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Abstract

A priori signal-to-noise ratio (SNR) estimation is of major consequence in speech enhancement applications.

Recently, we introduced a noncausal recursive estimator for the a priori SNR based on a Gaussian speech model,

and showed its advantage compared to using the decision-directed estimator. In particular, noncausal estimation facil-

itates a distinction between speech onsets and noise irregularities. In this paper, we extend our noncausal estimation

approach to Gamma and Laplacian speech models. We show that the performance of noncausal estimation, when

applied to the problem of speech enhancement, is better under a Laplacian model than under Gaussian or Gamma

models. Furthermore, the choice of the specific speech model has a smaller effect on the enhanced speech signal when

using the noncausal a priori SNR estimator than when using the decision-directed method.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Optimal estimators for speech enhancement in

the short-time Fourier transform (STFT) domain

are often based on a Gaussian statistical model
(Ephraim and Malah, 1984; Accardi and Cox,

1999; Sohn et al., 1999; Cohen and Berdugo,

2001; Lotter et al., 2003). Accordingly, the indivi-
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dual short-term spectral components of the speech

and noise signals are modeled as statistically inde-

pendent Gaussian random variables. Using this

model, Ephraim and Malah derived a short-term

spectral amplitude (STSA) estimator, which mini-
mizes the mean-square error of the spectral magni-

tude (Ephraim and Malah, 1984), and a log-spectral

amplitude (LSA) estimator, which minimizes the

mean-square error of the log-spectra. Wolfe and

Godsill (2003) derived under the same modeling

assumptions three alternative suppression rules,

which are based on joint maximum a posteriori
ed.
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(MAP) spectral amplitude and phase estimation,

MAP spectral amplitude estimation, and minimum

mean-square error (MMSE) spectral power estima-

tion. The resulting suppression rules are simpler

than those of Ephraim and Malah, yet demonstrate
similar effect in reducing residual musical noise

phenomena. Lotter et al. (2003) considered a multi-

channel Gaussian statistical model, where speech

spectral amplitudes in different microphones are

identical up to a constant channel-dependent fac-

tor, while noise components in different micro-

phones are statistically independent Gaussian

random variables. They assumed statistical inde-
pendence across time and frequency in the STFT

domain, and generalized the STSA estimator of

Ephraim and Malah and the MAP amplitude esti-

mator of Wolfe and Godsill to the multichannel

case. Both multichannel estimators provide a signif-

icant gain compared to the STSA estimator, when

the speech components in different microphones

are in phase (nonreverberant environment) and
the noise components are sufficiently uncorrelated.

The Gaussian model is motivated by the central

limit theorem, as each Fourier expansion coeffi-

cient is a weighted sum of random variables result-

ing from the random sequence (Ephraim and

Malah, 1984). When the span of correlation within

the signal is sufficiently short compared to the size

of the frames, the probability distribution function
of the spectral coefficients asymptotically ap-

proaches Gaussian as the frame�s size increases.

The Gaussian approximation is in the central

region of the Gaussian curve near the mean. How-

ever, the approximation can be very inaccurate in

the tail regions away from the mean (Davenport,

1970). Porter and Boll (1984) pointed out that a

priori speech spectra do not have a Gaussian dis-
tribution, but Gamma-like distribution. They pro-

posed to compute the optimal estimator directly

from the speech data, rather than from a paramet-

ric model of the speech statistics. Martin (2002)

considered a Gamma speech model, in which the

real and imaginary parts of the clean speech spec-

tral components are modeled as independent and

identically distributed (IID) Gamma random vari-
ables. He assumed that distinct spectral compo-

nents are statistically independent, and derived

MMSE estimators for the complex speech spectral
coefficients under Gaussian and Laplacian noise

modeling. He showed that under Gaussian noise

modeling, the Gamma speech model yields higher

improvement in the segmental signal-to-noise ratio

(SNR) than the Gaussian speech model. Under
Laplacian noise modeling, the Gamma speech

model results in lower residual musical noise

than the Gaussian speech model. Breithaupt and

Martin (2003) derived, under the same statistical

modeling, MMSE estimators for the magnitude-

squared spectral coefficients, and compared their

performance to that obtained by using a Gaussian

speech model. They showed that improvement in
the segmental SNR comes at the expense of addi-

tional residual musical noise. Lotter and Vary

(2003) derived a MAP estimator for the speech

spectral amplitude, based on a Gaussian noise

model and a super-Gaussian speech model. They

proposed a parametric probability density func-

tion (pdf) for the speech spectral amplitude,

which approximates, with a proper choice of the
parameters, the Gamma and Laplacian densities.

Compared with the STSA estimator of Ephraim–

Malah, the MAP estimator with Laplacian speech

modeling demonstrates improved noise reduction.

Martin and Breithaupt (2003) showed that model-

ing the real and imaginary parts of the clean

speech spectral components as Laplacian random

variables, the MMSE estimators for the complex
speech spectral coefficients have similar properties

to those estimators derived under Gamma model-

ing, but are easier to compute and implement.

In all the above developments the a priori SNR,

which is the dominant parameter of the spectral

estimators (e.g., Wolfe and Godsill, 2003; Cappé,

1994; Scalart and Vieira-Filho, 1996), is obtained

by the decision-directed approach of Ephraim
and Malah (1984). Recently, we introduced causal

and noncausal recursive estimators for the a priori

SNR, which take into account the time-frequency

correlation of speech signals (Cohen, 2004a,b, in

press). We showed their close relation to the deci-

sion-directed estimator of Ephraim and Malah.

