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a b s t r a c t

In this paper, we address the problem of monaural source separation of a mixed signal

containing speech and music components. We use Discrete Energy Separation

Algorithm (DESA) to estimate frequency-modulating (FM) signal energy. The FM signal

energy is used to design a time-varying filter in the time–frequency domain for

rejecting the interfering signal. The FM signal energy was chosen due to its good ability

to differentiate between speech and music signals using localized information both in

time and frequency. We present experimental results which demonstrate the

advantages and limitations of the proposed method using synthetic data and real

audio signals.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Blind source separation (BSS) of audio signals has been
an active area of research in recent years. BSS from a
single audio channel is a special case of general BSS
problem where data from only one sensor is available to
the algorithm. This problem is generally manageable
when the separated audio signals belong to different
signal classes, which are distinguishable based on prior
knowledge.

Different attempts to solve this problem in various
contexts were made, including: statistical modeling, such
as Gaussian Mixture Model (GMM) [1], or Hidden Markov
Model (HMM) [2,3]; computational auditory scene analy-
sis (CASA) [4]; non-negative matrix factorization (NMF)
[5]; sparse decomposition [6] and others. Single-audio-
channel BSS is an under-determined problem with
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arbitrary many solutions, so some prior knowledge is
required to perform the separation. In order to fill this
gap, various methods use either perceptual principles or
statistical models. Although many existing solutions
produce satisfactory results in special cases, the general
problem of single-audio-channel BSS remains unsolved.

Teager and Teager [7,8] studied airflow and fluid
dynamics of human speech apparatus, and described
several nonlinear phenomena as well as their sources.
Later, Kaiser [9,10] formulated the Teager energy operator
(TEO). In [10–12] the TEO was used to derive a discrete
energy separation algorithm (DESA) that separates a
signal into its amplitude (AM) and frequency modulating
(FM) components. Applications of the AM–FM decom-
position of audio signals include formant tracking [13],
extraction of speech recognition and speaker recognition
features [14–17], speech coding [18], and analysis and
re-synthesis of musical instruments sound [19].

Sinusoidal modeling was previously used for BSS by
Virtanen and Klapuri [20]. Their approach requires peak
tracking in the spectral domain to establish sinusoidal
trajectories followed by grouping of detected trajectories
into different audio streams. Although, our approach can
also be viewed as a kind of sinusoidal modeling, it does
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not require peak tracking or grouping, which may
improve the robustness of the separation algorithm.
Yilmaz et al. [21] defined approximate W-disjoint ortho-
gonality (W-DO) as an approximate ‘‘disjointness’’ of
several signals in the short-time Fourier transform (STFT)
domain. They introduced a quantitative W-DO measure
and provided evidence of the high level of the W-DO for
two speech signals.

Analysis of the AM component of the subband AM–FM
decomposition was previously used for monaural source
separation by Atlas and Janssen in [22]. The authors
filtered a subband amplitude modulating signal using a
filter that was learned from training data. The segregated
components were reconstructed by combining the filtered
AM signal with the original carrier.

Disch and Edler [23] used adaptive subband AM–FM
signal decomposition. The signal is first decomposed into
a set of analytical bandpass signals. The center frequen-
cies of bandpass filtering are chosen adaptively and are
aligned with local centers of gravity. The AM–FM decom-
position is performed at each subband and AM and FM
components are processed separately. The application
demonstrated in [23] is polyphonic key mode change, but
monaural source separation also seems possible using the
proposed framework.

Recently we proposed a source separation algorithm
that separates piano play signals and speech signals
from a single channel [24]. The algorithm used subband
FM analysis to distinguish between different signal
classes. Preliminary experiments showed promising
results. In this work, we propose a source separation
algorithm that segregates audio sources from a single
channel. Different signal classes may posses different
statistical properties of subband FM components.
The proposed algorithm uses these differences to separate
sources. Like [22], our algorithm uses AM–FM analysis,
but we rely on the properties of the FM and not the
AM signal to differentiate between audio signal classes.
First we filter the input signal by a STFT filterbank.
Then we use the DESA to estimate a frequency modulating
signal in each of the filterbank outputs and the energy
of the frequency modulating signal (EFMS). In the
training stage a statistical model of the EFMS values
is learned for each signal class. In the separation stage,
time–frequency bins in the STFT domain are classified
into one of the target signal classes using EFMS
values. The interfering signal is suppressed by zeroing
time–frequency bins attributed to the interfering signal.
Finally, we reconstruct the separated component by
inverting the STFT.

The signal classes are assumed to differ in subband
frequency-modulating component statistics, hence our
algorithm is not capable of separating two signals from
the same class (e.g. a mixture of two speech excerpts). We
show good performance in separating speech from several
types of music, assuming that training signals from both
classes are available to the algorithm for model training.
Only a 2-class problem is addressed in this work. We
investigate the impact of music type on the quality of the
separation and study the reasons for differences in
performance.
Not every musical instrument can be perfectly sepa-
rated from speech using the proposed method. Percussive
musical instruments cannot be separated from speech due
to the non-harmonic structure of their sound. Musical
instruments with strong non-harmonic components are
separated poorly. For this reason, in some applications,
where the music has mostly harmonic components, the
proposed algorithm may be used as a stand-alone
method. In others, where music has a large amount of
non-harmonic components, such as music from percus-
sive instruments, the proposed method may be combined
with existing techniques of monaural source separation to
improve the overall performance. The proposed method
can also be used in some scenarios of speech enhance-
ment where the noise has harmonic nature.

The main contribution of this paper is to show that by
using the subband FM component statistics, well localized
time–frequency regions can be reliably assigned to the
correct source. We present experimental results that
demonstrate feasibility of our approach both on synthetic
signals, real speech, and musical signals. For simplicity,
our study is constrained to experiments on instantaneous
mixtures without noise presence. The performance is
compared to a competitive source separation algorithm.

