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Redundant Wavelets on Graphs and
High Dimensional Data Clouds
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Abstract—In this paper, we propose a new redundant wavelet
transform applicable to scalar functions defined on high dimen-
sional coordinates, weighted graphs and networks. The proposed
transform utilizes the distances between the given data points to
construct tree-like structures. We modify the filter-bank decom-
position scheme of the redundant wavelet transform by adding in
each decomposition level operators that reorder the approximation
coefficients. These reordering operators are derived by organizing
the tree-node features so as to shorten the path that passes through
these points. We explore the use of the proposed transform for the
recovery of labels defined on point clouds and to image denoising,
and show that in both cases the results are promising.

Index Terms—High-dimensional signal processing, image de-
noising, label recovery, redundancy, tree, wavelet.

I. INTRODUCTION

S IGNAL processing problems may involve inference of an
unknown scalar target function defined on nonuniformly

sampled high-dimensional grid, a graph or a network. A major
challenge in processing functions on topologically complicated
coordinates, is to find efficient methods to represent and learn
them. Let be the data set such that
are points in high-dimension, or feature points associated with
the nodes of a weighted graph or network. Also, let
be a scalar function defined on the above coordinates, and let

, where . A key assumption in
this work is that under a distance measure in , prox-
imity between the two coordinates and implies proximity
between their corresponding values and . The goal in this
work is to develop a redundant wavelet transform that can ef-
ficiently represent the high-dimensional function . Efficiency
here implies sparsity, i.e., representing accurately with as few
as possible wavelet coefficients.
In our previous work [1], we have introduced the general-

ized tree-based wavelet transform (GTBWT), which is a crit-
ically sampled (in fact, unitary) wavelet transform applicable
to functions defined on irregularly sampled grid of coordinates.
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We have shown that this transform requires less coefficients than
both the 1-D and 2-D separable wavelet transforms to represent
an image, and is useful for image denoising. The main limita-
tion of the GTBWT is sensitivity to translation. Indeed, in order
to obtain a smooth denoising result in [1], we utilized a redun-
dant representation obtained by applying several random vari-
ants of the GTBWT to the noisy image. This approach is effec-
tively similar to applying a redundant transform to the image in
a rather cumbersome and computationally intensive manner.
In this paper, we introduce a redundant tree-based wavelet

transform (RTBWT), which extends the redundant wavelet
transform [2]–[4] to scalar functions defined on high-dimen-
sional data clouds, graphs and networks. This transform is
obtained by modifying an implementation of the redundant
wavelet transform, which was proposed by Shensa [3] and
Beylkin [4], similarly to the way we modified the decom-
position scheme of the orthonormal transform in [1]. This
implementation employs a filter-bank decomposition scheme,
similarly to the orthonormal discrete wavelet transform. How-
ever, in each level of this scheme none of the coefficients
are discarded. We add in each decomposition level operators
that reorder the approximation coefficients. These operators
are data-dependent, and are obtained using tree-like structures
constructed from the data points. Each reordering operator is de-
rived by organizing the tree-node features in the corresponding
level of the tree so as to shorten the path that passes through
these points. The reordering operators increase the regularity of
the permuted approximation coefficients signals, which cause
their representation with the proposed wavelet transform to be
more efficient (sparse). We note that our proposed transform
shares some similarities with the easy path wavelet transform
proposed in [5], which also employs permutations in order to
enhance its sparsity. However, while we develop a redundant
transform for functions on point clouds or high-dimensional
graph-data, [5] concentrates on an orthonormal transform for
images.
We explore the use of the proposed transform for the recovery

of labels defined on point clouds, and show that it outperforms
the 1-nearest neighbor (1-nn) classifier. We also explore the use
of the transform to image denoising, and show that it outper-
forms the K-SVD based algorithm of Elad and Aharon [6], and
achieves denoising results that are similar to those obtained with
the BM3D algorithm [7]. We also show that the RTBWT and
GTBWT achieve similar denoising results, while the former is
computationally less-demanding.
The paper is organized as follows: In Section II, we intro-

duce the proposed redundant tree-based wavelet transform. In
Section III, we explore the use of this transform to the recovery
of labels defined on point clouds, and in Section IV we explore
the use of the transform to image denoising. We present experi-
mental results that demonstrate the advantages of the proposed

