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Abstract We address the problem of blind source sepa-
ration from a single channel audio source using a statis-
tical model of the sources. We modify the Bark Scale
aligned Wavelet Packet Decomposition, to acquire
approximate-shiftability property. We allow oversam-
pling in some decomposition nodes to equalize sam-
pling rate in all terminal nodes. Statistical models
are trained from samples of each source separately.
The separation is performed using these models. The
proposed psycho-acoustically motivated non-uniform
filterbank structure reduces signal space dimension and
simplifies training procedure of the statistical model. In
our experiments we show that the proposed algorithm
performs better when compared to a competing algo-
rithm. We study the effect that different wavelet fam-
ilies have on the performance of the proposed signal
analysis in the single-channel source separation task.
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1 Introduction

Blind source separation (BSS) is the task of recovering
a set of signals from a set of observed signal mixtures.
The problem of BSS is common for different signal
processing tasks. It is also at the heart of numerous
applications in audio signal processing. BSS algorithms
that operate on audio signals are sometimes called
Blind Audio Source Separation (BASS) algorithms [1].

Cherry [2] coined the ability of the human hearing
system to concentrate on a single speaker in presence
of interfering signals as a “cocktail party effect”. Al-
though, human audio segregation abilities are fascinat-
ing, not necessarily a full audio separation is performed
in the inner ear or somewhere in the auditory cortex.
It is possible that the human hearing system is only ca-
pable of recognizing semantic objects in one of several
audio streams the listener is exposed to.

Different settings for the BSS task arise in different
applications. In different settings the prior and the
posterior information available to a source separation
algorithm may differ, such as number of sources and
number of observed channels; mixing model (instan-
taneous, echoic, convolutive, linear, non-linear); prior
information on statistical properties of signals; and
presence of noise.

One of the crucial factors in the definition of the
BSS problem is the ratio of the number of observed
channels to the number of audio sources in the mixture.
If the number of observed channels is equal to the
number of sources then it is called an even-determined
or a determined case. In an over-determined case the
number of channels is greater than the number of
sources and in an under-determined case the number
of channels is smaller than the number of sources. The
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under-determined case is the most difficult to handle
and requires stronger assumptions on the mixture com-
ponent properties.

Another important factor that differentiates be-
tween BSS problem setups is the mixing model. The
instantaneous mixing model implies that several in-
stantaneous mixtures are observed, each having source
components mixed in a different proportion. Echoic
mixing model allows different delays for each compo-
nent in each channel. The convolutive mixing model
allows different linear filtering of sources at each chan-
nel. Naturally, the instantaneous mixing model is a
degenerate case of the echoic mixing model and the
echoic model is a degenerate case of the convolutive
mixing model. The convolutive mixing model is the
most appropriate in describing most of the real world
scenarios, but is also the hardest to handle.

Most source separation algorithms assume that mix-
ture components are statistically independent. Al-
though, this is a reasonable assumption in many cases, it
is not necessarily true for all applications. For example,
one of the source separation applications is the sepa-
ration of an individual musical instrument from a poly-
phonic musical excerpt. In this case, the assumption of
statistical independence is inaccurate for most musical
styles where several musical instruments perform parts
in a certain musical key and according to a common
tempo.

The blind source separation problem was first for-
mulated in a statistical framework by Herault et al. in
1984. Comon [3] introduced the Independent Compo-
nent Analysis (ICA) in 1994 and numerous theoretical
and practical works followed. A basic ICA algorithm
assumes even-determined BSS case and instantaneous
mixing model. Under these assumptions, a demixing
matrix has to be found. In order to find such matrix
the ICA algorithm minimizes statistical dependency
between unmixed channels. Various methods may be
used in order to reduce statistical dependency, such
as maximization of non-Gaussianity between channels
or minimization of mutual information [4]. The search
is usually done using gradient descent or fixed point
algorithms. Unfortunately, most of the algorithms in
the ICA family require several mixtures to be observed
in order to perform the separation.

In some cases a database of audio samples is avail-
able and statistical signal models can be trained in a
supervised manner before the separation process. In
these cases, various techniques from statistical learning
can be used. Algorithms that rely on these kind of sta-
tistical models are sometimes called Semi-Blind Source
Separation Algorithms (SBSS) [5, 6].