The remainder of this paper is structured as follows. In
Section 2, we describe the TEO and the DESA used for the
AM–FM analysis. In Section 3, we present some real audio
signal examples and explain why the proposed method
should perform well in the separation task. Section 4
describes a simple training procedure used to learn EFMS
features and a Bayesian approach used for the creation of
an STFT domain binary mask. Section 5 presents standard
separation performance evaluation criteria which are later
used in Section 6 to evaluate the performance.

2. Discrete energy separation algorithm

In this section, we introduce mathematical notations
and define AM–FM analysis using TEO (DESA [10]). Let
xc(t) be a continuous time signal and x(n)=xc(nT) be its
sampled version with sampling period of T. We assume
the following signal model

xðnÞ ¼ aðnÞcos Ocnþ
Xn

i ¼ 0

qðiÞ
1

T
þy

 !
ð1Þ

where n is a discrete time index, Oc is an angular
frequency of a carrier, y is some constant phase value,
and a(n) and q(n) are the amplitude and frequency
modulating signals, respectively.

A discrete version of TEO uses the function C½xðnÞ�,
which is defined as follows:

C½xðnÞ� ¼ x2ðnÞ�xðn�1Þxðnþ1Þ ð2Þ

The instantaneous frequency of a continuous signal is
defined by Oi9d=dt+xðtÞ. C½xðnÞ� is used for estimating
the instantaneous frequency ÔiðnÞ and the instantaneous
amplitude âðnÞ:

ÔiðnÞ �
1

2
arccos 1�

C½xðnþ1Þ�xðn�1Þ�

2C½xðnÞ�

� �
ð3Þ
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�OcþqðnÞ ð4Þ

jâðnÞj �
2C½xðnÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C½xðnþ1Þ�xðn�1Þ�
p ð5Þ

These approximations are valid if the following conditions
hold:

Oa5Oc and k51 ð6Þ

Of 5Oc and
supfqðnÞg

Oc
51 ð7Þ

where Oa and Of are the highest non-zero angular
frequencies of a(n) and q(n), respectively, and k is an
AM modulation index (a(n) assumed to be positive). In
[10] this version of DESA algorithm is called DESA-2.

3. Motivation for analysis in frequency modulation
domain

In this section, we demonstrate frequency modulation
analysis on some examples of speech and piano signals.
We define the energy of the frequency modulating signal
(EFMS) and show that EFMS of speech and piano signals
can be used as a local time–frequency discriminating
factor and used for rejecting the interfering source. These
examples will motivate the formulation of our algorithm.

Harmonic signals, such as vowels in speech or musical
notes played by a harmonic musical instrument, contain
harmonic partials, which are sine signal components
located at integer multiples of the fundamental frequency.
Partials of voiced phonemes in speech signals have a
stronger frequency modulating component than partials
of piano signals. Unvoiced phonemes, such as plosive and
fricative phonemes, do not contain harmonic partials. An
AM–FM decomposition of unvoiced phoneme subbands
produces a noisy FM component with stronger frequency
modulating component than the AM–FM decomposition
of voiced phonemes. To define an algorithm that exploits
this property we need to formulate a quantitative
measure for this phenomenon. Let x(n) denote a time
signal. We assume x(n) is an harmonic signal with one or
more harmonic partials. We treat each partial as a
separate carrier. Most of the AM–FM demodulation
algorithms, including DESA, cannot deal with multiple
carriers in the analyzed signal. To apply the analysis we
note that each of the signals produced by filtering the
analyzed signal with a narrow band filterbank likely
contains a single AM–FM modulated carrier. In our work
we use STFT filterbank.

Let Xk(m) be the STFT transform of x(n), where k and m

are frequency and time indices. The STFT transform is
given by

XkðmÞ ¼
X1

n ¼ �1

wðmM�nÞxðnÞe�jð2p=NÞkn ð8Þ

where N and M define the frequency and time resolution
of the transform, and w(n) is the analysis window with
support of N samples and angular bandwidth of bw. Eq. (8)
can be rewritten in a filter like form as

XkðmÞ ¼ e�jð2p=NÞmMðx �waÞðmMÞ ð9Þ
where wa(n) is an analytic bandpass filter generated by
shifting w(n) in frequency by 2pk=N radians.

The time series Xk(m) indexed by m, can be treated as a
time domain bandpass version of the analytic signal of
x(n) with bandpass center frequency shifted to zero. We
assume that only a single partial is present in Xk(m). This
allows us to use AM–FM decomposition algorithm. In the
AM–FM decomposition, each harmonic partial will act as
a carrier. Instantaneous deviations from the carrier
frequency (caused by intonation in speech and speech
production nonlinearities) will appear as a frequency-
modulating signal.

3.1. EFMS calculation

Assume the AM–FM model for the l-th harmonic
partial

xlðnÞ ¼ aðnÞcos Ocnþ
Xn

i ¼ 0

qðiÞ
1

T
þy

 !
ð10Þ

Let bx be the angular bandwidth of xl(n).
Assume that almost all the energy of xl(n) resides in the

k-th subband of the STFT filterbank. This results in the
approximation

xaðnÞ � xlðnÞ �waðnÞ ð11Þ

where xa(n) is an analytic signal of xl(n). Eq. (11) holds
only approximately since the theoretical bandwidth of a
frequency modulated signal is infinite. We can also write

Ocþ
bx

2
o

2p
N

kþ
bw

2
\Oc�

bx

2
4

2p
N

k�
bw

2
ð12Þ

2p
N

k�Oc

����
����o bw�bx

2
ð13Þ

After modulating xa(n) by a complex exponent e�j2pm=N

and decimation by a factor of M, the output of the STFT
filterbank (9) is given by

XkðmÞ � aðmMÞexpj ~OcmMþ
XmM

i ¼ 0

qðiÞ
1

T
þy

 !
ð14Þ

where

~Oc ¼Oc�
2p
N

k ð15Þ

and from (13) we have j ~Ocjobw=2. The angular band-
widths of a(n) and q(n) grow by a factor of M, and ~Oc is
close to zero. Therefore, the DESA assumptions
Of 5

~Oc ,Oa5
~Oc no longer hold. The remedy is to

modulate the filterbank output to some intermediate
frequency Oif by multiplying Xk(m) by ejOif m.