The causal estimator degenerates, as a special case,

to a. ‘‘decision-directed’’ estimator with a time-

varying frequency-dependent weighting factor. The

noncausal estimator employs a few future spectral

measurements (fixed lag) to better predict the
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spectral variances of the clean speech. In some

applications, e.g., digital voice recording, surveil-

lance, and speaker identification, a delay of a few

short-term frames between the enhanced speech

and the noisy observation is tolerable. In such
cases, the noncausal a priori SNR estimator yields

a higher improvement in the segmental SNR,

lower log-spectral distortion (LSD), and better

Perceptual Evaluation of Speech Quality scores

(PESQ, ITU-T P.862), than the decision-directed

estimator (Cohen, 2004a).

In this paper, we extend our noncausal estima-

tion approach to Gamma and Laplacian speech
models, while the noise model remains Gaussian.

Spectral components in the STFT domain are as-

sumed statistically correlated along the frequency

axis, as well as along time-trajectories, due to the

finite length of the analysis frame in the STFT

and the overlap between successive frames (Cohen,

in press). Hence, the noncausal estimation is con-

ditional on the information extracted from mea-
surements in neighboring time-frequency bins.

We show that the a priori SNR is a more domi-

nant parameter than the a posteriori SNR, as is

the case with the Ephraim–Malah gain functions

(Ephraim and Malah, 1984, 1985), which were de-

rived under a Gaussian speech model. However,

the MMSE gain functions for Gamma and Lapla-

cian speech models are monotonically increasing
as a function of the a posteriori SNR, whereas

the Ephraim–Malah spectral gains are monotoni-

cally decreasing functions of the a posteriori

SNR. The latter behavior is generally preferable,

since it introduces a mechanism that counters the

musical noise phenomenon (Cappé, 1994). There-

fore, when the a priori SNR is estimated by the

decision-directed method, the MMSE gain func-
tions often produce higher levels of residual musi-

cal noise than the Ephraim–Malah gain functions.

By contrast, noncausal a priori SNR estimators

for the Gamma and Laplacian speech models, hav-

ing a few subsequent spectral measurements at

hand, facilitate a distinction between speech onsets

and noise irregularities. Local bursts of noise are

assigned a lower a priori SNR, while speech onsets
are assigned a higher a priori SNR. Thus, speech

onsets are better preserved, while the musical noise

effect is reduced. Experimental results confirm that
the noncausal estimators consistently yield a

higher segmental SNR and a lower LSD, than

the decision-directed method, under all tested envi-

ronmental conditions and speech models. The per-

formance, in terms of segmental SNR and LSD, is
greatest when using a Laplacian speech model and

noncausal a priori SNR estimator. The perfor-

mance is worst when using a Gaussian speech

model and a decision-directed a priori SNR esti-

mator. The Gamma speech model yields a higher

segmental SNR and a lower LSD than the other

speech models, only when the a priori SNR is esti-

mated by the decision-directed method. However,
when the a priori SNR is estimated by the pro-

posed method, the Laplacian speech model yields

a higher segmental SNR and a lower LSD than

the other speech models. Furthermore, the differ-

ences between the Gaussian, Gamma and Lapla-

cian speech models are smaller when using the

noncausal estimators than when using the deci-

sion-directed method. Informal listening tests
indicate that the level of residual musical noise is

minimal when using a Gaussian speech model

and the corresponding noncausal estimator. The

residual musical noise is maximal when using a

Gamma speech model and the decision-directed

method.

The paper is organized as follows. In Section 2,

we review MMSE estimators for clean speech spec-
tral components, based on Gaussian, Gamma and

Laplacian speech models. In Section 3, we introduce

noncausal a priori SNR estimators for Gamma and

Laplacian speech models. In Section 4, we evaluate

the performance of noncausal estimation under

various speech models, and show experimental

results, which demonstrate its advantage compared

to using the decision-directed approach.
2. MMSE signal estimation

In this section, we review MMSE estimators in

the STFT domain under Gaussian, Gamma and

Laplacian speech models. Let x and d denote

speech and uncorrelated additive noise signals,
and let y ¼ xþ d represent the observed signal.

Applying the STFT to the observed signal, we

have in the time-frequency domain
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Y ðk; ‘Þ ¼ X ðk; ‘Þ þ Dðk; ‘Þ; ð1Þ
where k is the frequency-bin index (k ¼ 0; 1; . . . ;
k � 1) and ‘ is the time frame index (‘ ¼ 0; 1; . . .).
We assume that X ðk; ‘Þ and Dðk; ‘Þ are zero-

mean random variables, and denote by

kX ðk; ‘Þ,EfjX ðk; ‘Þj2g and kDðk; ‘Þ,EfjDðk; ‘Þj2g
the speech and noise spectral variances, respec-

tively. Then, the noise spectral components

fDðk; ‘Þg are often assumed statistically indepen-

dent zero-mean complex Gaussian random vari-
ables, given their variances kDðk; ‘Þ. However, the

conditional pdf X ðk; ‘Þ of given the spectral vari-

ance kX ðk; ‘Þ is assumed either Gaussian (Ephraim

and Malah, 1984, 1985), Gamma (Martin, 2002)

or Laplacian (Breithaupt and Martin, 2003; Mar-

tin and Breithaupt, 2003). Let XR and XI denote,

respectively, the real and imaginary parts of a

clean speech spectral component X. Let pðX qjkX Þ
denote the conditional pdf of Xp (q 2 fR; Ig) given