In [7], Benaroya et al. introduced a source sepa-
ration algorithm based on Gaussian Mixture Model
(GMM) and Hidden Markov Model (HMM) statisti-
cal modeling of source signal classes. First GMM or
HMM models are trained for each signal class using
spectral shapes acquired from the Short-Time Fourier
Analysis (STFT) analysis. During the separation stage,
these models are used to estimate mixture components
using Maximum A-posterior (MAP) or Posterior Mean
(PM) estimates. The authors also showed that using
more complicated HMM models does not improve the
separation performance significantly when compared
to the GMM model. Some extensions to that work were
presented in [6]. For example, Gaussian Scaled Mixture
Model (GSMM) which takes into account variations in
amplitude of sounds with similar spectral shapes.

Another signal modeling technique that was found
useful in single channel source separation is Auto Re-
gressive (AR) modeling. Srinivasan et al. [8] proposed
a codebook of Linear Predictive Coefficients (LPC)
trained on a speech and an interfering signal. The
maximum likelihood estimator is used to find the most
probable pair of codebook members. Wiener filter is
used later to suppress the interfering signal. In [9]
LPC coefficients are treated as random variables. In
these works both algorithms are described and tested
for speech enhancement in non stationary noise setup.
Nevertheless, they are also applicable to a source sep-
aration scenario by modeling one of the sources as the
speech and the other as the noise.

Traditionally, short time Fourier transform (STFT)
is used in many audio and speech processing appli-
cations. Bark-Scaled Wavelet Packet Decomposition
(BS-WPD) [10] is a time-frequency signal transforma-
tion with non uniform frequency resolution. This trans-
formation is psychoacoustically motivated and reflects
the critical bands structure of the human auditory
system. Mapping based Complex Wavelet Transform
(CWT) [11] is based on bijective mapping of a real
signal into a complex signal domain followed by stan-
dard wavelet analysis performed on the complex signal.
Among others, CWT partially mitigates lack of shift
invariance of wavelet analysis.

The algorithm presented in this paper, addresses
a single-channel separation of instantaneous mixture
of two audio sources. It follows Benaroya et al. [7]
STFT based algorithm, but operates with a non uniform
WPD filter-bank. We modify the BS-WPD analysis to
equalize sampling rates of different scale-bands, which
enables construction of instantaneous spectral shapes
that are used in training and separation stages of the
separation algorithm. We also use CWT in order to



J Sign Process Syst (2011) 65:339–350 341

achieve some level of shift invariance. The non-uniform
frequency resolution of the BS-WPD filterbank, re-
duces the dimension of feature vectors by allocating
fewer vector elements to the higher frequencies. This
behavior mimics critical bands structure of human au-
ditory system. In a series of experiments we validate our
approach using various types of wavelet families and
show that the proposed approach performs better when
compared to a competing algorithm in some scenarios.
Partial results of this work were presented in [12].

The remainder of this paper is structured as follows.
In Section 2 we shortly describe the disadvantages of
classical wavelet transform applied to audio processing
tasks and present the CWT transform. In Section 3 we
introduce Bark Scaled WPD and a modification de-
signed to equalize the sampling frequencies in all sub-
bands. In Section 4 we formulate our mixing model and
derive MAP estimators for its components. Section 5
specifies training and separation stages of the algo-
rithm. Section 6 outlines the performance measures,
and Section 7 shows some experimental results.

2 Mapping Based Complex Wavelet Transform

In this section we describe the disadvantages of the
standard Discrete Wavelet Transform (DWT) and
present the mapping based Complex Wavelet Trans-
form (CWT), introduced by Fernandes et al. in [11, 13],
that mitigates these disadvantages to some degree.

A major disadvantage of the DWT that reduces its
usefulness in audio signal processing applications is the
lack of shift invariance. Let x (n) be a time domain
signal and Xl,n (m) = DWT {x (n)} its DWT transform.
Let x� (n) = x (n − �) be a shifted version of the time
signal. The DWT coefficients of x� (n) change sig-
nificantly compared to Xl,n (m). The reason for this
behavior lies in the downsampling performed on the
dilated signals by the DWT. Different researchers pro-
posed various methods to address the problem. A
survey of techniques used to mitigate lack of shift in-
variance may be found in [13].