We choose Oif ¼ p=3 (shift Xk(m) by p=3 (rad/s)) i.e. we
set a new carrier frequency to be in the lower third of the
frequency axis so as to minimize the risk of aliasing
(although Oif ¼ p=2 would be a more appropriate choice,
the experimental results showed better performance
when Oif ¼ p=3 is used). DESA operates on the real valued
signals, we use only the in-phase component of the
modulated filterbank output

~X kðnÞ ¼RðXkðnÞe
jOif nÞ ð16Þ



ARTICLE IN PRESS

Y. Litvin et al. / Signal Processing 90 (2010) 3147–31633150
To avoid aliasing during modulation and in-phase
component extraction the following conditions must hold:

Oif 4
bx

2
M ð17Þ

Oif op� bx

2
M ð18Þ

Both conditions can be satisfied by choosing a sufficiently
small M. It can be shown that if Oif ¼ ap, a 2 ½0,1� then the
value of M must satisfy MrminfaN,ð1�aÞNg.

Fig. 1 shows an example of the processing steps. A
synthetic harmonic signal with 10 harmonic partials is used
in this example. The first partial is an FM modulated signal.
The FM modulating signal is a sinusoid having an amplitude
of 2p and a frequency of 10 Hz. The Fourier transform of the
signal is shown in Fig. 1(a). Most of the energy of the first
partial is located in the 21-st band. The Fourier transform of
X21(m) is shown in Fig. 1(b). X21(m) is a complex signal,
hence the magnitude values of the Fourier transform are not
symmetric. Fig. 1(c) shows the Fourier transform of ~X 21ðnÞ.
~X 21ðnÞ is a real valued signal modulated to the intermediate
frequency. The dashed line shows regions of the spectrum
originally filtered out by wa.

DESA estimator can now be used to find the FM
component of ~X kðnÞ

Ô i,kðnÞ �
1

2
arccos 1�

C½ ~X kðnþ1Þ� ~X kðn�1Þ�

2C½ ~X kðnÞ�

 !
ð19Þ
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Fig. 1. Input signal preprocessing for the DESA. A dashed line shows which port

that contains 10 carriers; (b) frequency domain representation of the signal at th

the intermediate frequency ( ~X kðnÞ).
The instantaneous frequency Ôi also includes a con-
stant ~Oc term. To remove it we filter Ôi with a high-pass
filter hq which results in an estimate of q(n). Note that Oc

is not necessarily constant in time, but we assume that it
changes slowly compared to q(n),

q̂ðnÞ � ðÔ i � hqÞðnÞ ð20Þ

� ðð ~OcþOifþqðnÞÞ � hqÞðnÞ ð21Þ

Define the EFMS by

ÊkðmÞ9ðu � q̂
2
k ÞðmÞ ð22Þ

where u(n) is an Nu points Hamming window designed to
reduce the variance of the energy estimator q̂

2
k ðmÞ. In the

rest of the paper we denote the EFMS of a time signal x(n)
by ÊfxgkðmÞ and omit x and the indices k and m when the
meaning is clear from the context.

Fig. 2 shows a speech fragment containing the
utterance ‘‘don’t ask me to carry’’. The upper pane
shows the 50 lower frequency bands of the STFT
filterbank output. First six harmonic partials are visible.
We manually pick the 16-th frequency band which
contains the second harmonic partial for some period of
time. The second pane shows amplitude envelope â16ðmÞ

of the selected frequency band estimated by the DESA.
There are several amplitude peaks corresponding to
voiced phonemes. The third pane shows the Ô i,16

estimate. The lowest pane shows EFMS Ê16ðmÞ values. In
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50 100
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e STFT filterbank output (Xk(m)); (c) STFT filterbank output modulated to
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â 1
7

0
0.02
0.04

Ω̂
i,1

7

2.8 3 3.2 3.4 3.6 3.8
0

10

20

Time [sec]

Ê
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the 17-th frequency band. Lower pane shows the EFMS (Ê17ðnÞ).
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the voiced parts of the speech fragment the energy of the
FM component is low. Unvoiced phonemes are not
described well by the AM–FM model. The DESA estimate
of the instantaneous frequency has high variance at these
time–frequency locations. As a result, the values of EFMS
at the location of unvoiced phonemes are high. This
observation is consistent with our claim that the EFMS of
a speech signal is higher than the EFMS of a piano play.

The piano play fragment depicted in Fig. 3 contains
several piano notes. As in the previous case, we manually
pick a frequency band that contains a single harmonic
partial. We take the 17-th band and perform the same
analysis. We observe that Ê17ðmÞ values are low while the
note is being played, hence we have an evidence that a
piano produces audio signals with low EFMS. From the
examination of Figs. 2 and 3 we conclude that in order to
discriminate between speech and piano signals using
amplitude modulating envelope it is necessary to define
some non-trivial model that would describe different
onset and decay behaviors of these signals. On the other
hand, two signal classes can be easily distinguished by
examining a one-dimensional value of the EFMS.

The width of the STFT bands as well as the DESA
assumptions (6) and (7) imply some limitations on the
bandwidth of the AM–FM signal components. Despite
these limitations, our algorithm is not too sensitive to
violations of these conditions. Our basic assumption is
that a speech signal likely has an FM component with
higher bandwidth and energy than music signal. If the
bandwidth of the FM signal is too high for (7) to hold, the
DESA produces an inaccurate estimate of the FM compo-
nent. This estimate has characteristics of high energy
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noise, hence the time–frequency regions containing a
misbehaving signal will be classified as speech. This is
consistent with the desired outcome.