1070-9908/$31.00 © 2012 IEEE



292 IEEE SIGNAL PROCESSING LETTERS, VOL. 19, NO. 5, MAY 2012

Fig. 1. Proposed redundant wavelet decomposition scheme.

transform in both these sections. We summarize the paper in
Section V.

II. REDUNDANT TREE-BASED WAVELET TRANSFORM

A. Decomposition and Reconstruction Schemes

We wish to develop a redundant wavelet transform that ef-
ficiently (sparsely) represents its input signal , defined on an
irregularly sampled grid of coordinates. To this end, we extend
the redundant wavelet transform, similarly to the way we ex-
tended the orthonormal transform in [1]. We note that we con-
struct our proposed transform by modifying an implementation
of the redundant wavelet transform as proposed by Shensa [3]
and Beylkin [4], and not the well known algorithme trous
[2]. This implementation employs a filter-bank decomposition
scheme, similarly to the orthonormal discrete wavelet trans-
form. However, in each level of this scheme all the coefficients
are retained since the highpass bands do not contain decimators,
and the decimation in the lowpass bands is replaced by a split
into even and odd sequences, which are further decomposed in
the next decomposition level.
Fig. 1 describes the decomposition scheme of our proposed

redundant wavelet transform. We denote the coarsest decompo-
sition level and the finest level .
and denote the approximation and detail coefficients in

level , respectively. We start with the finest decomposition
level, and apply to the operator , which produces
a permuted version of its input vector. denotes an op-
erator that operates in the th band, out of bands, in the th
decomposition level. It produces a permuted version of its input
vector, and operates as a linear and unitary operator given that
vector. The operators make the difference between our pro-
posed wavelet decomposition scheme and the common redun-
dant wavelet transform [3], [4]. As we explain later, these op-
erators “smooth” the approximation coefficients in the different
levels of the decomposition scheme. Next, we apply the wavelet
decomposition filters and on , and obtain the vectors

and , respectively. Let and denote
decimators that keep the odd and even samples of their input,
respectively. Then we employ these decimators to obtain the
signals and . These two vectors are used as in-
puts for the next decomposition level.
We continue in a similar manner in the following decom-

position levels. Let denote an approximation coefficients
vector, which is found in the th band (out of bands), in the th
decomposition level. This vector is obtained by starting from
the th sample in , and keeping every th sample. Then in
the th decomposition level we decompose each of the vectors

Fig. 2. Proposed redundant wavelet reconstruction scheme.

. We first apply on each vector the oper-

ator and obtain a permuted version . We then

filter with and and obtain the vectors and

, respectively. Finally, we employ the decimators

and to split each of the vectors into even

and odd sequences, respectively, and obtain the set of vectors

.

In a similar manner, Fig. 2 describes the reconstruction
scheme of our redundant wavelet transform. and

, where and denote the wavelet reconstruction
filters, and the interpolators denoted by and place
the samples of their input vector in the odd and even locations
of their output vector, respectively. Finally, the operator
reorders a vector so as to cancel the ordering done by , i.e.,

. We next describe how the operators are
determined in each level of the transform.

B. Building the Operators

We wish to design the operators in a manner which re-
sults in an efficient (sparse) representation of the input signal by
the proposed transform. The wavelet transform is known to pro-
duce a small number of large coefficients when it is applied to
piecewise regular signals [2]. Thus, we would like the operator

, applied to , to produce a signal which is as regular as
possible. We start with the finest level, and try to find the permu-
tation that the operator applies to . When the signal
is known, the optimal solution would be to apply a simple sort
operation. However, since we are interested in the case where
is not necessarily known (such as in the case where is noisy, or
has missing values), we would try to find a suboptimal ordering
operation, using the feature coordinates .
We recall our assumption that the distance predicts

the proximity between the samples and . Thus, we try to
reorder the points so that they form a smooth path, hoping that
the corresponding reordered 1D signal will also be smooth.
The “smoothness” of the reordered signal can be measured
using its total variation measure

(1)

Let denote the points in their new order. Then
by analogy, we measure the “smoothness” of the path through
the points by the measure
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Fig. 3. Illustration of a “generalized” tree.

