each centered
around a different pixel. We use the training images to learn
several different sets of filters, each corresponding to a dif-
ferent range of bit-rates. These filters are obtained as follows.
We apply the encoding and decoding schemes to each of the
training images , and arrange the obtained images as the
rows of a matrix . Now, let be a column stacked
version of the filter applied to a reconstructed image in
the location of its th pixel. Also, we denote by and a
vector and a matrix, whose right multiplications with ex-
tract the th pixel and the transposed column-stacked version of

Fig. 3. (a) Mean face image. (b) Two atoms from the RTBWT dictionary.

the surrounding patch, respectively. Then the filter is
obtained by solving the following least squares problem

(3)

This process is repeated for each pixel, and it is part of the off-
line training process.

IV. EXPERIMENTAL RESULTS

We assess the performance of our compression scheme on
a database2 containing 4515 grayscale asian face images with
8 bits per pixel. These images are the same ones used in [2], and
they undergo the same preprocessing stage as in [2]–alignment
according to the scheme proposed in [1] followed by a scale-
down by a factor of 2. We use a random subset of 4415 aligned
images of size as the training set, and the remaining
100 aligned images as the test set.
We start by calculating from the training images a mean face

image, shown in Fig. 3(a). We can see that this image contains
a relatively sharp face, whose facial features are shared by all
the training images. We subtract this image from all the im-
ages in the training set, and construct the RTBWT with the re-
sulting images. We use a 13-level wavelet decomposition with
the Symmlet 8 filter, and obtain a dictionary with redundancy
factor of 14. Figs. 3(b) and (c) contain examples of two atoms
from this dictionary, which correspond to the coefficients with
the second and fourth largest magnitudes, out of the ones used
to represent the middle left-most image in Fig. 5. It can be seen
that the atoms are either images of complete faces, or images
containing details around face edges. We then encode all the
images in the training set and calculate one Huffman table for
128 coefficient values, and another for 1024 index difference
values.
We next use our proposed compression scheme to encode and

decode each image in the test set, and use the results (in PSNR)
obtained with and without post-processing to calculate two rate-
distortion curves. We compare these curves to the ones obtained
by repeating this procedure with the common redundant wavelet
transform (RWT) replacing the RTBWT in our scheme, and to
rate-distortion curves obtained with JPEG20003, the algorithm
described in [2] which is based on the K-SVD, and its improved
version [3] which consists of a post-processing stage. We note

2We chose this database since it contains thousands of images of both men
and women in varying ages, and it was used by previous papers by our group
[2], [3], that provide results which serve as reference to compare against.
3Since we test performance on very low bit rates, for a fair comparison we

removed a fixed header size of 100 bytes from the JPEG2000 curve.
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Fig. 4. Rate distortion curves obtained with JPEG2000, the methods in [2]
(K-SVD) and [3] (K-SVD+PP), and our proposed scheme using the RWT and
the RTBWT with and without post-processing (PP).

Fig. 5. Facial image compression results (PSNR / SSIM) with compressed-
image sizes of 400 bytes (first row), 600 bytes (center row), and 800 bytes
(right row). The original images (first column) are compressed using JPEG2000
(second column), and our scheme without post-processing (third column) and
with it (last column).

that we used the matlab function “imwrite” to compress images
in JPEG2000 format.
First it can be seen that the post-processing stage improves

the performance of our scheme for all bit-rates both when the
RTBWT and the RWT are used. Also, applying our scheme
with the RTBWT improves its results by at least 8 dB compared
to ones obtained with the RWT, both when post-processing is
used and when it is not. Further, even without using post-pro-
cessing our RTBWT-based algorithm outperforms JPEG2000,
for all compressed-image sizes which are lower than 840 bytes.

Our full RTBWT-based algorithm outperforms JPEG2000 for
all bit rates: From a gain of 3 dB for low bit-rates to a gain of
0.6 dB for high bit-rates. Finally, without post-processing our
RTBWT-based algorithm outperforms the algorithm in [2] for
compressed-image sizes higher than 850 bytes, but obtains in-
ferior results for smaller sizes. However, our full algorithm per-
forms similarly to the algorithm in [3] for compressed-image
sizes smaller than 450 bytes, but outperforms it for higher sizes
even by more than 1 dB for compressed-image sizes higher than
1000 bytes.
We next demonstrate the visual quality of the results ob-

tained with our RTBWT-based compression scheme when
low bit-rates are used. Fig. 5 compares both visually and in
terms of PSNR and SSIM [22] the reconstructed images ob-
tained for compressed-image sizes of 400, 600, and 800 bytes
with our scheme, with and without post-processing, and with
JPEG2000 with a header size of 100 bytes removed. It can
be seen that our scheme obtains higher PSNR values than
JPEG2000, and that post-processing further decreases these
errors. In terms of SSIM, our scheme with post-processing
outperforms JPEG2000. Without post-processing our results
contain artifacts that look like paint-brush strokes, causing a
reduced SSIM. These artifacts are greatly reduced using the
post-processing, and the obtained images are of relatively high
quality despite the low bit-rates.

V. CONCLUSION

We have proposed a new face image compression scheme
based on the redundant tree-based wavelet transform (RTBWT).
We learn the transform from a training set containing aligned
face images, and use it as a redundant dictionary when we
encode images by applying sparse coding on them. Im-
proved quality results are obtained by using a filtering-based
post-processing scheme. We have demonstrated competitive
performance compared to other methods, and managed to
obtain results of high visual quality for low bit-rates.
There are several research directions to extend this work that

we are currently considering. A first direction is to learn a set of
indices of leading coefficients, which is shared by all encoded
images. These indices will be known to the decoder, and there-
fore only their corresponding values will be sent by the encoder,
thus achieving better compression. A different direction is to
train different dictionaries for different parts of the image or for
different sub-groups of images in order to obtain dictionaries
which are more adapted to the data. Such dictionaries may lead
to a sparser image representation and improved quality of the
reconstructed images. Finally, the performance of our scheme
may also be improved by replacing the entropy coding tech-
nique it uses from Huffman coding to arithmetic coding. Then
we may compare its results to those of the advanced HEVC
compression scheme [23] which reduces the bit rate by about
20% compared to JPEG2000 [24].
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