In the next example, we apply EFMS analysis to
synthetic signals: an harmonic signal (x1) and white noise
with unit variance (x2). The harmonic signal has funda-
mental frequency f0=250 Hz and Np=30 partials. Let p

denote the index of a partial. The carrier frequency and
the amplitude of the frequency modulating signal of p-th
partial are f0 � p and A0 � p. Both grow linearly with the
index of the partial, like in speech or music signals. The
frequency fFM of the FM component is fixed fFM=10 Hz:

x1ðnÞ ¼
XNp

p ¼ 1

x1,pðnÞ ð23Þ

x1,pðnÞ ¼ cos 2pf0pnþ
Xn

i ¼ 0

qpðnÞ
1

T

 !
ð24Þ
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Fig. 4. Distribution of the EFMS values for the synthetic signal (x1) having 3

component. A dashed line shows theoretically predicted values.
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Ê

0 1000 2000 3000 4000
0

5

10

15

20

25

Fig. 5. Distribution of the EFMS v
qpðnÞ ¼ 2pA0pcosð2pfFMnÞ ð25Þ

Fig. 4 shows the distribution of the EFMS values for
every value of frequency (only values of EFMS that are
located at time–frequency bins that have high energy
participate in this analysis. The exact method for selecting
these frequency bins is described in Section 4.1.). The
amplitude of the FM signal grows linearly with the index
of the partial. In the case of a sinusoidal signal, the square
root of signal energy is proportional to its amplitude. The
dashed line in Fig. 4 shows theoretically predicted values
of

ffiffiffî
E

p
. It is given by ðA0=

ffiffiffi
2
p

f0Þf . Actual values of
ffiffiffî
E

p
are

located in the vicinity of the theoretically predicted
values, but not exactly on it. There are several reasons
for the mismatch:
�

z]
50

0 p

z]

50

alu
Bandpass filtering of a frequency modulated signal
alters its sidebands. This results in distortion of the FM
modulating signal. This is especially true for high
frequency partials: their bandwidth is relatively high
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due to the high amplitude of the modulating signal.

�
 Partials that ‘‘leak’’ to neighboring bands have low SNR

levels and result in EFMS estimates similar to EFMS of
white noise.

White noise signal is not described well by the AM–FM
model. Hence, the EFMS values in all frequency bands are
distributed randomly around some constant value as can
be seen in Fig. 5.

Figs. 6 and 7 show the EFMS distributions for speech
and piano signals, respectively. The EFMS analysis of
speech resembles white noise for frequency greater than
500 Hz. Smaller values of EFMS are present under 500 Hz
but nevertheless they are generally higher than EFMS
values of a piano play. The piano play has relatively low
values of EFMS that increase gradually with frequency.

Harmonic signal model predicts linear growth of
ffiffiffî
E

p
.

Fig. 7 shows rough resemblance to a linear growth.
The training part of the separation algorithm presented

in the next section, yields an estimate of an empirical
Frequency [H
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Fig. 6. Distribution of the EFMS
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Fig. 7. Distribution of the EFMS v
probability density function (pdf) independent of the
frequency band. This is a simplified training procedure
since we saw in Figs. 6 and 7 that the EFMS distribution
depends on the frequency. Despite that, we found that
this approach is sufficient for our purposes.

Figs. 8–12 show an empirical distribution of
ffiffiffî
E

p
. Each

figure compares the empirical pdf of speech and music of
different types. More specifically, wind quartet, piano,
piano–brass duet, guitar and orchestra. Smaller overlap
between music and speech pdf means smaller theoretical
classification error. We observe that the overlapping area
is smaller for wind quartet, piano and guitar (Figs. 8–10)
compared to piano–brass duet and orchestra (Figs. 11 and
12). This observation allows us to predict that the former
mixtures can be separated better than the later. We
confirm this prediction by the experimental results pre-
sented in Section 6. A more comprehensive discussion
regarding the advantages and shortcomings of the pro-
posed feature in context of different types of music is
given in Sections 6 and 7.
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Fig. 10. Empirical probability density function of a musical excerpt played by a guitar and speech.
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Fig. 12. Empirical probability density function of a musical excerpt played by an orchestra and speech.
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4. Source separation procedure

In this section, we define a mixture model and the
accompanying notations. We describe the model training
and separation procedures.

Let s1(n) and s2(n) be time domain signals that belong
to different signal classes. Let x(n) be a mixture of s1(n)
and s2(n)

xðnÞ ¼ s1ðnÞþs2ðnÞ

As in the previous sections, we denote the STFT by capital
letters, e.g. STFT of sc(n) is denoted by Sc,k(m), where c 2

f1,2g denotes the signal class index. In the training stage
we find the empirical probability density function for
Êfs1g and Êfs2g. In the separation stage we use the
empirical pdf to define a minimum risk decision rule
for classification of the STFT time–frequency bins based
on Êfxg.
4.1. Training

The empirical pdf for class cðP̂rcðÊÞÞ is estimated using
a normalized histogram of

fÊfscgkðmÞjðk,mÞ 2 Scg

where Sc is a set of time–frequency bin indices where the
energy is high compared to the neighboring bins. Let Mk,m

be the median of energy values in the time–frequency
vicinity of (k,m) bin

MfScgk,m ¼medianfjSc,iðjÞJji�kjrd,jj�mjrdg ð26Þ

where d defines the vicinity. Define by dE a threshold for
energy values, Sc is given by

Sc9 ðk,mÞ 20log10
jSc,kðmÞj

MfScgk,m
ZdE

����
� �

ð27Þ

Fig. 9 shows empirical pdfs of
ffiffiffî
E

p
for speech and piano

play signals. Large non-overlapping areas indicate that a
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separation of these signals using only Êfxg values may be
possible.

4.2. Separation

In this section, we explain our use of Bayes’ minimum-
cost with reject option decision rule to construct optimal
STFT binary masks, the filtering process and the recovery
of demixed source signal estimates.