Let L2 (R → C) denote a function space of square
integrable complex-valued functions on a real line and
L2 (R → R) its subspace comprised of real-valued func-
tions. Hardy-space H2 (R → C) is defined by

H2 (R → C) �
{

f ∈ L2 (R → C) : F f (ω)

= 0 for a.e. ω < 0
}
,

where F f (ω) denotes the Fourier transform of f (t).
The mapping of a signal to the Hardy-space is equiv-
alent to finding its analytic signal.

Fernandes et al. showed that a function space
L2 (R → R) is isomorphic to Hardy-space H2 (R → C)

under a certain inner product. They also showed that
the mapping of a function in L2 (R → R) into Hardy-
space cannot be implemented using a digital filter. As a
remedy, they defined Softy-space and proved that it has
properties similar to the Hardy-space. The mapping of
a function in L2 (R → R) into the Softy-space is done
using a projection digital filter h+ that has a passband
over [0, π) and a stopband over [−π, 0). Softy-space
signals are denoted by a superscript “+” in [13] because
of the attenuated negative frequencies.

We adapt this notation. Let x (n) be a time sequence.
Its Softy-space image is given by

x+ (n) = h+ (n) ∗ x (n) . (1)

Forward CWT transform is defined by mapping time
domain signal x (n) into its Softy-space image x+ (n)

followed by a standard DWT transform. The inverse
CWT transform consists of an Inverse Discrete Wavelet
Transform (IDWT) followed by the inverse mapping
from the complex valued Softy-space back to the real
valued time signal. The Softy-space to the real space
mapping is defined by the following equation

x (n) = Re
{
g+ (n) ∗ x+ (n)

}
. (2)

where g+ (n) is also a digital filter. The relation between
h+ (n) and g+ (n) is described in [13].

Simoncelli et al. [14] defined a “shiftability” as a
transform property that guarantees that transform sub-
band energy is invariant under signal shifts. The shifta-
bility property is weaker than shift invariance but easier
to achieve. Simoncelli et al. argued that a transform is
shiftable if and only if there is no aliasing any subband.
It follows that the shiftability it is not achievable for
any non-redundant wavelet transform, except for the
practically unrealizable Shannon wavelet.

A Hardy-space signal has half the bandwidth of
the corresponding real-valued function due to the lack
of negative frequency components. Nyquist condition
holds for the Hardy-space signal in each analysis sub-
band and the shiftability property follows. The practical
CWT transform uses an approximation of the Hardy-
space, hence the CWT is approximately shiftable
provided sufficiently long filters are used in the imple-
mentation as explained in [11]. We note that because
of the complex transform coefficients, mapping based
CWT is a redundant transform with a redundancy fac-
tor of two.

Our algorithm benefits from approximate shift in-
variance property. We train GMM model using the
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Figure 1 CSR-BS-WPD decomposition tree. Nodes having l > 6 are not decimated. This way, sampling frequencies of signals in all
terminal nodes will be the same. Only few of the node labels are shown due to the space limitations.

wavelet transform coefficients. Lack of shift invari-
ance makes the signal space unnecessarily large. This
can make the statistical modeling of the signal more
complicated in terms of the selected statistical model,
computational burden or the amount of data required
for training.

3 Bark-Scaled Wavelet Packet Decomposition

In this section we present the BS-WPD as defined in
[10] and introduce a modification that has some fa-
vorable properties for the frame-by-frame classification
and filtering used in our algorithm.

Let E ⊂ {
(l, n) : 0 ≤ l < L, 0 ≤ n < 2l

}
be a set of

terminal nodes of a WPD tree. The center frequency
of a terminal node (l, n) ∈ E is roughly given by

fl,n = 2−l (GC−1 (n) + 0.5
)

fs,

where GC−1 (n) is the inverse Gray code of n and
fs is a sampling frequency. Critical band WPD (CB-
WPD) [10] filterbank structure is obtained by selecting
a terminal nodes set E in a way that positions center fre-
quencies fl,n approximately one Bark apart. Another
constraint that must be taken into consideration is that
a dyadic interval set

{
Il,n : Il,n = 2−ln, 2−l (n + 1)

}
must

form a disjoint cover of [0, 1). Only in this case, the set
of wavelet packet family functions will be able to span
the signal space.

BS-WPD is defined as a CB-WPD with two addi-
tional levels of terminal node expansion. Due to a
higher frequency resolution, the BS-WPD performed
better in the task of speech enhancement. Our experi-
ments showed that adding three additional levels of de-
composition results in better performance of our source
separation algorithm.