the spectral variance kX . Then, for a Gaussian

speech model

pðX qjkX Þ ¼
1ffiffiffiffiffiffiffiffi
pkx

p exp �
X 2

q

kX

 !
ð2Þ

for a Gamma speech model

pðX qjkX Þ ¼
1

2
ffiffiffi
p

p 3

2kX

� �1
4

jX qj
�1
2

� exp �

ffiffiffiffiffiffiffiffi
3

2kX

s
jX qj

 !
; ð3Þ

and for a Laplacian speech model

pðX qjkX Þ ¼
1ffiffiffi
k

p
X

exp � 2jX qjffiffiffi
k

p
X

� �
. ð4Þ

An MMSE estimator bX for X is obtained bybX ¼ EfX jY ; kXg ¼ bX R þ jbX I; ð5Þ

where bX q (q 2 fR; Ig) is an MMSE estimator for

X q given by

bX q ¼ EfX qjY q; kXg ¼
Z

X qpðX qjY q; kX ÞdX q. ð6Þ

The expression for bX q can be written asbX q ¼ Gðn; cqÞY q; ð7Þ
where

nðk; ‘Þ, kX ðk; ‘Þ
kDðk; ‘Þ

; cq ,
Y 2

qðk; ‘Þ
kDðk; ‘Þ

; ð8Þ

represent the a priori and a posteriori SNRs,

respectively. The specific expression for the spec-

tral gain function Gðn; cqÞ depends on the particu-

lar choice of a speech model. For a Gaussian

speech model, the gain function is independent of

the a posteriori SNR. It is often referred to as
Wiener filter, given by (Lim and Oppenheim, 1979)

GðnÞ ¼ n
1 þ n

. ð9Þ

For a Gamma speech model,the gain function is

given by (Martin, 2002; see also Appendix A)

Gðn;cqÞ¼
1

Cqþ �Cq�

�
expðC2

q�=4ÞD�1.5ðcq�Þ� expðC2
qþ=4ÞD�1.5ðCqþÞ

expðc2
q�=4ÞD�0.5ðCq�Þþ expðc2

qþ=4ÞD�0.5ðCqþÞ
;

ð10Þ
where Cq+ and Cq� are defined by

Cq�,

ffiffiffi
3

p

2
ffiffiffi
n

p �
ffiffiffi
2

p
cq ð11Þ

and Dp(z) denotes the parabolic cylinder function

(Gradshteyn and Ryzhik, 1980, Eq. (9.240)). For

a Laplacian speech model, the gain function is

given by (Martin and Breithaupt, 2003; see also

Appendix B)

Gðn; cqÞ ¼
2

Lqþ � Lq�

� LqþerfcxðLqþÞ � Lq�erfcxðLq�Þ
erfcxðLqþÞ þ erfcxðLq�Þ

;

ð12Þ
where Lq+ and Lq� are defined by

Lq� ,
1ffiffiffi
n

p � ffiffiffi
c

p
q; ð13Þ

and erfcx(x) is the scaled complementary error

function, defined by

erfcxðxÞ, ex
2 2ffiffiffi

p
p

Z 1

X
e�t2 dt. ð14Þ
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Fig. 1. Parametric gain curves describing the MMSE gain function Gðn; cqÞ for different speech models: (a) Gain for Gaussian speech

model, obtained by (9); (b) Gain curves for Gamma speech model, obtained by (10); (c) Gain curves for Laplacian speech model,

obtained by (12).
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Fig. 1 displays gain curves Gðn; cqÞfor several

values of cq, which result from (9), (10) and (12).

It shows that generally the a priori SNR is a more
dominant parameter than the a posteriori SNR.

The influence of the a posteriori SNR on the

spectral gain is largest for a Gamma model, while

it has no effect on the gain for a Gaussian model.

Furthermore, the spectral gains for Gamma

and Laplacian speech models are monotonically

increasing functions of the a posteriori SNR, when

the a priori SNR is kept constant.
It is worth making a comparison between the

above MMSE gain functions and the Ephraim–

Malah gain functions (Ephraim and Malah, 1984,

1985), which were derived under a Gaussian speech

model for minimizing the mean-square error dis-

tortion of the spectral or log-spectral amplitude.

The a priori SNR is likewise a more dominant

parameter than the a posteriori SNR. However,
the Ephraim–Malah spectral gains are monotoni-

cally decreasing functions of the a posteriori

SNR, for a fixed value of the a priori SNR. Such

a behavior is related to the useful mechanism that

counters the musical noise phenomenon (Cappé,
1994). Local bursts of the a posteriori SNR, during

noise-only frames, are ‘‘pulled down’’ to the aver-

age noise level, thus avoiding local buildup of noise
whenever it exceeds its average characteristics.

Unfortunately, the MMSE gain function for a

Gaussian speech model is independent of the a pos-

teriori SNR, while the MMSE gain functions for

Gamma and Laplacian speech models are ad-

versely increasing as a function of the a posteriori

SNR. Therefore, in case the a priori SNR is esti-

mated by the decision-directed method, the MMSE
gain functions are expected to produce higher levels

of residual musical noise, when compared with the

Ephraim–Malah gain functions.

In speech enhancement applications, estimators

which minimize the mean-square error distortion

of the spectral amplitude or log-spectral amplitude

have been found advantageous to MMSE estima-

tors (Ephraim and Malah, 1984, 1985; Porter and
Boll, 1984). Hence, it would be constructive to

derive such estimators for Gamma and Laplacian

speech models, and compare their performances

to those obtained under Gaussian modeling (i.e.,

compare with the STSA and LSA estimators of



I. Cohen / Speech Communication 47 (2005) 336–350 341
Ephraim and Malah, 1984, 1985). However, this

will not be pursued in this paper. Rather, we pres-

ent in the next section noncausal estimators for the

a priori SNR. These estimators employ future spec-

tral measurements for discriminating between
speech onsets and noise irregularities. Local bursts

of noise are assigned a lower a priori SNR, while

speech onsets are assigned a higher a priori SNR.

Thus, speech onsets are better preserved, while

the musical noise effect is reduced.
3. Noncausal estimation of speech spectral variance

A noncausal estimator for the a priori SNR was

recently developed under a Gaussian speech model

(Cohen, 2004a,b, in press). The noncausal estima-

tion consists of two major steps, which follow the

rational of Kalman filtering: a ‘‘propagation’’ step

and an ‘‘update’’ step. Estimates for the speech

spectral variances and the instantaneous power
from the previous frame are propagated in time

to obtain an estimate for the spectral variance in

the current frame. Subsequently, the estimate for

the spectral variance is updated by computing the

conditional variance of the speech spectral compo-

nent, based on the underlying speech model. In this

section, we extend the derivation of the noncausal a

priori SNR estimator to Gamma and Laplacian
speech models.