(2)

Minimizing comes down to finding the shortest path
that passes through the set of points , visiting each point
only once. This can be regarded as an instance of the traveling
salesman problem [8], which can become very computationally
exhaustive for large sets of points. We choose a simple approxi-
mate solution, which is to start from an arbitrary point, and con-
tinue from each point to its nearest neighbor, not visiting any
point twice. The permutation applied by the operator is
defined as the order in the found path.
In order to employ the aforementioned method to find the op-

erators and in the th decomposition level,
we again require feature points in order to predict the proximity
between the samples of . Since and are ob-
tained from through filtering and subsampling, each approx-
imation coefficient is in fact calculated as a weighted
mean of coefficients from , where the coefficients in serve
as the weights. Thus, we calculate the feature point , which
corresponds to , by replacing each coefficient in
this weighted mean by its corresponding feature point . We
then employ the approximate shortest path search method de-
scribed above to obtain the operators and using
the feature points that correspond to the coefficients in
and , respectively.
We continue in a similar manner in the following decompo-

sition levels. In level we first obtain the feature points as
weighted means of feature points from the finer level .
Then we use these feature points to obtain the operators ,
running the approximate shortest path searches. Similarly to the
GTBWT decomposition scheme [1], the relation between the
feature points in a full decomposition can be described using
tree-like structures. Each such “generalized” tree contains all
the feature points which have participated in the calculation of
a single feature point from the coarsest decomposition level.
Also, each feature point in the tree level is connected to all
the points in level that were averaged in its construction.
Fig. 3 shows an example of a “generalized” tree, which may
be obtained for a data set of length , using a filter of
length 4 and disregarding boundary issues in the different levels.
As the construction of these tree-like structures play an integral
part in our proposed transform, we term it redundant tree-based
wavelet transform (RTBWT).
We note that the computational complexities of both the

RTBWT and the GTBWT are dominated by the number of
distances that need to be calculated in their wavelet decomposi-
tion schemes. In [1], we employed the orthonormal transforms
corresponding to several randomly constructed trees in order

to apply a redundant transform. A full RTBWT decomposition,
corresponding to redundancy factor of , requires the calcula-
tion of distances. The method
employed in [1] requires dis-
tance calculations in order to obtain a transform with a similar
redundancy factor. Therefore for large it requires about

times more distance calculations than the RTBWT. We
next demonstrate the application of our proposed transform to
missing label recovery and image denoising.

III. LABEL RECOVERY USING RTBWT

We next demonstrate the advantages of the RTBWT as a tool
for representation and processing of functions on point clouds.
We conduct several experiments on the white wine quality data
set, described in [9]. The data set contains 4898 data points in

which describe physicochemical tests obtained for white
variants of the Portuguese “Vinho Verde” wine. The target func-
tion is the wine quality, determined by experts, on a scale of
0 to 10. We first randomly select 2048 data points to be the
points , and construct the vector which contains the cor-
responding quality labels. We then calculate the RTBWT which
corresponds to this data set, where we use the squared Euclidean
distance to measure the dissimilarity between the feature points.
Next, we carry out nine experiments in which we randomly se-
lect between 10 to 90 percent of the quality labels, discard them,
and employ the dictionary which corresponds to the RTBWT in
order to recover them.
The signal is recovered by finding the nonzero labels a

sparse representation in the RTBWT dictionary, using the or-
thogonal matching pursuit (OMP) algorithm [10]. We compare
our results to the ones obtained with the 1-nearest neighbor
(1-nn) classifier. Fig. 4(a) depicts the mean absolute error
(MAE) of the signal recovered by the OMP as a function of the
iteration number, and the 1-nn classification error, in the case
that 50 percents of the labels are missing. It can be seen that
the RTBWT requires only nine dictionary elements to represent
the best recovered signal which achieves lower error than the
1-nn classifier. Fig. 4(b) compares the MAE obtained with the
two methods for different percents of missing labels. It can be
seen that the RTBWT outperforms the 1-nn classifier in all the
experiments but one.