The proposed source separation algorithm needs an
access to the instantaneous spectral information from

all analysis subbands. We define a new version of the
BS-WPD transform that has equal sampling frequency
in each sub-band. Unfortunately, terminal nodes of the
BS-WPD are positioned at different depths and each
depth is associated with a different sampling frequency.
In order to align signals from all sub-bands and equalize
the sampling frequency we do not allow decimation
in nodes deeper than level 6 (i.e. l > 6). We call the
resulting transform Constant Sampling Rate BS-WPD
(CSR-BS-WPD). We note that by canceling decimation
in lower levels of the WPD tree we introduce a certain
amount of redundancy into the CSR-BS-WPD repre-
sentation. Figure 1 shows CSR-BS-WPD decomposi-
tion tree.

The CSR-BS-WPD analysis has only 168 sub-bands,
compared to 513 sub-bands of STFT analysis with
approximately the same frequency resolution in low
frequencies. Like the human auditory system, we sac-
rifice frequency resolution at higher frequency range.
Reducing the number of sub-bands results in smaller
dimension of data used in the training and separation
stages. A smaller data dimension has a potential to
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Figure 2 CSR-BS-WPD time-frequency representation of a
speech signal. Horizontal axis.
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Figure 3 STFT representation of a speech signal.

increase accuracy of the GMM estimation because of
less redundancy in the high frequency features, in addi-
tion to lower computational burden.

We denote by Xl,n (m) the CSR-BS-WPD transform
of x+ (n) in Eq. 2, where (l, n) are the indices of ter-
minal nodes and m is time index. Since all terminal
nodes have the same sampling rate we can rearrange
the elements of Xl,n (m) into a complex, single column
vector X̄ (m) ∈ C

M. The dimension of X̄ (m) is equal to
the number of sub-bands M = 168. The CSR-BS-WPD
is a reversible transform. Given CSR-BS-WPD signal
X̄ (m) we can acquire a time domain signal x (n) first
by inverting the WPD and then filtering x+ (n) with a
digital filter g+ as given by Eq. 2.

Figures 2 and 3 show a time frequency plot of a
speech signal. The intensity of color shows the coeffi-
cient magnitude in dB. Band indices are shown on a
vertical axis. In Fig. 2, band indices on the vertical axis
are the indices of the terminal nodes in the growing
mid-band frequency order. It can be seen that less
time-frequency coefficients are dedicated to the higher
frequency bands in the CSR-BS-WPD analysis than in
the conventional STFT analysis.

4 Mixture Components Estimation

Let s1 (n) and s2 (n) be mixture components. We assume
a mixing model without noise presence

x (n) = s1 (n) + s2 (n) . (3)

Mapping the mixture signal into the Softy-space we get

x+ (n) = s+
1 (n) + s+

2 (n) , (4)

and in the CSR-BS-WPD domain

X̄ (m) = S̄1 (m) + S̄2 (m) (5)

S̄1 (m) , S̄2 (m) , X̄ (m) ∈ C
M.

We use posterior mean (PM) to estimate mixture
components in CSR-BS-WPD domain. Let x, s1, s2

be vectors of N observations of x (n), s1 (n) and s2 (n)

respectively. It is shown by Benaroya et al. in [6] that
for the mixing model (3) and Gaussian processes s1 (n),
s2 (n), the PM estimators for s1 and s2 are given by

ŝc = �c (�1 + �2)
−1 x, c ∈ {1, 2} , (6)

where �c ∈ R
N×N is the covariance matrix of sc.

For a stationary and approximately circular pro-
cesses, Fourier transform F diagonalizes the covariance
matrices resulting in the following estimators:

ˆFsc ( f ) = σ 2
c ( f )

σ 2
1 ( f ) + σ 2

2 ( f )
Fx ( f ) , c ∈ {1, 2} , (7)

where σ 2
c is a vector of eigen-values of �c and f is

frequency index. We notice that the solution coincides
with is a well known Wiener filter.

Diagonal covariance matrix of the STFT expansion
coefficients is often assumed in the speech processing
applications [15]. Benaroya used this assumption in the
application to musical signals. The covariance matrix
diagonality means lack of correlations between signals
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Figure 4 Correlation coefficients matrix of STFT expansion for: a speech signal; b musical signal.