Let Y‘þL
0 ¼ fY ðk; ‘0Þj0 6 k 6 K � 1; 0 6 ‘0 6 ‘þ

Lg represent the set of spectral measurements up to

frame ‘þ L, where L (L P 0) denotes an admissi-

ble time delay in frames between the noisy speech

signal and the enhanced signal. Let k0
X j‘þLðk; ‘Þ,

E jX ðk; ‘Þj2jY‘þL
0 nfY ðk; ‘Þg

n o
denote the condi-

tional variance of X given Y‘þL
0 excluding the noisy
Hðn0; cqÞ ¼
4

ðLqþ � Lq�Þ2

ðL2
qþ þ 0.5ÞerfcxðLqþÞ þ ðL2

q� þ 0.5ÞerfcxðLq�Þ � ðLqþ þ Lq�Þ=
ffiffiffi
p

p

erfcxðLqþÞ þ erfcxðLq�Þ
; ð20Þ

1 Note that (19) is a much simpler expression than the one

derived in (Breithaupt and Martin, 2003, Sec. 3.2). In partic-

ular, confluent hypergeometric functions are not involved, and

the same expression holds for Cq� P 0 and Cq� < 0.
measurement Y. Let k0
xj½‘;‘þL�ðk; ‘Þ,EfjX ðk; ‘Þj2j

Y‘þL
‘ nfY ðk; ‘Þgg denote the conditional variance

of X given the noisy measurements Y‘þL
‘ n fY g.

Then, the estimate for kxj‘þL is ‘‘updated’’, when
the noisy measurement Y is obtained, by comput-

ing the conditional variance of X given Y and

k̂
0
X j‘þL:

k̂X j‘þL ¼ E jX j2jk̂0
X j‘þL; Y

n o
¼ E X 2

Rjk̂
0
X j‘þL; Y R

n o
þ E X 2

I jk̂
0
X j‘þL; Y I

n o
.

ð15Þ
Since XR and XI are IID, as well as the noise com-

ponents DR and DI, we can write for Y q 6¼ 0

(q 2 fR; Ig)

E X 2
qjk̂

0
X j‘þL; Y q

n o
¼ Hðn0; cqÞY 2

q; ð16Þ

where n 0 is an a priori SNR defined by

n0ðk; ‘Þ ¼
k0
X j‘þLðk; ‘Þ
kDðk; ‘Þ

; ð17Þ

and Hðn0; cqÞ is a MMSE gain function in the spec-

tral power domain. The specific expression for
Hðn0; cqÞ depends on the particular choice of a

speech model. For a Gaussian speech model, the

spectral power gain function is given by (Cohen,

in press)

Hðn0; cqÞ ¼
n0

1 þ n0
1

2cq

þ n0

1 þ n0

� �
. ð18Þ

For a Gamma speech model, the spectral power

gain function is given by1 (see Appendix A)

Hðn0;cqÞ¼
3

ðCqþ �Cq�Þ2

�
expðC2

q�=4ÞD�2.5ðCq�ÞþexpðC2
qþ=4ÞD�2.5ðCqþÞ

expðC2
q�=4ÞD�0.5ðCq�Þþ expðC2

qþ4ÞD�0.5ðCqþÞ
;

ð19Þ
where Cq± are obtained from (11) by substituting n
with n 0. For a Laplacian speech model, the spectral

power gain function is given by (see Appendix B)
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where Lq± are obtained from (13) by substituting n
with n 0.

Eq. (16) does not hold in the case Y q ! 0, since

it yields Hðn0; cqÞ ! 1, and as a consequence the

conditional variance of Xq is generally not zero.
For Y q ¼ 0 (or practically for Yq smaller than a

predetermined threshold) we use the following

expressions: For a Gaussian speech model

E X 2
qjk̂

0
X j‘þL; Y q ¼ 0

n o
¼ n0

1 þ n0 kD; ð21Þ

for a Gamma speech model we have (see Appendix

A)

E X 2
qjk̂

0
X j‘þL; Y q ¼ 0

n o
¼

3D�2.5
ffiffi
3

p

2
ffiffiffi
n0

p
� �

8D�0.5
ffiffi
3

p

2
ffiffiffi
n0

p
� � kD; ð22Þ

and for a Laplacian speech model we have (see

Appendix B)
k̂
0
X j‘þLðk; ‘Þ ¼ max ljbX ðk; ‘� 1Þj2 þ ð1 � lÞ l0

Xx

i¼�x

bðiÞk̂X j‘þL�1ðk � i; ‘� 1Þ þ ð1 � l0Þk̂
0
X j½‘;‘þL�ðk; ‘Þ

" #
; kmin

( )
;

ð24Þ
E X 2
qjk̂

0
X j‘þL; Y q ¼ 0

n o
¼

ffiffiffi
2

p

r
exp 1

2n0

� 

D�3

ffiffiffi
2
n0

q� 

erfcx 1ffiffiffi

n0
p
� � kD. ð23Þ

Fig. 2 shows parametric gain curves describing

the spectral power gain functions Hðn0; cqÞ for sev-

eral values of cq, which result from (18)–(20). In
contrast with the gain functions Gðn; cqÞ, which

minimize the MSE between Xq and bX q, the gain

functions Hðn0; cqÞ minimize the MSE between

X 2
q and bX 2

q, and are not monotonically increasing

functions of the a posteriori SNR. On the con-

trary, for a Gaussian speech model Hðn0; cqÞ is a

decreasing function of cq, and for Gamma and

Laplacian speech models Hðn0; cqÞ is a decreasing
function of cq when cq is sufficiently small (depend-