IV. IMAGE DENOISING USING RTBWT

Let be an image containing pixels, and let be its noisy
version:

(3)

denotes an additive white Gaussian noise independent of
with zero mean and variance . Our goal is to reconstruct
from using the RTBWT. We choose the points to be

patches, extracted from a padded version of , and the
values to be their middle pixels. The size of ranges from 7
to 15.We use the squared Euclidean distance to measure the dis-
similarity between the feature points in each level. We perform
image denoising using the scheme proposed in [1], which em-
ploys subimage averaging, with the following differences. First,
instead of using ten random variants of the GTBWT we em-
ploy a single nine-level RTBWT decomposition, which corre-
sponds to a redundancy factor of 10. We also restrict the nearest
neighbor searches performed for each patch to a surrounding
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Fig. 4. Label recovery results: (a) RTBWT OMP error vs. iteration number compared to 1-nn error (50% of the labels are missing). (b) RTBWT and 1-nn errors
obtained for different percents of missing labels.

Fig. 5. Denoising results for the image Barbara : (a) Noisy Barbara
(20.18 dB). (b) Barbara denoised using RTBWT (30.76 dB).

TABLE I
DENOISING RESULTS FOR THE IMAGES BARBARA AND LENA OBTAINED
WITH THE K-SVD (TOP LEFT), BM3D (TOP RIGHT), GTBWT (BOTTOM
LEFT) AND RTBWT (BOTTOM RIGHT) ALGORITHMS. FOR EACH IMAGE

AND NOISE LEVEL THE BEST RESULT IS HIGHLIGHTED

square neighborhood which contains patches. Our exper-
iments showed that this restriction both decreases the computa-
tional complexity of the transform and leads to improved de-
noising results. Finally, as the subimage averaging scheme de-
scribed in [1] can be seen as a transform over that image patches,
thresholding is performed by zeroing transform patches whose
norm is smaller than a threshold .
In order to assess the performance of the proposed image de-

noising scheme we apply it with the Symmlet 8 wavelet filter
to noisy versions of the images Lena and Barbara, with noise
standard deviations . The noisy and recovered Bar-
bara images corresponding to can be seen in Fig. 5.
For comparison, we also apply to the two images the K-SVD
algorithm [6], the BM3D algorithm [7], and the GTBWT de-
noising scheme described in [1], with the search neighborhood
and thresholding method described above. The PSNR of the re-
sults obtained with all the four denoising schemes are shown in
Table I. It can be seen that the results obtained with the RTBWT
and the GTBWT are almost identical, better than the ones ob-
tained with the K-SVD algorithm, and close to the ones obtained
with the BM3D algorithm. However, the RTBWTwas about six
times faster than the GTBWT since it required much less dis-
tance calculations.

V. CONCLUSION

We have proposed a new redundant wavelet transform ap-
plicable to scalar functions defined on graphs and high dimen-
sional data clouds. This transform is the redundant version of
the GTBWT introduced in [1]. We have shown that our pro-
posed transform can be used for the recovery of labels defined
on point clouds. We have also shown that the transform can be
used for image denoising, where it achieves denoising results
that are close to the state-of-the-art. In our future work plans,
we intend to seek ways to improve the method that reorders the
approximation coefficients in each level of the tree, replacing
the proposed approximate shortest path search method. We also
intend to apply the proposed transform to different image pro-
cessing problems, and find new applications, which involve pro-
cessing functions on graphs and point clouds.
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