344 J Sign Process Syst (2011) 65:339–350

Frequency band index

F
re

qu
en

cy
 b

an
d 

in
de

x

 

 

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
Frequency band index

F
re

qu
en

cy
 b

an
d 

in
de

x

 

 

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 5 Correlation coefficients matrix of CSR-BS-WPD expansion using dmey wavelet for: a speech signal; b musical signal.

in different frequency bands. We can interpret CSR-
BS-WPD transform as a filterbank. We can expect that
as long as WPD filters have good band-pass filter char-
acteristics, the correlation between different frequency
bands will also be low and diagonal covariance matrix
assumption can also be extended to the CSR-BS-WPD
signals. Next, we verify this assumption on empirical
data.

Figures 4, 5 and 6 show absolute value of correla-
tion coefficient matrices for STFT and CSR-BS-WPD
transforms. The CSR-BS-WPD transform is based on
the discrete Meyer wavelet (dmey) and Daubechies
wavelet of order 2 (db2). It is clear that the diagonal co-
variance assumption is inaccurate for all transforms, in-
cluding STFT. Highest amount of correlation is present
in the db2 based CSR-BS-WPD transform, especially
for the musical signal. High inter-band correlation may
be explained either by correlated events occurring at
different frequencies or by a leakage of energy between
frequency bands due to non-ideal bandpass character-
istics of analysis filters. Since same audio signals were

used in Figs. 4–6, the differences in the correlation
coefficients are explained by the properties of analysis
filters. The analysis filter of the db2 wavelet is only 4
samples long compared to a more than 100 coefficients
of the dmey analysis filter. db2 wavelet has inferior
frequency localization and worse attenuation of side
lobes compared to the dmey analysis filter, hence the
correlation coefficients are higher for the db2 based
CSR-BS-WPD expansion coefficients.

Despite its weakness, especially for some kinds of
wavelet families, we assume the lack of correlation
between expansion coefficients since the estimation of
the large number off diagonal elements of a covariance
matrix is impractical.

Simple assumption of Gaussian distribution prior
does not hold for most natural signals such as speech
or music. The remedy is to assume Gaussian Mix-
ture prior densities (GMM prior) [6]. GMM model
describes signal distribution as an outcome of a two
stage process: first an active component k is selected
out of K Gaussian distributions in the mixture; then an
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Figure 6 Correlation coefficients matrix of CSR-BS-WPD expansion using db2 wavelet for: a speech signal; b musical signal.
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observation sample is obtained using the selected
model parameters

{
μ(k), �(k)

}
where μ(k) and �(k) are

the expectation value and the covariance of the k-
th component. The probability of selecting the k-th
component is given by wk (k-th element of prob-
ability vector w). The GMM model is defined by({

μ(k)
}K

k=1 ,
{
�(k)

}K
k=1 , w

)
.

We estimate mixture components using GMM pri-
ors. We introduce hidden variables qc (m)∈{1,. . . ,K} ,

c ∈ {1, 2} associated with index of active GMM compo-
nent at time m. Let γ j,k (m)= p (q1 (m)= j, q2 (m)=k|x)

be the posterior probabilities of active components.
Then γ j,k (m) is estimated from mixture observations.
Conditioning Eq. 3 on active GMM component and
applying to the CSR-BS-WPD signal we get the PM
estimator

ˆ̄S1 (m) =
K∑

j,k=1

γ j,k (m)�
( j)
1

(
�

( j)
1 + �

(k)
2

)−1
X̄ (m) . (8)

The estimator for ˆ̄S2 (m) is derived in the same manner.

5 Training and Separation

Let L denote the number of training signal time
samples in the CSR-BS-WPD domain. During the
training stage we use signal samples of both classes
{

S̄1 (m)
}L

m=1 ,
{

S̄2 (m)
}L

m=1 to train two different GMM
models. Both Softy-space mapping and the WPD are
linear transformations, so the expectation values of s,
s+ and S̄ are zero. Hence we can define a simplified
GMM model that assumes zero mean of every state in
the GMM

�c =
(
wc,

{
�(k)

c

}K

k=1

)
, wc ∈ R

K, �c ∈ R
M×M, (9)

where K is the GMM model order. Following the rea-
soning in the previous section, we assume �

(k)
c to be a

diagonal covariance matrix.
The training of the GMM models is performed us-

ing the Expectation Maximization (EM) algorithm [16]
bootstrapped by the K-Means algorithm. Expectation
value of training data is assumed to be zero and is not
updated during the expectation step of the EM algo-
rithm, i.e. is set to zero.

