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Multiscale Anomaly Detection Using Diffusion Maps
Gal Mishne and Israel Cohen, Senior Member, IEEE

Abstract—We propose a multiscale approach to anomaly detec-
tion in images, combining spectral dimensionality reduction and a
nearest-neighbor-based anomaly score. We use diffusion maps to
embed the data in a low dimensional representation, which sepa-
rates the anomaly from the background. The diffusion distance be-
tween points is then used to estimate the local density of each pixel
in the new embedding. The diffusion map is constructed based on
a subset of samples from the image and then extended to all other
pixels. Due to the interpolative nature of extension methods, this
may limit the ability of the diffusion map to reveal the presence
of the anomaly in the data. To overcome this limitation, we pro-
pose a multiscale approach based on Gaussian pyramid represen-
tation, which drives the sampling process to ensure separability of
the anomaly from the background clutter. The algorithm is suc-
cessfully tested on side-scan sonar images of sea-mines.

Index Terms—Anomaly detection, automated mine detection,
diffusion maps, multiscale representation, nonlinear dimension-
ality reduction, similarity measure.

I. INTRODUCTION

A NOMALY detection is important in many applications
in image processing, such as target detection in hyper-

spectral [1], [2] or sonar images [3], [4], mammographic image
analysis [5] and defect detection, for example in wafer or fabric
inspection [6], [7]. A robust solution to this problem is impor-
tant in military applications and automation of quality assurance
processes, as the user will be shown only suspicious objects.
Anomaly detection in images is challenging due to several

factors:
• Large size of the data set: images have between tens of
thousands of pixels and up to millions of pixels.

• Noisy features whichmay be falsely detected as anomalies.
• Lack of training data: it is usually very hard to attain la-
beled data for anomaly detection. In addition, the data sets
are unbalanced due to the nature of anomalies: there are
many examples of normal data, but few of the anomalies.
This makes unsupervised methods more desirable than su-
pervised ones.

• High dimensionality of the data: images are usually repre-
sented using high-dimensional features such as the patch
surrounding each pixel, histogram of gradients, etc.
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• Multiple classes of normal data points: in many images the
normal datapoints do not belong to a single cluster.

There are many approaches to anomaly detection in images
based on statistical models, machine learning, saliency based
methods, sparse representations, and more.
Statistical approaches model the data based on its statistical

properties and use this information to estimate whether a test
sample comes from the distribution describing the normal dat-
apoints [2]–[5]. The problem with statistical approaches is that
the choice of the distribution to model the image is not obvious.
In cases where the background is multi-class, estimation of the
parameters of the statistical model becomes complex. Also, a
statistical model which works well for certain images will not
necessarily be easily adapted to a new application.
Anomaly detection methods based on machine learning re-

quire training data, which is not always available, and they may
not be able to detect new types of anomalies they were not
trained on. The assumption in anomaly detection using sparse
representation is that an anomaly cannot be reconstructed in a
sparse manner using a dictionary learned from normal images.
In such an approach, it is necessary to learn a dictionary tomodel
the normal regions in the image, which requires training data to
model the background.
Chen, Nasrabadi and Tran [1] propose training an additional

dictionary to model the anomalies using training samples. In [6],
the algorithm proposed by Boiman and Irani is based on the
assumption that anomaly patches in an image cannot be com-
posed combining normal patches from the image or from a ref-
erence image. The data (image or video) is divided into ensem-
bles of many small patches at multiple scales, along with their
relative spatial layout. Image regions that cannot be composed
from ensembles of other patches are detected as anomalies. This
algorithm presents impressive results, but it has high computa-
tional complexity in regards to both memory requirements and
run-time. Zontak and Cohen [7] propose an algorithm for wafer
defect detection based on anisotropic kernels. Patches from a
test image are reconstructed using patches taken from a refer-
ence image, and patches which cannot be reconstructed from
the reference patches are anomalous. This algorithm requires a
reference image or an image with a periodic pattern.
The features used to describe images are typically high-di-