Denote by gkðmÞ ¼ ÊfxgkðmÞ the estimated value of
EFMS. Let Hk

(c)(m) be an hypothesis that the signal from
source c is present in (k,m) time–frequency bin. We will
omit indices (k,m) for brevity where possible. Let R1 and
R2 be the classification decision regions for different
classes and Rr a rejection region, i.e. we prefer not to
assign the sample into either class [25]. Let lij be a penalty
for assigning a sample g to class i when in fact the sample
belongs to class j. We define a loss function

L¼

Z
R1

l12pðHð2ÞjgÞpðgÞdgþ
Z
R2

l21pðHð1ÞjgÞpðgÞdg

þ

Z
Rr

lrpðgÞdg

To minimize this loss function, the decision regions
should satisfy

g 2 Ri ()
lijpðH

ðjÞjgÞpðgÞoljipðH
ðiÞjgÞpðgÞ

lijpðH
ðjÞjgÞpðgÞolrpðgÞ

(

g 2 Rr () lrpðgÞrlijpðH
ðjÞjgÞpðgÞ i,j 2 f1,2g; iaj:

We define Z9pðgjHð1ÞÞpðHð1ÞÞ=pðgjHð2ÞÞpðHð2ÞÞ. Likelihood
values pðgjHð1ÞÞ and pðgjHð2ÞÞ are estimated using the
empirical probability density function obtained during the
training. The p(H(1)) and p(H(2)) reflect prior belief of
either class to be present in a time–frequency bin. Here
we assume constant values of 1

2 for p(H(1)) and p(H(2)). We
note that these values affect the operation point of the
algorithm. For example, a larger value of p(H(1)) results in
smaller distortion of the first-class signal at the expense of
lower rejection rate of the interfering signal. Values of
p(H(1)) and p(H(2)) can be estimated more accurately for
any signal class by analyzing the sparsity of the signal
representation in the STFT domain.

Using Bayes’ formula, the decision rule can be
rewritten as

g 2 Rr ()

lr

l12
r

1

1þZ
lr

l21
r

1

1þ1=Z

8>>><
>>>:

ð28Þ

g 2 R1 ()

l12

l21
oZ

lr

l12
4

1

1þZ

8>>><
>>>:

ð29Þ

g 2 R2 ()

l12

l21
4Z

lr

l21
4

1

1þ1=Z

8>>><
>>>:

ð30Þ
We can tune the algorithm by changing values of
l12,l21,lr . To decrease the number of class 1 time–
frequency bins that are classified falsely as class 2, we
may increase l12. This will result in higher penalty for this
kind of mistake on the one hand (less false alarm errors),
but on the other hand more time–frequency bins that
truly belong to class 1 will now be classified as class 2
(more misdetect errors). If we decrease lr , more time–
frequency bins will be rejected, i.e. not assigned to any of
the signal classes. This will increase the number of time–
frequency bins that cannot be classified reliably and will
decrease the number of time–frequency bins of the
interfering signal in both audio sources simultaneously.
In our application, actual values of l12, l21, and lr are
tuned manually.

We design a binary mask in the STFT domain by
assigning each time–frequency bin to one of the signal
classes based on (28)–(30). Time–frequency bins that are
assigned to the interfering source or rejected are zeroed
and those assigned to the desired signal are set to 1. For
the binary mask to be effective, we assume that
approximate W-disjoint orthogonality [21] holds. We
verify this assumption in Section 6. Binary masks are
defined by

MðcÞk ðmÞ ¼
1, gkðmÞ 2 Rc

0 otherwise

�
ð31Þ

c 2 f1,2g ð32Þ

The interfering source is removed by multiplying the STFT
of the mixture by M(c)

X̂
ðcÞ

k ðmÞ ¼MðcÞk ðmÞXkðmÞ ð33Þ

Inverse STFT gives a time domain estimate of the demixed
source:

x̂
ðcÞ
ðnÞ ¼ ISTFTfX̂

ðcÞ

k ðmÞg ð34Þ

5. Evaluation criteria

In this section, we define the evaluation criteria used
later on to evaluate the performance of the proposed
algorithm and compare it to other separation algorithms.
We use common distortion measures as described in [26]
and BSS_EVAL toolbox [27]. Mixture components s1 and s2

are assumed uncorrelated. Let ŝc be an estimate of sc. The
estimator will have the following decomposition:

ŝc ¼ ycþec,interfþec,artif ð35Þ

yc :¼ /ŝc ,scSsc ð36Þ

ec,interf :¼ /ŝc ,sc0Ssc0 ð37Þ

ec,artif :¼ ŝc�ðycþ/ŝc ,sc0Ssc0 Þ ð38Þ

where c is the target class and c
0

is the interfering class.
Now the following criteria are defined:

SDR :¼ 10 log10
JycJ

2

Jec,interfþec,artifJ
2

ð39Þ
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SIR :¼ 10 log10
JycJ

2

Jec,interfJ
2

ð40Þ

SAR :¼ 10 log10

Jycþec,interfJ
2

Jec,artifJ
2

ð41Þ

SDR measures the total amount of distortion introduced
to the original signal, both due to the interfering signal
and artifacts introduced by the algorithm. SIR measures
the amount of distortion introduced to the original signal
by the interfering signal. SAR measures the amount of
artifacts introduced to the original signal by the separa-
tion algorithm that do not originate in the interfering
signal.

An additional measure employed in some experiments
is the log spectral distance (LSD)

LSDðX,YÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k ¼ 1

XN

m ¼ 1

20 log10
jXkðmÞj

jYkðmÞj

� �2
vuut

where Xk(m) and Yk(m) are signals in the STFT domain.

6. Experimental results

In this section, we present experimental results. First,
we verify the feasibility of source separation on synthetic
signals. Then, we separate real audio recordings of speech
and musical excerpts. We compare the performance of the
proposed algorithm to an existing source separation
algorithm. We study the effect of particular speakers
and different musical instruments on the performance of
the algorithm.

6.1. Synthetic signals separation

First we verify the ability of the proposed algorithm to
segregate between signals that differ in their frequency
modulation extent. We choose synthetic signals whose
properties are similar to voiced phonemes and piano play
(i.e. several frequency modulated partials). More specifi-
cally:

scðnÞ ¼
XNh

l ¼ 0

cos l � 2pf ðcÞc n=fsþ
Xn

m ¼ 0

qðcÞl ðmÞ
1

T

 !
ð42Þ
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Fig. 13. Spectrogram (in dB) of synthetic signals used for testing: (a) strongly
qðcÞl ðnÞ ¼ l � dðcÞcosð2pf ðcÞm n=fsÞ ð43Þ

where c 2 f1,2g is the class index, Nh is the number of
harmonic partials, fc, fs and fm are carrier, sampling and
modulation frequencies, respectively, and d is the mod-
ulating signal amplitude. We choose Nh=6, fc

(1)=400 Hz,
fm
(1)=10 Hz, d(1)=20, fc

(2)=500 Hz, fm
(2)=10 Hz, d(1)=1. Note

that dð1Þbdð2Þ as assumed by our model for speech and
piano. We normalize the variance of sc to 1. Fig. 13 shows
spectrograms of synthetic signals used in this experiment,
and Fig. 14 shows source signal estimates recovered from
the mixture.