We note that the estimation of ˆ̄Sc (m) is performed
for every time index m. In the rest of this section we
omit the time index m for clearness of notation. In

order to estimate signal sources ˆ̄Sc using Eq. 8 for every
time instance, we first estimate the posterior proba-
bility γ j,k:

γ j,k ∝ p
(
X̄|q1 = j, q2 = k

)
p (q1 = j) p (q2 = k)

= g
(

X̄; �
( j)
1 + �

(k)
2

)
w

( j)
1 w

(k)
2 , (10)

where g
(
X̄; �

)
is a zero-mean multivariate Gaussian

probability density function. Substituting Eq. 10 into
Eq. 8 and using �c estimated in the training process we

obtain estimators for ˆ̄S1 and ˆ̄S2.

6 Evaluation Criteria

In this section, we define evaluation criteria used in ex-
periments to evaluate the performance of the proposed
algorithm.

We use common distortion measures described in
[17] and BSS_EVAL toolbox [18]. Mixture components
s1, s2 are assumed to be uncorrelated. Let ŝc be an
estimate of sc. The estimator will have the following
decomposition:

ŝc = yc + ec,interf + ec,artif

yc �
〈
ŝc, sc

〉
sc

ec,interf �
〈
ŝc, sc′

〉
sc′

ec,artif � ŝc − (
yc + 〈

ŝc, sc′
〉
sc′

)
,

where c is the target class and c′ is the interfering class.
Now the following performance measures are defined:

SDR � 10 log10
‖yc‖2

∥∥ec,interf + ec,artif
∥∥2

SIR � 10 log10
‖yc‖2

∥∥ec,interf
∥∥2

SAR � 10 log10

∥∥yc + ec,interf
∥∥2

∥∥ec,artif
∥∥2 .

Signal to Distortion Ratio (SDR) measures the total
amount of distortion introduced to the original signal,
both due to the interfering signal and artifacts intro-
duced by the algorithm. Signal to Interference Ratio
(SIR) measures the amount of distortion introduced
into the original signal by the interfering signal. Signal
to Artifact Ratio (SAR) measures the amount of arti-
facts introduced into the original signal by the separa-
tion algorithm that do not originate in the interfering
signal.

Usually some parameters can be chosen to tune the
trade-off between interfering signal leakage (SIR) and
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the distortion to the desired signal (SAR). For example
it is possible to reduce SIR to −∞ simply by zeroing
source estimation. However, the SAR measure will
become very high in this case. SDR is a combined
measure for both SIR and SAR, hence it is convenient
to compare the algorithm performance based on SDR.

We use a sub-index to indicate which extracted signal
the measure is referring to. For example, SDR1 refers
to the signal-to-distortion ratio of the first extracted
component.

7 Experimental Results

In this section, we present some experimental results.
We study the algorithm performance on speech utter-
ances mixed with different musical excerpts. We study
the effect of the training excerpt length, wavelet family
choice, the GMM order and speaker gender on the
performance of the algorithm.

We compare the performance of the proposed algo-
rithm to a similar algorithm which is based on the STFT
signal analysis [6, 7]. In order for the comparison to the
STFT-based algorithm to be fair, we select STFT analy-
sis parameters to match time and frequency resolution
of the CSR-BS-WPD at the lowest frequency band. The
length of the STFT analysis window is chosen to be
1,024 and the overlap between subsequent frames is 960
samples. We use Hamming synthesis window and its
bi-orthogonal vector as the analysis window. We note
that the number of expansion coefficients for the STFT
transform is roughly three times greater than for the
CSR-BS-WPD transform.

We selected four different musical excerpts: two
solo piano pieces and two wind quartet pieces. Titles
of the musical excerpts and the abbreviations we use
in the text are shown in Table 1. A speech signal
consists of a single sentence pronounced by different
male speakers. All speech utterances were taken from
the TIMIT database. While TIMIT database provided
speech utterances recorded in the same controlled en-
vironment, we did not have access to a similar musical

Table 1 List of musical excerpts used in the experimental results.