mensional, but can be shown to lie on a low-dimensional man-
ifold. Dimensionality reduction techniques find a new, lower-
dimensional representation for the data, which reveals mean-
ingful structures. This is useful in anomaly detection because
such techniques can find a representation which separates the
anomaly from the background. The detection itself will then
be easier in the reduced dimensionality. In addition, such ap-
proaches are data-driven and do not depend on a model for the
data. For example, Madar, Malah and Barzohar [8] perform di-
mensionality reduction using the normalized eigenvectors of the
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Normalized Laplacian Matrix, constructed on a hyperspectral
image. In the lower dimensionality, spectral clustering is em-
ployed to model different types of background terrain. These
clusters are then used in a combined local-global statistical ap-
proach to model the background and detect anomalies. Tsai and
Yang [9] introduce a method for defect detection using dimen-
sionality reduction, in cases where a clean reference image is
available. Dimensionality reduction is performed on the images
using a 1-D vector of quantiles, and the quantile of the input
image is compared to that of the template using a quantile-quan-
tile (Q-Q) plot. Abnormalities are detected in the Q-Q plot using
Chi square distribution.
We propose using diffusion maps [10] for dimensionality re-

duction. Diffusion maps is a spectral dimensionality reduction
method based on the construction of the graph Laplacian on
the data. It has been used successfully in various applications
[11]–[16]. The computational burden of the diffusion maps ap-
proach may be significant as it requires the computation of an
affinity matrix on the data. This requires calculations of the dis-
tance between each pair of samples in the data set. The burden
can be reduced by sampling a subset of data points for which the
diffusion map is calculated and then extending it to all points
using an out-of-sample extension method [17], [18]. Sampling
and extension is common practice in applying diffusion maps to
images due to the large size of the data set [15], [19].
The computational complexity of constructing the affinity

matrix can also be reduced by calculating a sparse affinity ma-
trix, using a k-nearest-neighbor search. Thus, instead of calcu-
lating the kernel between each sample and all the rest of the
samples, the kernel is calculated only between each sample and
its nearest neighbors. This results in a sparse matrix and com-
plexity is further reduced by efficient spectral decomposition al-
gorithms adapted for sparse matrices.When using exact nearest-
neighbor search, it can still be necessary to employ sampling
and out-of-sample extension to reduce run-time, dependent on
the size of the data set. However, fast algorithms for approxi-
mate nearest neighbor (ANN) search in which a degree of error
is allowed in the query result can enable calculating the ma-
trix for all data-points. This removes the need for sampling and
extension. In such methods, the exact k-nearest-neighbors are
not necessarily obtained, but k neighbors that are not too distant
from the exact ones. These approximate queries can greatly re-
duce the search time [20]–[22]. For example, the computational
complexity of the recently proposed randomized approximate
nearest neighbors algorithm (RANN) search method proposed
by Jones et al. [22] scales nearly linearly with the number of
patches. This is useful when the dimensionality of the image fea-
tures is not too high, since the performance of ANN algorithms
deteriorates as the dimension increases. In practice, the perfor-
mance depends on the intrinsic dimension of the data, which
often turns out to be much smaller than the extrinsic dimension,
as we assume in our setting. Since often the intrinsic dimension
of the data is not known in advance, it is difficult to predict how
well an ANN algorithm will do in a specific application.
Rabin and Averbuch recently proposed using diffusion maps

for anomaly detection in a different application than image pro-
cessing: a sensor data fusion framework [23], [24]. Using a hi-
erarchical framework, diffusion maps are applied to the nodes

at every level, first fusing groups of sensors together, and then
fusing the groups together. The score function used is also a
nearest-neighbors based approach, determined by the sum of the
diffusion distances between each instance and its nearest neigh-
bors. The anomalies in this application are contextual anoma-
lies: the sensor measurements are not necessarily anomalies by
themselves, but their co-occurrence in a particular form makes
them anomalies [25]. In [24], the assumption is that the anomaly
is within normal levels for each of the individual sensors and
only becomes distinct through the fusion of the sensors. At the
bottom level of their framework, i.e. the measurements, anom-
alies have values similar to the normal instances. This assump-
tion usually does not hold in image anomaly detection where the
data points are features of image patches or the image patches
themselves.
A disadvantage of using spectral dimensionality reduction