We perform an additional experiment that shows that
our algorithm is capable of separating white noise from
weakly frequency-modulated signal. These signals have
properties similar to unvoiced phonemes and piano play.
Fig. 15(a) shows the spectrogram of the mixture, and
Fig. 15(b) shows the estimated harmonic component of
the mixture. No white noise residua are visible in the
harmonic component estimate. Table 1 shows separation
performance results of experiments performed on
synthetic signals. A small artifact is visible at Fig. 14(b).
We notice that some energy of the second partial
(800 Hz ) of s1 has ‘‘leaked’’ to ŝ2. We attribute this
leakage to a simplified learning of EFMS distribution at
different frequency bands. The amplitude of the frequency
modulating signals of each harmonic partial grows
linearly with the amplitude of the frequency modulating
signal of the fundamental partial as shown in Fig. 4. This
behavior is ignored by the training of signal model.
By visually examining the spectrograms of the signal
estimates and noticing high values of objective measures
we conclude that our method is capable of segregating
two audio signals that have similar properties to real
speech and real piano play signals.
6.2. Separation of a speech and piano play mixture

Now we describe the simulation and the informal
listening test results of the proposed algorithm and
compare its performance to a Gaussian Mixture
Model (GMM) monaural separation algorithm [2]. We
use 60 s of speech (either male or female) taken
from TIMIT database sampled at 16 KHz and Chopin’s
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frequency modulated signal; (b) weakly frequency modulated signal.



ARTICLE IN PRESS

Time [sec]

Fr
eq

ue
nc

y 
[H

z]

0 0.5 1 1.5
0

1000
2000
3000
4000
5000
6000
7000
8000

−20

−10

0

10

20

30

40

Time [sec]

Fr
eq

ue
nc

y 
[H

z]

0 0.5 1 1.5
0

1000
2000
3000
4000
5000
6000
7000
8000

−20

−10

0

10

20

30

40

Fig. 15. Spectrograms (in dB) of (a) a mix of white noise and weakly frequency-modulated signal; (b) estimate of weakly frequency modulated signal.

Table 1
Synthetic signal separation.

SDR1 SIR1 SAR1 SDR2 SIR2 SAR2

(a) 10.4 15.3 12.3 10.8 24.5 11.1

(b) 9.8 10.4 18.6 15.2 35.8 15.2

(a) Two frequency modulated Signals; (b) noise and frequency

modulated signal.

Table 2
Separation performance analysis.

SDR1 SIR1 SAR1 LSD1 SDR2 SIR2 SAR2 LSD2

Oracle mask 18.9 42.6 18.9 0.73 17.9 47.2 18.0 0.8

EFMS female 6.0 11.5 7.7 1.9 5.8 20.6 6.0 1.6

EFMS male 5.7 11.8 7.3 2.4 5.5 17.3 5.9 1.6

GMM 2.4 9.3 3.8 2.9 2.6 7.9 4.8 2.5
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Fig. 14. Spectrograms (in dB) of (a) an estimate of strongly frequency modulated signal; (b) weakly frequency modulated signal. Both signals are

recovered from a 0 dB mixture.
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prelude for piano Opus 28 No. 6 for GMM training. We
use 1024 points STFT, Hamming synthesis window,
50% overlap and 12 components GMM. The parameters
used for the proposed algorithm were: N=1024,
M=64, Nu=121, dE ¼ 15 dB, l12 ¼ l21 ¼ 1, lr ¼1. The
high-pass filter used for the removal of Oc component
was a 122 taps FIR filter with stop angular frequency
of 0:01p.

The W-DO value [21] for the pair of signals used in our
experiment is 0.94, which according to [21] guarantees
perceptually perfect separation when the following binary
masks are used in the STFT domain:

~M
ð1Þ

k ðmÞ ¼
1,
jS1,kðmÞj

jS2,kðmÞj
41

0 otherwise

8<
: ð44Þ
~M
ð2Þ

k ðmÞ ¼
1,
jS1,kðmÞj

jS2,kðmÞj
r1

0 otherwise

8<
: ð45Þ

In [28] these masks were coined ‘‘oracle’’ masks. The
performance of the oracle mask in source separation
induces an upper bound on the performance of our
algorithm. We present the results of source separation
using these masks together with other separation results.

We calculated SDR and LSD measures using 30–120 s
long test sequences. For all verified test signal length, the
calculated measure values fell into a 0.2 dB range, hence
the sensitivity of these measures to the test sequence
length is relatively low. We evaluated the performance of
algorithms using 45 s of speech and piano signals. We
used speech and music excerpts different from the ones
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used for training. Chopin’s prelude for piano Opus 28 No.
7 was used as a test musical excerpt.

The results are shown in Table 2. A 0 dB mixture of test
signals was used in all experiments. When the perfor-
mance was evaluated using a non-separated mixture, the
SDR and SIR measures are approximately zero (70.3 dB)
and the SAR measure was greater than 260 dB. We notice
that the separation quality of the mixture that contained
female speech is slightly higher than male speech. This
can be explained by the absence of low frequency pitch
tracks that are falsely estimated as music components.
We elaborate on this issue in the following paragraphs
when we discuss the residual signal.

Figs. 16 and 17 show spectrograms of speech and piano
play signals used in the mixture together with the signals
recovered by the GMM based algorithm and by the
proposed algorithm. Smaller amounts of interfering
signals can be seen in signals recovered by the proposed
method compared to the GMM based algorithm. The
spectrogram of piano play signal reveals that the non-
harmonic components of piano note onsets are missing.
The reason is that piano strings excited by a strike of a felt
covered hammer produce a strong non-harmonic
component near the note onset. Only harmonic
components of piano play are detected by our algorithm
and the rest of the signal leaks into the estimated speech
component.