Abbreviation Name Instrument

W1 L.v. Beethoven, Quartet No. 10 Wind quartet
in Eb, Op. 74 - Poco adagio

W2 L.v. Beethoven, Quartet No. 10 Wind quartet
in Eb, Op. 74 - Adagio ma
non troppo

P1 J.S. Bach, Air Piano solo
P2 J.S. Bach, French Suite No. 4 Piano solo
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Figure 7 The signal-to-distortion (SDR) ratio of the extracted
speech signal based on four test excerpts 90 s each.

signal repository. We used non-overlapping parts of the
same recording for model training and for the mixture
in order to overcome this problem.

First, we examined the effect of the training sig-
nal length on the separation performance. We trained
GMM models using 10 to 90 s of the speech and music
excerpts. All signals were sampled at 16 KHz. As a
preprocessing step, we normalized the energy of all
signals (the normalization is important since the statis-
tical model used is not invariant to signal amplitude.
A Gaussian Scaled Mixture Model [6] can be used as
a remedy). We evaluated the separation performance
using another 90 s of speech and music mixture.

We used the following wavelet families in our ex-
periments: discrete approximation of Meyer wavelet
(dmey), Daubechies wavelets of order 2 and 5 (db2,
db5), Coiflets of order 3 and 5 (coif3, coif5). Figures 7
and 8 present signal-to-distortion ratio (SDR1, SDR2)
of the extracted speech and musical signal respectively
for different algorithms. These figure present the SDR
average of the recovered speech and music signals.
High value of SDR indicates a small degree of speech
distortion in the extracted component. Other measures
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Figure 8 The signal-to-distortion (SDR) ratio of the extracted
musical signal based on four test excerpts 90 s each.
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exhibit similar performance trend and are not shown
here. The SDR values shown in these figure are the
average of four test sequences, 90 s each. The Discrete
Meyer (dmey) based CSR-BS-WPD algorithm demon-
strates superior performance compared to the signal
analysis based on other wavelet families for all training
signal lengths. The performance of the STFT based
algorithm is comparable to the dmey based algorithm.
When the length of the training signal is more than 70
s, the SDR is only slightly improved for the dmey and
STFT based algorithms and remains the same for the

others. In the rest of the experiments we use 90 s long
training sequences.

Figure 9 presents the separation performance as
a function of GMM model order (K = 2, . . . , 30).
Higher order GMM models are useful to describe
more complex statistical behaviors at the price of
higher computational complexity and larger data sets
required for training. Error bars on the SDR plots show
confidence intervals of 68% for STFT and dmey based
CSR-BS-WPD algorithms. The dmey based CSR-BS-
WPD and STFT exhibit superior performance to other

5 10 15 20 25 30

1

2

3

4

5

6

GMM order

S
D

R
1[d

B
]

 

 

dmey

db2

db5

coif3

coif5

STFT

(a) SDR 1

5 10 15 20 25 30
0

1

2

3

4

5

6

GMM order

S
D

R
2[d

B
]

 

 

dmey

db2

db5

coif3

coif5

STFT

(b) SDR 2

5 10 15 20 25 30

5

6

7

8

9

10

GMM order

S
IR

1[d
B

]

 

 

dmey

db2

db5

coif3

coif5

STFT

(c) SIR 1

5 10 15 20 25 30

5

6

7

8

9

10

11

12

GMM order

S
IR

2[d
B

]

 

 

dmey

db2

db5

coif3

coif5

STFT

(d) SIR 2

5 10 15 20 25 30

4

4.5

5

5.5

6

6.5

7

GMM order

S
A

R
1[d

B
]

 

 

dmey

db2

db5

coif3

coif5

STFT

(e) SAR 1

5 10 15 20 25 30

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

GMM order

S
A

R
2[d

B
]

 

 

dmey

db2

db5

coif3

coif5

STFT

(f) SAR 2

Figure 9 SDR, SIR and SAR averages for speech (sub-index 1) and music (sub-index 2) recovered signals. All measures are averaged
over 6 min of test mixture signals.
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wavelet families, under all the performance criteria.
A trade-off between SIR and SAR can be seen oc-
casionally, but the SDR measure supports our claim
consistently. For a very low GMM orders such as 2 or 4,
the STFT based algorithm performs significantly worse
than all CSR-BS-WPD based algorithms.