methods is that they are only useful if the normal and anomalous
instances are separable in the lower dimensional embedding of
the data [25]. This issue manifests itself in our approach due to
the process of sampling and out-of-sample extension. We show
how this process can limit the success of the dimensionality re-
duction in revealing the presence of anomalies in the data and
propose an algorithm for overcoming these limitations. We pro-
pose a multiscale approach which drives the sampling process to
ensure separability of the anomaly from the background clutter.
This approach enables to effectively apply diffusion maps to the
problem of anomaly detection. We demonstrate on real images
that this approach greatly improves the anomaly detection, com-
pared to methods which are single-scale.
The main advantage of using diffusion maps in our frame-

work is that it induces a distancemeasure over the data set which
is robust to noise and preserves local neighborhoods. This en-
ables nearest-neighbor anomaly detection in the reduced dimen-
sionality. Our assumption is that anomalies lie in low-density
neighborhoods, whereas normal pixels lie in dense neighbor-
hoods. Based on the local density of the pixel on the lower-di-
mensional manifold, we compute an anomaly score for every
pixel. This score conveys the degree to which the pixel is con-
sidered an anomaly. Depending on the application, the score can
be thresholded to produce a binary map of anomalies, or the
pixels with top-ranking can be outputted to be inspected by the
user. The successful performance of our algorithm is demon-
strated for real images of side-scan sonar where the anomalies
are sea-mines.
Our approach is unsupervised and no prior knowledge is re-

quired regarding the appearance of the anomaly or the back-
ground. No assumptions are made on the statistical model of
the background pixels or if the background can be clustered into
several different classes. We do not use training data or a refer-
ence image. Our approach is data-driven, and can be used in
different applications. The user needs to provide a feature space
for the data set and a distance measure which can be used to
compare the local similarity of data points. In addition, the size
of meaningful anomaly regions in the image can also serve as
input, but it is not necessary.
The paper is organized as follows. Section II reviews the

diffusion map framework for dimensionality reduction and
Section III describes out-of-sample extension methods and
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their limitations in anomaly detection. In Section IV, the pro-
posed multiscale algorithm is presented. Finally, Section V
demonstrates the application of the proposed algorithm to
automatic target detection in real images.

II. DIFFUSION MAPS

Real world data typically has high dimensionality. However,
these high dimensional data sets can be shown to lie on low-di-
mensional manifolds. Finding a low-dimensional representation
of the data is necessary to efficiently handle it and usually re-
veals meaningful structures within the data. This embedding
of high-dimensional data into a low-dimensional manifold is
done by dimensionality reduction methods. In recent years, a
large number of nonlinear techniques for dimensionality reduc-
tion have been proposed [10], [16], [26]–[28]. Several of these
methods are spectral methods, based on the eigenvectors of ad-
jacency matrices of graphs on the data [10], [16], [28]. These
methods take into account the geometry of the data set and the
representation they provide preserves local neighborhood infor-
mation. Diffusion maps [10] is one such technique, based on
the construction of the graph Laplacian of the data set. It has
been used successfully in various applications such as spectral
clustering [11], signal denoising [12], speech enhancement [13],
[14], hyperspectral image representation [15] and word recog-
nition based on lip-reading [16].
Let be a high-dimensional set of data

points. A weighted graph is constructed with the data points
as nodes and the weights of the edges connecting two node is
a measure of the similarity between the two data points. The
weight function , , is required to be symmetric
and pointwise nonnegative. The choice of the weight function
should be determined by the application, since it conveys the
local geometry of the data set. A popular choice is to weight the
edge between the data points and using a Gaussian kernel:

(1)

where is a scale parameter.
Then, a randomwalk is created on the data set by normalizing

the kernel in an asymmetric manner:

(2)

where . The function satisfies
and . Therefore, it can be interpreted as

the probability for a random walker to jump from to in a
single time step. The matrix with as its entries
is the transition matrix of this Markov chain on the data set
. Taking powers of the matrix is akin to running the Markov
chain forward. The kernel describes the probability of
transition between two points in steps.
It can be shown that has a complete sequence of biorthog-

onal left and right eigenvectors, and respectively, with a

sequence of positive eigenvalues: . The spec-
tral decomposition of , yields that steps of the Markov chain
can be presented as

(3)

Because of the fast decay of the spectrum, only a few terms are
required to achieve sufficient accuracy in the sum. A mapping
can be defined between the original space and the first eigen-
vectors. The diffusion map is defined by

(4)

Note that is not used in the embedding because it is a con-
stant vector. The mapping embeds the data set into the Eu-
clidean space . The spectrum decay of the eigenvalues is the
reason why dimensionality reduction can be achieved. The di-
mension of the new representation depends only on the random
walk and is independent of the length of the feature vector used
in the original representation of the data.
A diffusion distance between two points in the

data set is defined by

(5)

This measures the similarity of two points according to the evo-
lution of their probability distributions in theMarkov chain. The
diffusion distance between two points is small if there is a large
number of short paths connecting them in the graph. This metric
is robust to noise, since the distance between two points depends
on all possible paths of length between the points, within the
dataset. As opposed to the original distance between two points
which is independent of all other points in the dataset, the dif-
fusion distance depends on the location of the other points in
the dataset. Using the spectral decomposition given in (3), the
diffusion distance in (5) can also be calculated using the eigen-
vectors by

(6)

Taking into account the spectrum decay, the diffusion distance
can be calculated up to a certain accuracy using only the first
eigenvectors. Thus, the computational complexity of the diffu-
sion distance is low given the eigen-decomposition of . It was
shown [11] that the diffusion distance is equal to the Euclidean
distance in the diffusion map space using all eigenvectors in the
decomposition:

(7)
In Section IV, we use this property of the diffusion distance to
define a measure of affinity in the diffusion coordinates.
Spectral embedding methods are commonly used in clus-

tering applications [11], [28]–[30]. Most methods suggest
to use the first non-trivial eigenvectors (the first eigenvector
corresponding to is constant) to find clusters in the
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dataset. This clustering property of the diffusion map is useful
for anomaly detection. We expect the background pixels in the
image to be clustered together and the anomaly to be distant
from this cluster in the new embedding.

A. Setting the Scale Parameter

The scale parameter is of great significance in constructing
the weighted graph. Setting to be too small results in a discon-
nected graph, where many points are connected only to them-
selves (local neighborhoods of size 1). However, setting to be
too large results in all the points in the graph being connected.
This is especially undesirable in the setting of anomaly detec-
tion, where setting to be too large will connect the anoma-
lies with the cluttered background. Possibilities of setting the
scale parameter are using the median distance between points
in the dataset or the standard deviation of the distances. These
are global parameters.
Zelnik-Manor et al. [29] suggest calculating a location depen-

dent for each data point instead of selecting a single scaling
parameter. Then, the affinity between a pair of points can be
written as

(8)

where and are the local scale parameters for and ,
respectively. The selection of the local scale is determined by
the local statistics of the neighborhood of point . For example,
the scale can be set as

(9)

where is the -th nearest neighbor. We adopt this approach
in our algorithm, using . This approach is local, since
the distance between two points is scaled according to the local
statistics of the neighborhoods surrounding the two points. This
is desirable since we expect the anomaly to be in a low density
neighborhood in contrast with the background, which we ex-
pect to be in a dense neighborhood. Setting a single global scale
would not be able to address the differences in density of the
points.