Informal listening to the signals separated by the
proposed algorithm reveals that despite visible artifacts in
the extracted speech and piano signals, the proposed
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Fig. 16. Spectrograms (in dB) of the (a) clean, (b) GMM based algorithm recover

speech signal after applying the algorithm to clean speech signal.
method produces perceptually more plausible sound than
the GMM based algorithm. We note that a mixture
separated using oracle masks perceptually has almost
perfect perceptual quality.

To find out which part of the speech signal leaks into
the piano channel, we applied our algorithm to a clean
speech signal (instead of speech–piano mixture, i.e.
x(n)=s1(n)). Perfect separation algorithm would estimate
ŝ2ðnÞ ¼ 0. The spectrogram of the actual ŝ2 signal is
presented in Fig. 16(d). The leaking speech parts are
harmonic in their nature, located mostly in low frequen-
cies and have constant pitch over relatively long periods
of time (0.5–1 s). These low frequency harmonic partials
can also be seen in Fig. 17(c). The low-frequency leaking
components may be the reason for a slightly better
separation performance for female over male speakers.
A certain amount of musical noise is also present. Apply-
ing the algorithm to a clean piano play signal and
examining ŝ1, Fig. 17(d) reveals that most of the leaking
signal results from the piano hammer strikes. This
conclusion was confirmed by informal listening.

To achieve the most perceptually plausible separation
results we tuned l12, l21, and lr manually. We chose
l12 ¼ 4,l21 ¼ 1, and lr ¼ 0:4. We measured SDR1=�0.1,
SIR1=18.6, SAR1=0.0, SDR2=5.5, SIR2=21.5, SAR2=5.6.
Although some measures show deteriorated performance,
the extracted speech is intelligible and contains a very low
amount of audible interfering signal. Piano audible quality
remains similar to the previous experiment with slightly
higher rate of interfering signal rejection.
Time [sec]

Fr
eq

ue
nc

y 
[H

z]

0 0.5 1 1.5 2 2.5 3 3.5
0

1000
2000
3000
4000
5000
6000
7000
8000

−20

−10

0

10

20

30

40

Time [sec]

Fr
eq

ue
nc

y 
[H

z]

0 1 2 3 4 5 6 7
0

1000
2000
3000
4000
5000
6000
7000

−20
−15
−10
−5
0
5
10
15
20

ed, (c) the proposed algorithm recovered speech signals, and (d) residual



ARTICLE IN PRESS

Time [sec]

Fr
eq

ue
nc

y 
[H

z]

0 0.5 1 1.5 2 2.5 3 3.5
0

1000
2000
3000
4000
5000
6000
7000
8000

−20

−10

0

10

20

30

40

Time [sec]

Fr
eq

ue
nc

y 
[H

z]

0 0.5 1 1.5 2 2.5 3 3.5
0

1000
2000
3000
4000
5000
6000
7000
8000

−20

−10

0

10

20

30

40

Time [sec]

Fr
eq

ue
nc

y 
[H

z]

0 0.5 1 1.5 2 2.5 3 3.5
0

1000
2000
3000
4000
5000
6000
7000
8000

−20

−10

0

10

20

30

40

Time [sec]

Fr
eq

ue
nc

y 
[H

z]

0 1 2 3 4 5 6 7
0

1000
2000
3000
4000
5000
6000
7000

−20
−15
−10
−5
0
5
10
15
20

Fig. 17. Spectrograms (in dB) of the (a) clean, (b) GMM based algorithm recovered, (c) the proposed algorithm recovered piano signals, and (d) residual

piano play signal after applying the algorithm to clean piano signal.
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Fig. 18. Histograms of SDR1 and SDR2 measures calculated for 200 speech/piano separation experiments performed on different speakers.
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6.3. Dependency on a particular speaker

We studied the dependency of a particular speaker on
the quality of the separated signal. Two separate male and
female speech models were trained using 60 s of TIMIT
speech. We generated 200 speech excerpts containing
concatenated sentences pronounced by 200 TIMIT speak-
ers, different from those used for the model training. Each
one of the 200 speech excerpts was mixed with a piano
play excerpt (Chopin prelude Opus 28 No. 7) and the
sources were extracted using our method. The values of
SDR1 and SDR2 were calculated. These values are depicted
in the histograms in Fig. 18. Eighty-five percent of all SDR1

and SDR2 values are found within a 2 dB range, and 98% of
all SDR1 and SDR2 values are found within a 3 dB range.
This means that the dependency of our algorithm on a
particular speaker is low. By listening to the speech
excerpts that were poorly separated, we noticed that they
were pronounced by a monotone reading voice. This kind
of speech is uncommon in regular conversation and has
almost constant pitch which results in low values of EFMS
and time–frequency bin misclassification.
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6.4. Dependency on the type of music

To demonstrate the applicability of the proposed
method to different musical instruments we examine
separation performance on the following musical
excerpts: wind quartet, slow piano, fast piano, orchestra,
piano and brass duet, and fast playing guitar. The training
of the algorithm is performed on the first minute of the
musical piece and the separation performance is eval-
uated on the second minute of the same piece. The same
piano model (based on slow piano play) was used for
separation of speech from slow and fast piano play.
Although we showed that a higher quality of separation
can be achieved on female speech compared to the male
speech, we note that the algorithm has similar perfor-
mance when trained on a single or mixed gender speech.
In this experiment, mixed male/female speech was used
for training and testing of the algorithm.

Table 3 shows the W-DO together with the SDR of the
separated signals produced by our algorithm. The best
separation is achieved in the case of wind quartet excerpt.

Despite a relatively high objective measure achieved in
the separation of speech from guitar play, the perceptual
quality of musical signal is rather low. Although, the melody
can be easily recognized and speech residua are low, a pluck
sound, characteristic to a guitar play is missing from the
extracted musical signal. This makes it hard to identify that
the musical piece is played by a guitar.

