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State Smoothing in Markov-Switching
Time-Frequency GARCH Models

Ari Abramson and Israel Cohen, Senior Member, IEEE

Abstract—In this letter, we propose a state smoothing algorithm
for path-dependent Markov-switching generalized autoregres-
sive conditional heteroscedasticity (GARCH) processes. Our
smoothing technique extends the forward–backward recursions of
Chang and Hancock and the stable backward recursion of Lindgren,
Askar and Derin. We derive two recursive steps for the evaluation
of conditional densities of future observations. The first step is
an upward recursion that manipulates the future observations
for the evaluation of their conditional densities, and the second
step is a backward recursion that integrates over the possible
future paths. Experimental results demonstrate the improvement
in performance, compared to using causal estimation.

Index Terms—Forward–backward recursions, generalized au-
toregressive conditional heteroscedasticity (GARCH), stable back-
ward recursion, state smoothing.

I. INTRODUCTION

STATE estimation is of both theoretical and practical impor-
tance whenever the underlying statistical model switches

regimes over time [1], [2]. State smoothing (i.e., noncausal state
estimation) of hidden Markov processes (HMPs) has been orig-
inally introduced by Chang and Hancock [3]. Their solution
for estimating the noncausal state probability, which is imple-
mented using forward–backward recursions, decouples a for-
ward recursion for the evaluation of the joint probability den-
sity of the current state and all observations up to the same
time as well as a backward recursion for obtaining the future
observations’ density given the current state. Lindgren [4] and
Askar and Derin [5] developed an alternative stable backward
recursion for the state smoothing in HMPs. Kim [6] extended
the stable backward recursion to nonmemoryless autoregressive
hidden Markov processes (AR-HMPs), where both the current
state (regime) and a finite set of past values are required for the
conditional density evaluation (see also [2, chap. 22]).

Generalized autoregressive conditional heteroscedasticity
(GARCH) models and also Markov-switching GARCH
(MS-GARCH) models are widely used in the field of econo-
metrics for volatility forecast derivation of economics rates
[7]–[10], and they have recently been utilized for several signal
processing applications. In [11], GARCH modeling has been
applied to spatially nonuniform noise in multichannel signal
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processing. In [12], a regime-switching GARCH model has
been utilized for speech recognition, and a complex-valued
GARCH model has been proposed in [13] and [14] for mod-
eling speech signals in the short-time Fourier transform (STFT)
domain for the application of speech enhancement. Generally,
when incorporating GARCH processes with switching-regimes,
the volatility evaluation requires knowledge of the pertinent
history of the regime-switching GARCH process, including the
regime-path [7], [8]. Properties of path-dependent MS-GARCH
models have been studied by Francq et al. [15]. In order to
estimate the model parameters, they showed that the condi-
tional likelihood depends on all the possible paths, and for a
Markov-switching ARCH model (in which case, there is no
dependency on past active regimes), they showed that the for-
ward–backward recursions can be employed for the conditional
likelihood evaluation. The complex-valued GARCH model has
been shown to be useful in speech enhancement applications
[13], [14]. Motivated by extending the dynamic formulation
of the time-frequency GARCH model and enabling a better
fit for a process with a more complicated time-varying statis-
tical behavior, a Markov-switching time-frequency GARCH
(MSTF-GARCH) model has been introduced [16]. However,
existing smoothing solutions are inapplicable in the case of
a path-dependent MS-GARCH model since both past obser-
vations and the regime path are required for the conditional
variance estimation, whereas existing smoothing techniques
rely on the assumption that given the current state, past active
regimes are statistically independent of future densities.

In this letter, we develop a state smoothing approach for
MSTF-GARCH processes. The dependency of the conditional
variance on past observations and past active regimes are taken
into consideration as we generalize both the forward–backward
recursions of Chang and Hancock [3] and the stable backward
recursion of Lindgren [4] and Askar and Derin [5]. We derive
two recursive steps for the evaluation of conditional densities
of future observations. The first step is an upward recursion
that manipulates the future observations for the evaluation of
their conditional densities, corresponding to all possible future
paths. The second step is a backward recursion that integrates
over these paths to evaluate the future densities required for
the noncausal state probability. The computational complexity
of the generalized recursions grows exponentially with the
number of future observations employed for the fixed-lag
smoothing. However, experimental results demonstrate that the
significant part of the improvement in performance, compared
to using causal estimation, is achieved by considering a few
future observations.

The organization of this letter is as follows: In Section II,
we introduce the MSTF-GARCH model and formulate the
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state smoothing problem. In Section III, we develop gener-
alized forward–backward recursions as well as generalized
stable backward recursions and derive our noncausal state
probability approach. Finally, in Section IV, we provide ex-
perimental results that demonstrate state smoothing for noisy
MSTF-GARCH processes.

II. PROBLEM FORMULATION

Let be a -dimensional random vector at a dis-
crete time , and let , be its th el-
ement. Let represent the data set

from time up to , and let . Let denote the (un-
observed) state at time , and let be a realization of , as-
suming is a first-order Markov chain with transition proba-
bilities . Let

denote all available information up to time , where
. We assume that are generated by an -state

MSTF-GARCH process of order (1,1), which follows [16]:

(1)

where are iid complex-valued random variables with
zero-mean, unit variance, and some known probability den-
sity. Given the state , the conditional variance of ,

, is a linear function of the
previous conditional variance and squared absolute value

(2)
where , , and , are sufficient
constrains for the positivity of the conditional variance.

Let denote the observed noisy signal,
where denotes the noise process that is uncorrelated with
the signal , and let be a zero-mean complex-valued
Gaussian random process with a diagonal covariance matrix

diag , where denotes the Hermitian
transpose operation. The state conditional probability of a
Markov-switching model, , is of considerable theo-
retical and practical importance for signal restoration and state
sequence estimation (e.g., [1] and [16]).