III. FUNCTION EXTENSION

When the data set is very large, it is impractical to compute a
diffusion map for the entire dataset . Instead, a diffusion map
is constructed for part of the samples and then the em-
bedding is extended to all points in using an out-of-sample
extension method.
The Nyström extension method is a common method for the

extension of functions from a given training set to new samples.
Recently, methods have been proposed to approximate the Nys-
tröm extensionmethod [31] or improve upon it, such as the Geo-
metric Harmonics method [17]. In [17], the authors state that
low-complexity functions can be easily extended very far from
the training set as their behavior is smooth and the extended
values are easy to predict. A function with many variations on
should have a limited range of extension, as its values off the

training set are more difficult to predict.

A. Laplacian Pyramid Extension

Recently, a new algorithm was presented for out-of-sample
function extension using the multiscale Laplacian pyramid [18].
At each iteration, the Laplacian pyramid algorithm constructs a
coarse approximation of a function for a given scale . Then,
the difference between and the coarse approximation is used
as input for the next iteration. The difference is approximated at
each level using a Gaussian kernel with finer and finer scales.
On the lowest level, the Gaussian kernel is defined on by

(10)

with set to be a large scale. A smoothing operator is obtained
by normalizing :

(11)

where . On the next levels, the
Gaussian kernel is computed by

(12)

and the smoothing operator is

(13)

The Laplacian Pyramid representation of a function on is
defined iteratively by:

(14)

(15)

with the difference defined by

(16)

The Laplacian pyramid is iterated on finer and finer scales until
the difference is below a given error threshold.
The function is extended to a new data point by the

sum , where

(17)

(18)

We perform this extension method for each diffusion coordi-
nate separately. The number of levels in the pyramid
extension can differ between the coordinates, dependent on their
smoothness over . A smooth function can be extended using
coarse scale, i.e. will not require many levels of the pyramid.
An oscillating function on the other hand will require finer and
finer levels of the pyramid to enable an accurate extension.
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B. Limitations of Out-of-sample Extension for Anomaly
Detection

The popular methods for out-of-sample extension are based
on interpolation. They are all a variety of calculating the value
for a new sample by weighted sum of the values of the test data
points in , with the weights dependent on the Euclidean dis-
tance between the data points. This is a limitation of extension
methods when applied to anomaly detection. In a case where
there are no anomalies in and it consists only of examples from
a single -dimensional cluster (the background), then the eigen-
vectors capture only the relaxation process within this cluster
[30]. If the anomaly is not at least partially represented in the
subset , the values of the diffusion map will not capture the na-
ture of the anomaly. Extension of the diffusion map to anomaly
data points will give these points diffusion coordinates which
are not meaningful in separating them from the background.
All anomalies or data points which are far removed from the
test set, will not be extended to appropriate coordinates repre-
senting their distance from the test set. Anomaly detection when
the anomaly is not included in the initial diffusion map, requires
extrapolation of the diffusion coordinates and not interpolation.
However it is not clear how to perform extrapolation on the
low-dimensional manifold, if at all possible.
The size of the data set for images is very large. Even for a

small image of 100 100 pixels there are 10,000 data points.
Therefore, it can be inefficient to construct a diffusionmap using
all the pixels in the image, especially for high-resolution im-
ages. Instead, it is a common approach to construct the diffu-
sion map for an image using a subset of random samples [15],
[19]. The subset is embedded in a lower dimensional represen-
tation using the first several eigenvectors and then the diffusion
map coordinates are extended to all patches in the image using
an extension method. If the set of random samples does not in-
clude the anomaly, the diffusion map will not capture the dif-
ference between the anomaly and the background. Therefore,
the out-of-sample extension of the diffusion map to the pixels
in the anomaly region will not succeed in separating them from
the background. These pixels will be assigned diffusion coordi-
nates which represent the background and the anomaly detec-
tion will fail.