ing on the a priori SNR n 0).
In the present work, Gðn; cqÞ is used for estimat-

ing the clean speech spectral component Xq (see

(7)), whereas Hðn0; cqÞ is used for estimating the

speech spectral variance (see (15) and (16)). This

combination yields a desirable effect on the resid-
ual musical noise. Local bursts of noise, which

are associated with higher (but moderate) values

of cq and small values of n 0, are assigned lower val-

ues of Hðn0; cqÞ. This implies lower values of k̂X j‘þL,

lower values of the a priori SNR estimate n̂, and

eventually lower spectral gains Gðn; cqÞ. Such a

behavior avoids the local buildup of noise, and

thus counters the musical noise phenomenon.
The estimate for k0

X j‘þLðk; ‘Þ is obtained by

‘‘propagating’’ in time the estimates bX ðk; ‘� 1Þ
and fk̂X j‘þL�1ðk; ‘� 1ÞgK�1

k¼0 from the previous

frame, and employing the measurements

Y‘þL
‘ nfY ðk; ‘Þg (Cohen, 2004a,b, in press). Specif-

ically, the estimator for k0
X j‘þLðk; ‘Þ, which com-

bines the information from past and future

frames, is given by
where l (0 6 l 6 1) is related to the degree of non-

stationarity of the random process fkX ðk; ‘Þj‘ ¼
0; 1; . . .g, b denotes a normalized window function

of length 2x þ 1 (i.e.,
Px

i¼�xbðiÞ ¼ 1) which is re-

lated to the correlation between frequency bins of

kX, l 0 (0 6 l0
6 1) is associated with the reliability

of the estimate k̂
0
X j½‘;‘þL� in comparison with that of

k̂X j‘þL�1, and kmin is a lower bound on the variance

of X. The estimate for k0
X j½‘;‘þL�ðk; ‘Þ is obtained by

local averaging (Cohen, 2004a):

k̂
0
X j½‘;‘þL�ðk; ‘Þ

¼

P
ðn;iÞ2C

bðiÞjY ðk�i;‘þnÞj2P
ðn;iÞ2C

bðiÞ
� bkD; if nonnegative;

0; otherwise;

8><>:
ð25Þ
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where C, fðn; iÞj0 6 n 6 L;�x 6 i 6 x; ðn; iÞ 6¼
ð0; 0Þg designates the time-frequency indices of

the measurements, and b ðb P 1Þ is an over-sub-

traction factor to compensate for a sudden in-

crease in the noise level. The steps of the

noncausal spectral enhancement algorithm under
Gaussian, Gamma or Laplacian speech models is

summarized in Table 1.
Table 1

Summary of the noncausal speech enhancement algorithm for Gauss

Initialization at the first frame for all frequency bins k:bX ðk;�1Þ ¼ 0, k̂X jL�1ðk;�1Þ ¼ kmin

For all short-time frames ‘ ¼ 0; 1; . . .

For all frequency bins k ¼ 0; . . . ;K � 1

Compute the spectral variance estimate k̂
0
X j½‘;‘þL�ðk; ‘Þ by using (2

Compute the spectral variance estimate k̂
0
X j‘þL�ðk; ‘Þ by using (24

Compute the a priori SNR n0ðk; ‘Þ by using (17), and the a poste

Compute the MMSE spectral-power gains Hðn0; cqÞ (q 2 fR; Ig)

Update the spectral variance estimate k̂X j‘þLðk; ‘Þ by using (15) a

Compute the MMSE spectral gains Gðn; cqÞ (q 2 fR; Ig) by usin

Compute the speech spectral estimate bX ðk; ‘Þ by using (5) and (7
4. Experimental results

In this section, the performance of the non-

causal a priori SNR estimator is evaluated under

different speech models, and compared to that of

the decision-directed approach of Ephraim and
Malah (1984) (Cappé, 1994). The decision directed

estimator for the a priori SNR is given by
ian, Gamma and Laplacian speech models

5)

)

riori SNRs cqðk; ‘Þ (q 2 fR; IgÞ by using (8)

by using (18), (19) or (20), according to the speech model

nd (16), and update the a priori SNR nðk; ‘Þ by using (8)

g (9), (10) or (12), according to the speech model

)
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Fig. 3. SNRs in successive short-time frames for (a) Gaussian, (b) Gamma, and (c) Laplacian speech models: A posteriori SNRs cR

(solid thin line) and cI (dotted line), decision-directed a priori SNR estimate n̂
DD

(dashed line), and noncausal a priori SNR estimate n̂
(solid heavy line).
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n̂
DDðk;‘Þ¼max a

jbX ðk;‘�1Þj2

kD
þð1�aÞ½cRðk;‘Þþ cIðk;‘Þ�1�;nmin

( )
;

ð26Þ

where a (0 6 a 6 1) is a weighting factor that con-

trols the trade-off between noise reduction and

transient distortion introduced into the signal,

and nmin is a lower bound on the a priori SNR.

Fig. 3 demonstrates the different behaviors of

the noncausal and the decision-directed estimators

for Gaussian, Gamma and Laplacian speech pri-

ors. The analyzed signal is sampled at 16 kHz,
and transformed into the STFT domain using half

overlapping Hamming windows of 512 samples

length (32 ms). It contains only white Gaussian

noise (WGN) during the first and last 20 frames,

and in between it contains an additional sinusoidal

component at the displayed frequency with 0 dB

SNR.2 The noncausal a priori SNR estimate n̂ is

obtained by using the algorithm in Table 1, with
the parameters l ¼ 0.8, l0 ¼ 0.5, b ¼ ½0.25

0.5 0.25�, L ¼ 2, b ¼ 2, kmin ¼ nminkD, and nmin ¼
�25 dB. The decision-directed estimator n̂