Figures 10 and 11 show spectrograms of the original
and extracted speech and piano components. When the
trained GMM model does not have a component that
describes an observed mixture component well enough,
a sequence of frames may be entirely filtered out as can
be seen in Figs. 10b and 11b. This kind of an artifact
can be found in both STFT and CSR-BS-WPD based
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Figure 10 Spectrograms (in dB) of (a) speech signal used in the
mixture; speech component extracted from the mixture (b) using
STFT based algorithm; (c) using CSR-BS-WPD based algorithm
based on the dmey wavelet family.
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Figure 11 Spectrograms (in dB) of (a) piano signal (P1) used
in the mixture; piano component extracted from the mixture
(b) using STFT based algorithm; (c) using CSR-BS-WPD based
algorithm based on the dmey wavelet family.

algorithms, but it is more common to the STFT based
algorithm. This can be explained by a better fit of the
GMM model due to lower signal dimension. Another
artifact observed in Fig. 11b is high-frequency resid-
ual of fricative phonemes that leak into the extracted
music. This artifact appears mostly in musical signals
extracted by the STFT based algorithm.

We verified the algorithm performance on speech
excerpts pronounced by male and female speakers. We
trained the GMM model on 90 s of speech pronounced
only by female speakers. We tested the performance on
additional 90 s of a speech and music mixture. We used
GMM order of K = 30. Table 2 presents experiment
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Table 2 Signal-to-distortion ratio of the extracted speech com-
ponent SDR1 and music component SDR2.

Wavelet family SDR1 SDR2

Female Male Female Male

coif3 5.27 4.12 5.20 3.97
coif5 5.05 3.96 4.93 3.78
db2 5.22 4.08 5.14 3.96
db5 5.12 3.93 5.05 3.80
dmey 6.19 5.25 6.01 5.08
STFT 5.58 4.91 5.50 4.79

Either male only or female only speech is used in the training and
the separation. Order of the GMM model is K = 30.

results averaged over all four musical excerpts (P1,
P2, W1, W2). The proposed algorithm and the STFT
based algorithm perform better when separating female
speech from music than separating male speech from
music. The SDR measure is approximately 1 dB higher
for female speech than for male speech for both algo-
rithms and for all wavelet families. The SIR and SAR
performance measures exhibited similar behavior.

Informal listening tests reveal that the subjective
quality of the extracted musical signals are comparable
for the STFT and the CSR-BS-WPD based algorithms.
The extracted speech signal on the other hand, has
slightly more pleasant sound when recovered by the
proposed algorithm. A relatively large amount of mis-
classified frames, similar to those shown in Fig. 11b
results in an unnatural speech sound and reduces the
subjective signal quality.

Audio files with mixtures used in the experiments
and the extracted signals can be downloaded from http:
//sipl.technion.ac.il/∼elitvin/CSR-BS-WPD.

8 Conclusions and Future Work

We have described how a Bark-scaled WPD can be
adapted to the source separation task. Introduction
of a different subsampling scheme and approximate
shiftability to the psychoacoustically motivated BS-
WPD decomposition tree, enabled us to adapt a source
separation algorithm that was originally designed to
work in the uniformly sampled STFT domain.

We found several advantages of using the proposed
analysis together with a GMM based source separa-
tion algorithm. The most significant advantage is the
reduction of the dimension of the signal space at the
expense of high frequency resolution. As a result, the
computational burden and the amount of trained para-
meters of the GMM model are reduced.

We found that a choice of wavelet family used
with the proposed separation algorithm is crucial. The

discrete Meyer wavelet based CSR-BS-WPD analysis
yielded improved separation performance compared
to the STFT based analysis with very low orders of
GMM model. Other wavelet families failed to produce
performance comparable to the STFT based algorithm.

Cohen [10] used dmey wavelet family for speech
enhancement. He justified the advantage of the dmey
wavelet family by the regularity of the wavelet filter and
its good frequency localization properties. In Section 4
we showed that superior frequency localization proper-
ties reduce correlation between expansion coefficients,
hence improve fit to our separation model. Due to
the similarity of our separation algorithm to the STFT
based algorithm, the performance and pitfalls of both
algorithms are comparable.

Future work with the CSR-BS-WPD analysis may
address various audio processing tasks traditionally
performed in the STFT domain, which require instanta-
neous spectral shapes and where the psychoacoustically
motivated band structure of the time-frequency analy-
sis might be desirable.
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