The separation performance of our algorithm on a fast
piano piece is inferior compared to a slow piano piece.
Long time segments with a constant pitch improve EFMS
estimation while a naive approach to smoothing in
Eq. (22) blurs the onsets and offsets of notes and affects
mostly fast musical pieces.

The fast tempo of the piano/brass duet is similar to the
fast piano piece, except for the additional monophonic
brass instrument. In this case the separation performance
is similar to the fast playing piano. This is not surprising,
since both musical pieces are similar in their tempo and
the STFT representation sparsity.

The worst separation was observed on a mixture of
speech and orchestra. Percussion instruments were pre-
sent in the orchestra. These instruments have only
Table 3
Analysis of separation performance for different musical instruments

and styles.

W-DO SDR1 SDR2

Wind quarteta 0.95 9.4 9.3

Piano slowb 0.95 5.6 5.3

Guitarc 0.93 4.85 4.75

Piano fastd 0.92 4.4 4.1

Piano/brass duete 0.93 4.0 4.2

Orchestraf 0.92 2.2 2.1

a Beethoven: Quartet No. 10 in Eb, Op. 74.
b Chopin: prelude Opus 28 No. 7.
c Francisco Tarrega: Romance De Juegos Prohobidos.
d Chopin: prelude Opus 28 No. 1.
e Loes: This Little Light of Mine.
f Berlioz: Apotheose from symphonic funebre et triomphale.
non-harmonic components hence our algorithm confuses
them with speech. Indeed, when listening to the esti-
mated mixture components, all percussion instruments
are audible in the speech estimate.

We conclude that the separation performance deterio-
rates when music present in the mixture has a large amount
of non-harmonic components. The musical excerpts that
were most poorly separated by the algorithm had also
lowest W-DO values. Despite this fact, we cannot conclude
that low W-DO values were the reason for poor separation
quality. The differences among tested cases in the W-DO
measure are not very large. According to [21] a perfect
separation would be guaranteed if appropriate masks would
have been used. Besides, in our experiments musical
excerpts with lower W-DO values also had a greater amount
of non-harmonic components.

Summarizing the experimental results we conclude
that for the speech/piano play scenario (Table 2), the
proposed algorithm exhibits superior separation perfor-
mance both in terms of objective measures and subjective
listening tests when compared to the GMM based algo-
rithm. Relatively a short training signal (tens of seconds)
is sufficient for the algorithm. The quality of the extracted
female speech is superior to the quality of the extracted
male speech. The algorithm is not sensitive to a particular
speaker; however, the performance slightly deteriorates
when the speech is pronounced by a monotone reading
voice, not common to regular speech.

We studied differences in separation performance for
various types of music and musical instruments. Musical
instruments that have less non-harmonic components are
better separated by the proposed algorithm. Slow musical
excerpts are better separated than the fast ones. Percus-
sive instruments cannot be separated from speech by our
method. Failure to distinguish non-harmonic signal
components in music and speech produces audible
artifacts in the extracted signals.

Audio files used for training and performance evalua-
tion as well as separation results can be downloaded from
http://sipl.technion.ac.il/�elitvin/EFMS/.
7. Conclusions

We have presented and evaluated a novel technique
for single-channel source separation based on the energy
of frequency modulating signal. The proposed method
requires a relatively simple training and produces separa-
tion results that are superior to a more complicated GMM
based method, when compared in the speech/piano play
separation scenario. We demonstrated that the FM based
instantaneous features are well localized in time and
frequency, and carry sufficient information to allow signal
classification and separation.

There are two key properties that would guaranty
a good separation. First, there must be a significant
difference in the energy of subband FM components of
two signal classes. In other words, it is important that one
of the signals would have more rapidly changing pitch
tracks. It is also important that at most one of the signals
would contain non-harmonic components. Second, signals

http://sipl.technion.ac.il/&sim;elitvin/EFMS/
http://sipl.technion.ac.il/&sim;elitvin/EFMS/
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must be W-disjoint orthogonal in order to guaranty good
separation quality using binary masks. Although these
restrictions are rather strict, and not any pair of signal
classes can be separated by the proposed algorithm, we
have shown that for speech and some types of music, the
separation is feasible.

There are several pitfalls in the proposed method. The
EFMS pdf is estimated independently of the frequency
band index. More accurate statistical modeling for each
frequency band or a group of neighboring frequency
bands can solve the problem of signal leakage at lower
frequencies as described in Section 6.

The algorithm classifies signals based only on the energy
of the subband FM component and it is blind to different FM
signal nuances that are beyond their energy level. Detailed
subband FM signal analysis, such as spectral decomposition
or time varying statistics, may provide a better classification
feature. It may extend the variety of audio classes suitable
for separation by our method, improve the accuracy of
speech/music separation, and allow addressing a multiclass
separation problem.

Non-harmonic components present in some types of
music are impossible to separate using our method.
Additional information must be employed by the algo-
rithm to enable separation of non-harmonic signals. It
might be useful to incorporate other features used in
Music Information Retrieval community, for example the
GMM based algorithm proposed by Benaroya et al. [29].

The computational complexity of the separation
procedure is relatively low. The most computationally
intensive processing stages are the standard FFT and the
DESA, both evaluated one time per each frame. The
computational complexity of the training procedure is
slightly higher due to calculation of the median. The
algorithmic delay is defined by half the length of the EFMS
smoothing window. In our experimental setup the
resulting delay value was 242 ms. A real-time implemen-
tation seems to be possible, although the delay may be too
high in some applications.

The plots of empirical pdf values of the EFMS for
speech and music suggest that the EFMS can serve as a
good classification feature. In experiments that are not
reported in this paper, we observed that in the task of
frame-by-frame classification of piano and speech signals
the EFMS feature showed superior performance compared
to the well known MFCC feature.

Despite the training signals availability requirement, our
method is applicable to various real life applications such as
audio tracks remastering or speech enhancement in the
presence of music. The proposed algorithm can also operate
in a semi-supervised manner as part of audio editing
software. The properties of subband frequency modulating
signals may provide additional information that may be
useful in other audio processing applications, such as speech
enhancement, audio coding or audio classification.
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