DD
is

obtained by (26) with the parameters a ¼ 0.95
2 Note that the SNR is computed in the time domain, whereas

the a priori and a posteriori SNRs are computed in the time-

frequency domain. Therefore, the latter SNRs may increase at

the displayed frequency well above the average SNR.
and nmin ¼ �25 dB. Fig. 3 shows that when the a

posteriori SNRs cR and cI are sufficiently low,

the noncausal a priori SNR estimate is smoother

than the decision-directed estimate for all tested
speech models. When cR or cI increases, the non-

causal estimator, having a few subsequent spectral

measurements at hand, is capable of discriminat-

ing between speech onsets and irregularities in

the a posteriori SNRs corresponding to noise. It

responds quickly to speech onsets, but remains

close to its lower bound in case of speech irregular-

ities. On the other hand, the decision-directed esti-
mator cannot respond too fast to an abrupt

increase in cR or cI, since it necessarily implies an

increase in the level of musical noise. When cR

and cI decrease, the response of n̂ is immediate,

while that of n̂
DD

is delayed by 1 frame. Conse-

quently, in comparison with the decision-directed
estimator, the noncausal a priori SNR estimator

entails lower levels of musical noise and signal dis-

tortion. Furthermore, the suppression of the musi-

cal noise phenomenon is more significant under a

Gaussian speech model than under Gamma or

Laplacian speech models. This is attributable to

characteristics of the gain curves in Figs. 1 and

2. Under a Gaussian speech model, the spectral
power gain function Hðn0; cqÞ decreases as a func-

tion of cq, while the spectral gain Gðn; cqÞ is inde-

pendent of cq. Thus, abrupt bursts of cq during
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noise-only frames are suppressed. On the other

hand, under Gamma or Laplacian speech models,

Hðn0; cqÞ decreases as a function of cq only for suf-

ficiently small cq, while Gðn; cqÞ increases as a func-

tion of cq. Thus, the mechanism, which counters
the musical noise phenomenon, is not as much

effective.

An experimental evaluation of the noncausal a

priori SNR estimator is performed by enhancing

noisy speech signals under various noise condi-

tions and speech models, and comparing the

results to those obtained by using the decision-

directed estimator. The evaluation includes two
objective quality measures, and informal listening

tests. The first quality measure is the segmental

SNR, in dB, defined by (Quackenbush et al., 1988)

SegSNR

¼ 1

J

XJ�1

‘¼0

T 10log10

PN�1

n¼0 x
2ðnþ ‘N=2ÞPN�1

n¼0 ½xðnþ ‘N=2Þ� x̂ðnþ ‘N=2Þ�2

( )
;

ð27Þ
where J represents the number of frames in the sig-
nal, N ¼ 512 is the number of samples per frame

(corresponding to 32 ms half overlapping frames),

and T confines the SNR at each frame to percep-

tually meaningful range between 35 dB and

�10 dB ðTx, min½maxðx;�10Þ; 35�Þ. The opera-

tor T prevents the segmental SNR measure from

being biased in either a positive or negative direc-

tion due to a few silence or unusually high SNR
frames, that do not contribute significantly to the

overall speech quality (Deller et al., 2000; Papa-

michalis, 1987). The second quality measure is

log-spectral distortion, in dB, which is defined by

LSD ¼ 1

J

XJ�1

‘¼0

1

N=2 þ 1

XN=2

k¼0

½10 log10CX ðk; ‘Þ
(

� 10 log10CbX ðk; ‘Þ�2
)1

2

; ð28Þ

where CX ðk; ‘Þ, maxfjX ðk; ‘Þj2; dg is the spectral

power, clipped such that the log-spectrum dynamic

range is confined to about 50 dB (that is, d ¼
10�50=10maxk;‘fjX ðk; ‘Þj2g).

The noise signals used in our evaluation are

taken from the Noisex92 database (Varga and

Steeneken, 1993). They include white Gaussian
noise, car interior noise, F16 cockpit noise, and

babble noise. The speech signal is constructed

from six different utterances, without intervening

pauses. The utterances, half from male speakers

and half from female speakers, are taken from
the TIMIT database (Garofolo et al., 1988). The

speech signal is sampled at 16 kHz and degraded

by the various noise types with segmental SNRs

in the range [�5,10] dB. The noisy signals are

transformed into the STFT domain using half

overlapping Hamming analysis windows of 512

samples length.

The noncausal speech enhancement algorithm
(Table 1) is applied to the noisy speech signals,

using the same parameters as in the example of

Fig. 3. Alternatively, the a priori SNR n is esti-

mated by the decision-directed method (26), with

the parameters nmin ¼ �25 dB and a ¼ 0.98 [this

value of a was determined in (Ephraim and Malah,

1984, 1985) by simulations and informal listening

tests], and the spectral estimate bX ðk; ‘Þ is com-
puted via (7) by using the appropriate spectral gain

function (9), (10) or (12), according to the speech

model. The noise spectral variance is estimated

by recursively averaging past spectral power values

of the noise signal: k̂Dðk; ‘Þ ¼ 0.95k̂Dðk; ‘� 1Þþ
0.05jDðk; ‘Þj2. In practice, the periodogram of the

noise jDðk; ‘Þj2 is unknown, and kDðk; ‘Þ can be

estimated by using the Minima Controlled Recur-

sive Averaging approach (Cohen, 2003).