Solutions of the state smoothing problem, i.e., , are nor-
mally obtained for HMPs using the forward–backward recur-
sions [3] or the stable backward recursion [4], [5]. Extensions
of these recursions for nonmemoryless AR-HMPs [2, Chap.
22], [6] are based on the quality that and a finite set of past
clean observations give complete statistical knowledge of future
densities. However, in case of a path-dependent MS-GARCH
model, a recursive formulation specifies the conditional distri-
bution of the process as dependent on both past observations and
the regime path, and therefore, existing smoothing solutions are
inapplicable.

III. STATE PROBABILITY SMOOTHING

In this section, we develop the noncausal state probability for
the model defined in (1) and (2). The smoothed probability is

derived by generalizing both the forward–backward recursions
[3] and the stable backward recursion [4], [5].

A. Generalized Forward–Backward Recursions

Assume that the conditional variance of the process is recur-
sively estimated for any given state (e.g., as proposed in [16]),
and assume that the set of the recursively estimated conditional
variances at time , , with
the observed signal , are sufficient statistics for the next
conditional variance estimation for any given regime [14], [16].
Let ,
denote the vector of estimated conditional variances at time

based on the observations up to time and on the given
set of active regimes , where denotes a term-by-term
multiplication, and denotes complex conjugation. Let

,
where the function is determined based on the statis-
tical model of [14]. Define the generalized forward
density by and the general-

ized backward density by
. Then, by substituting ,

we have , and the
noncausal state probability can be obtained by

(3)

Proposition 1: The generalized forward density of an MSTF-
GARCH (1,1) process, , satisfies the following recur-
sion:

(4)
with the initial condition .

Proof: The generalized forward density is obtained
by Given the active
regime, the state-dependent conditional variance is suf-
ficient for the conditional density. Furthermore, and

represent the same statistical information.

Hence, ,

where ,
which yields the recursive formulation for the generalized
forward density.1

Proposition 2: The generalized backward density of an
MSTF-GARCH (1,1) process, , satisfies the
following two-step recursion.
Step 1) For and all

(5)

1The initial conditions for the generalized forward recursion have negligible
effect on the conditional densities, assuming an asymptotic stationary process
that is sufficiently long. Therefore, the initial conditional variance f(Y js )
can be estimated by using the state-dependent stationary density of the process.
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(6)

Step 2) For and all

(7)

(8)

with as the initial con-
dition for the second step, and where denotes a
vector of ones.

Proof: The generalized backward density can be obtained
by

(9)
where the multivariate density in
(13) can be obtained by

(10)

From (9) and (10), we recursively obtain for any

(11)

and

(12)

The conditional density in
(16) is the density of the observed data at time conditioned
on the regime path , the recursively estimated conditional
variance at time given , and also on all observations from
time up to time . This density has a diagonal covariance
matrix with the following conditional variance on its diagonal:

(13)

Fig. 1. State smoothing error rate for three-state MSTF-GARCH models with
SNRs of 5 dB (triangle), 10 dB (asterisk), and 15 dB (circle).

The expected absolute squared value of the signal at a spe-
cific time given the active regime is independent of any future
regimes; hence

(14)

Combining (14) with (13), we obtain Step 1) of the generalized
backward recursion [see (5) and (6)], and from (11) and (12),
we obtain Step 2) [see (7) and (8)].

B. Generalized Stable Backward Recursion

The stable backward recursion is derived by using the
smoothed probability of two sequential states, which is given
by [5]

(15)

Under the assumption that are sufficient statistics for
the next state-dependent conditional variance estimation, we ob-
tain

(16)

and

(17)
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By substituting (16) and (17) into (15) and integrating out all
states at time , we obtain the following backward recursion
for the smoothed state probability:

(18)

where the conditional density can
be derived from the generalized backward recursion (5)–(8).
However, the conditional density in
the denominator of (18) requires calculation of a similar recur-
sion that is not informed of the regime .

Although the stable backward recursion is known to be nu-
merically more stable than the forward–backward recursions,
the instability of the latter is insignificant for short delays and
the former requires computation of the generalized backward re-
cursion twice, one for evaluating
and one for .

IV. EXPERIMENTAL RESULTS

The generalized state smoothing has been applied to state
detection in noisy MSTF-GARCH (1,1) processes with three
states and 5–15 dB signal-to-noise ratios (SNRs). Twenty
random stationary models have been simulated with an uncon-
ditional Gaussian model and uniformly distributed parameters
on the intervals (0,1/3], (1/3,2/3], and (2/3,1] for each state,
respectively. For each model, 20 signals are considered, each of
dimension and time length . The conditional
variances are estimated using the recursive approach
of [16]. Fig. 1 shows the detection error rate for
casual estimation as well as for noncausal estimation with up
to samples delay. It can be seen that the state detection
monotonically improves with the increase of the delay. How-
ever, the most significant improvement is achieved by using up
to two future samples, and the contribution of additional future
observations decays along time.

V. CONCLUSION

We have derived state smoothing for the MSTF-GARCH
process, in which case the conditional variances depend on
both past observations and the regime path. Our noncausal
state probability solution generalizes both the standard for-
ward–backward recursions and the stable backward recursion
of HMP by capturing both the signal correlation along time
and its conditioning on the regime path. Accordingly, the

backward recursion requires two recursive steps for evalu-
ating the conditional density of the given future observations
corresponding to all optional future paths. Although the com-
putational complexity of the generalized backward recursion
grows exponentially with the delay, a small number of future
observations contribute with the most significant improvement
to the state estimation. Combining the generalized recursions
with the recursive signal restoration algorithm of [16] facilitates
a noncausal signal restoration, which is a subject for further
research.
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