Fig. 4 shows the results of the segmental SNR

improvement achieved by the noncausal and the

decision-directed a priori SNR estimators for

different speech models. The results of the log-
spectral distance are displayed in Fig. 5. The

noncausal estimator consistently yields a higher

segmental SNR and a lower LSD, than the

decision-directed method, under all tested environ-

mental conditions and speech models. The perfor-

mance, in terms of segmental SNR and LSD, is

greatest when using a Laplacian speech model
and noncausal a priori SNR estimator. The perfor-
mance is worst when using a Gaussian speech
model and a decision-directed a priori SNR esti-
mator. The Gamma speech model yields a higher
segmental SNR and a lower LSD than the other

speech models, only when the a priori SNR is esti-

mated by the decision-directed method. However,
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Fig. 4. Segmental SNR improvement for various noise types and levels, obtained by using Gaussian (�), Gamma (s) and Laplacian

(n) speech models. The a prior SNR is obtained by either noncausal recursive estimation (solid lines) or by the decision-directed

approach (dashed lines). (a) White Gaussian noise; (b) Car interior noise; (c) F16 cockpit noise; (d) Babble noise.
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Fig. 5. Log-spectral distance for various noise types and levels, obtained by using Gaussian (�), Gamma (s) and Laplacian (n)

speech models. The a prior SNR is obtained by either noncausal recursive estimation (solid lines) or by the decision-directed approach

(dashed lines). (a) White Gaussian noise; (b) Car interior noise; (c) F16 cockpit noise; (d) Babble noise.
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when the a priori SNR is estimated by the pro-

posed method, the Laplacian speech model yields

a higher segmental SNR and a lower LSD than

the other speech models. Informal listening tests,

conducted by four experienced listeners, confirm
that by using the noncausal estimator, speech com-

ponents are better preserved, while the residual

musical noise is further reduced. The level of resid-

ual musical noise is minimal when using a Gauss-

ian speech model and the noncausal estimator.

The residual musical noise is maximal when using

a Gamma speech model and the decision-directed

method. Additionally, the differences between the
Gaussian, Gamma and Laplacian speech models,

in terms of segmental SNR, LSD and residual mu-

sical noise, are smaller when using the noncausal

estimator than when using the decision-directed

method.
5. Conclusion

We have proposed and evaluated the perfor-

mance of noncausal recursive estimators for the a

priori SNR under Gamma and Laplacian speech

modeling. The noncausal estimation is accom-

plished by propagating spectral variance estimates

across the time and frequency axes (see (24) and

(25)), and updating the result by computing the
conditional variance of the speech spectral compo-

nent, based on the underlying speech model. We

show that the noncausal a priori SNR estimator

yields a higher segmental SNR, a lower LSD,

and lower musical noise than the decision-directed

estimator, under all tested environmental condi-

tions and speech models. It should be noted that

the heuristic estimator (24) is not relying on a
model for the speech spectral variance process

(e.g., a Markovian), from which the estimator of

the signal evolves (Ephraim, 1992a,b). The param-

eters in (24) are related to the nonstationarity of

the variance process, the correlation between

frequency bins, and the reliability of the variance

estimate from future noisy measurements (Cohen,

in press).
We have shown that the spectral gains for Gam-

ma and Laplacian speech models are monotoni-

cally increasing functions of the a posteriori
SNR, when the a priori SNR is kept constant.

Such a behavior is adverse to the useful mecha-

nism that counters the musical noise phenomenon,

since local bursts of noise are assigned higher gain

values and further emphasized relative to the aver-
age noise characteristics. Using the noncausal a

priori SNR estimator instead of the decision-direc-

ted estimator, local bursts of noise are assigned a

lower a priori SNR, while speech onsets are as-

signed a higher a priori SNR. Thus, speech onsets

are better preserved, while the musical noise effect

is reduced. Experimental results show that the per-

formance of the noncausal a priori SNR estimator,
when combined with MMSE signal estimation, is

best in terms of segmental SNR and LSD improve-

ment under a Laplacian speech prior. However,

the level of the residual musical noise is slightly

higher than the level obtained under a Gaussian

speech prior. Additionally, the differences between

the Gaussian, Gamma and Laplacian speech mod-

els are smaller when using the noncausal a priori
SNR estimator than when using the decision-direc-

ted method. Therefore, by taking into account the

uncertainty of speech presence in the noisy mea-

surements (Ephraim and Malah, 1984; Cohen

and Berdugo, 2001; McAulay and Malpass, 1980;

Malah et al., 1999), the Laplacian speech model

should be very attractive. A Bernoulli–Laplacian

speech model may lead to further suppression of
the residual musical noise during speech absence,

while preserving the same segmental SNR and

LSD during speech presence. Another deserving

study is related to the distortion measure, which

is employed for the spectral enhancement. Estima-

tors which minimize the mean-square error distor-

tion of the spectral amplitude or log-spectral

amplitude are more suitable for speech enhance-
ment than MMSE estimators (Ephraim and

Malah, 1984, 1985; Porter and Boll, 1984). Hence,

it may prove beneficial to utilize such estimators

derived under Gamma or Laplacian speech

modeling.
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Appendix A. Conditional moments EfXn
q|kX ,Yqg

for a gamma speech model

The conditional moments EfXn
qjkX ; Y qg for

n ¼ 1; 2; . . . and q 2 fR; Ig are obtained by

EfXn
qjkX ; Y qg ¼

R1
�1 Xn

qpðY qjX q; kX ÞpðX qjkX ÞdX qR1
�1 pðY qjX q; kX ÞpðX qjkX ÞdX q

.

ð29Þ

Assuming a Gamma speech model and a Gaussian

noise, we have
EfXn
qjkX ; Y qg ¼

R1
�1 Xn

qjX qj�1=2
exp � ðY q�X qÞ2

kD
�

ffiffiffiffiffiffi
3

2kX

q
jX qj

� 

dX qR1

�1 jxqj�1=2
exp � ðY q�X qÞ2

kD
�

ffiffiffiffiffiffi
3

2kX

q
jX qj

� 

dX q

ð30Þ

¼

R1
0

X
n�1

2
q exp � X 2

q

kD
� Gq�ffiffiffiffi

kD
p X q

� �
þ ð�1Þn exp � X 2

q

kD
� Gqþffiffiffiffi

kD
p X q

� �� �
dX qR1

0
X

�1
2

q exp � X 2
q

kD
� Gq�ffiffiffiffi

kD
p X q

� �
þ exp � X 2

q

kD
� Gqþffiffiffiffi

kD
p X q

� �� �
dX q

; ð31Þ
where Gq± are defined by

Gq�,

ffiffiffi
3

p

2
ffiffiffi
n

p �
ffiffiffi
2

p
Y qffiffiffiffiffi
kD

p . ð32Þ

By using (Gradshteyn and Ryzhik, 1980, Eqs.

3.462.1, 8.339.2, 8.338.2), we obtain
EfXn
qjkX ; Y qg ¼ ð2n� 1Þ!!

2n
kD

2

� �n
2 expðG2

q�=4ÞD�n�0.5ðGq�Þ þ ð�1Þn expðG2
qþ=4ÞD�n�0.5ðGqþÞ

expðG2
q�=4ÞD�0.5ðGq�Þ þ expðG2

qþ=4ÞD�0.5ðGqþÞ
; ð33Þ
where ð2n� 1Þ!!, 1 � 3 � � � ð2n� 1Þ. Since Cq±, as

defined by (32), are related to Gq± by

Gq� ¼
Cq�; if Y q P 0;

Cq�; otherwise;

�
ð34Þ

we can rewrite (33) for Y q 6¼ 0 as
EfXn
qjkX ; Y qg ¼ ð2n� 1Þ!!

ðCqþ � Cq�Þn
expðC2

q�=4ÞD�n�0.5ðCq�Þ þ
expðC2

q�=4ÞD�0.5ðCq�
In particular, for n = 1 we have EfX qjkX ; Y qg ¼
Gðn; cqÞY q, where Gðn; cqÞ is defined by (10), and

for n = 2 we have EfX 2
qjkX ; Y qg ¼ Hðn; cqÞY 2

q,

where Hðn; cqÞ is defined by (19). Note that for

Y q ¼ 0, (33) reduces to

EfXn
qjkX ; Y q ¼ 0g ¼ 1 þ ð�1Þn

2

ð2n� 1Þ!!
2n

kD

2

� �n
2

�
D�n�0.5

ffiffiffiffiffiffi
3kD
4kX

q� 

D�0.5

ffiffiffiffiffiffi
3kD
4kX

q� 
 ; ð36Þ

which is not zero in case n is an even number.
Appendix B. Conditional moments E{Xn
q|kX ,Yq} for

a Laplacian speech model

Assuming a Laplacian speech model and a

Gaussian noise, the conditional moments
EfXn
qjkX ; Y qg for n ¼ 1; 2; . . . and q 2 fR; Ig are

given by
ð�1Þn expðC2
qþ=4ÞD�n�0.5ðCqþÞ

Þ þ expðC2
qþ=4ÞD�0.5ðCqþÞ

Y n
q. ð35Þ



EfXn
qjkX ; Y qg ¼

R1
�1 Xn

q exp � ðY q�X qÞ2

kD
� 2ffiffiffiffi

kX
p jX qj

� �
dX qR1

�1 exp � ðY q�X qÞ2

kD
� 2ffiffiffiffi

kX
p jX qj

� �
dX q

ð37Þ

¼

R1
0

Xn
q exp � X 2

q

kD
� 2F q�ffiffiffiffi

kD
p X q

� �
þ ð�1Þn exp � X 2

q

kD
� 2F qþffiffiffiffi

kD
p X q

� �� �
dX qR1

0
expð� X 2

q

kD
� 2F q�ffiffiffiffi

kD
p X qÞ þ exp � X 2

q

kD
� 2F qþffiffiffiffi

kD
p X q

� �� �
dX q

; ð38Þ
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where Fq± are defined by

F q� ,
1ffiffiffi
n

p � Y qffiffiffiffiffi
kD

p : ð39Þ

By using (Gradshteyn and Ryzhik, 1980, Eqs.

3.462.1, 3.322.2), we obtain
EfXn
qjkX ; Y qg ¼ n!

ffiffiffi
2

p

r
kD

2

� �n
2 expðF 2

q�=2ÞD�n�1ð
ffiffiffi
2

p
F q�Þ þ ð�1Þn expðF 2

qþ=2ÞD�n�1ð
ffiffiffi
2

p
F qþÞ

erfcxðF qþÞ þ erfcxðF q�Þ
. ð40Þ
The relation between Lq±, which are defined by

(13), and Fq± is given by

F q� ¼
Lq�; if Y q P 0;

Lq�; otherwise.

�
ð41Þ

Hence, we can rewrite (40) for Y q 6¼ 0 as
EfXn
qjkX ; Y qg ¼

n!
ffiffiffiffiffiffiffi
2nþ1

p

q
ðLqþ � Lq�Þn

expðL2
q�=2ÞD�n�1ð

ffiffiffi
2

p
Lq�Þ þ ð�1Þn expðL2

qþ=2ÞD�n�1ð
ffiffiffi
2

p
LqþÞ

erfcxðLqþÞ þ erfcxðLq�Þ
Y n

q. ð42Þ
In particular, for n ¼ 1 we have EfX qjkX ; Y qg ¼
Gðn; cqÞY q, where Gðn; cqÞ is obtained from (42)

by using (Gradshteyn and Ryzhik, 1980, Eq.

9.254.2) , and is given by (12). For n ¼ 2, we have

EfX 2
qjkX ; Y qg ¼ Hðn; cqÞY 2

q, where Hðn; cqÞ is

obtained from (42) by using (Gradshteyn and

Ryzhik, 1980, Eqs. 9.247.1, 9.254.1,2), and is given

by (20). Note that for Y q ¼ 0, (40) reduces to
EfXn
qjkX ; Y q ¼ 0g ¼ 1 þ ð�1Þn

2
n!

ffiffiffi
2

p

r
kD

2

� �n
2

�
exp 1

2n

� 

D�3

ffiffi
2
n

q� 

erfcx 1 ffiffi

n
p
� � ; ð43Þ
which is not zero in case n is an even

number.
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