IV. MULTISCALE DIFFUSION BASED ANOMALY DETECTION

We propose a multiscale approach combining spectral-based
dimensionality reduction and nearest-neighbor-based anomaly
detection. Diffusion maps are used to find a lower dimensional
representation of the image. Due to the successful use of dif-
fusion maps for spectral clustering, our assumption is that the
anomaly regions will be well separated from background re-
gions in the new embedding. In the embedding, background
pixels will have similar diffusion coordinates, lying in a dense
neighborhood, whereas the anomalies are separated from the
background and lie in a low density neighborhood. This enables
using a nearest-neighbors based approach in the lower dimen-
sional embedding to determine which pixels are anomalies and
which are normal. This approach is based on the assumption
that normal data points appear in dense neighborhoods, whereas
anomalies lie in neighborhoods with low density [25]. One chal-
lenge of such an approach is the computational complexity of

Fig. 1. Demonstration of the affect of random sampling on the diffusion map
and the detection results. Results are shown for two different sampling distri-
butions in the top and bottom row. (a) Side-scan sonar image of a sea-mine,
visible as the dark shadow and indicated by a red arrow. In (b),(c) the first three
coordinates in the diffusion are associated with RGB color in order to display
the connection between the location of the pixel in the image, and its diffusion
coordinates. (b) First three diffusion map coordinates. (c) Image pixels colored
according to the RGB color associated with the first three coordinates of the
diffusion map given in (b). (d) Anomaly score.

computing the distance of each test instance with all other in-
stances, in order to compute its nearest neighbors. Calculating
the distances using the low-dimensional diffusion representa-
tion, greatly reduces the complexity of the distance computa-
tion. Also, as noted in Section II, calculating the distance be-
tween points in their diffusion coordinates, i.e., the diffusion
distance, has been shown to be robust to noise. These steps are
performed in a multiscale framework to overcome limitations
of under-sampling the image and out-of-sample extension to the
entire image.
In Section IV-A we present three anomaly detection methods

based on diffusion maps, using a single resolution of the image.
We describe the disadvantages of these methods in terms of
performance and computational complexity. In Section IV-B,
we propose a multiscale anomaly detection method which over-
comes the limitations of applying diffusion maps to images. In
Section IV-C we describe the implementation details of our al-
gorithm.We compare the performance of our multiscale method
with each of the single-scale methods in Section V.

A. Single-Scale Anomaly Detection

One may consider three simple methods for applying diffu-
sion maps to anomaly detection in images, while avoiding the
limitations of under-sampling. The first is to apply the process
of constructing a diffusion map and detecting anomalies in the
low-dimensional embedding several times, for different subsets
of random samples. The results can be fused together to detect
the anomalies. This method avoids the problem of being too de-
pendent on the random samples. However, it is computationally
intensive and the number of times this would have to be per-
formed until the anomaly was detected is unknown, due to the
randomness of the sampling. Therefore, this method may result
in a miss-detection. An example is displayed in Fig. 1. Fig. 1(a)
presents a side-scan sonar image of a sea-mine on a periodic
background. The sea-mine is indicated by the red arrow. Two
subsets of random samples are used for the image, yielding very
different detection results. In the top row there is a miss-detec-
tion and in the bottom row there is a positive detection. Note
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Fig. 2. Top row: original side-scan sonar images, the sea-mines are indicated
by red (white in print) arrows. Bottom row: Anomaly score for detection based
on coarse resolution of the images. The images were down-sampled by a factor
of 2, and a third of the pixels were sampled in the construction of the diffusion
map. In (a) the detection is successful. However, this method may result in false
alarms (b), low anomaly score (c) or a miss-detection (d).

both subsets have the same number of samples. The diffusion
maps for the two sampling schemes are shown in Fig. 1(b).
The first three coordinates in the diffusion map (4) are associ-
ated with RGB color in order to display the connection between
the location of the pixel in the image, and its diffusion coor-
dinates. Each point in the three-dimensional space is assigned
RGB values, by applying a simple transform from the diffu-
sion coordinates to RGB values .
Then, each pixel in the image is colored (Fig. 1(c)) according to
the RGB value assigned to its diffusion coordinates (Fig. 1(b)).
Note that this coloring is only for display purposes. In the top
row, the diffusion map (Fig. 1(b)) captures the periodic nature
of the data, but the anomaly is not sampled sufficiently and is
not distinct in the diffusion coordinates.When the diffusionmap
is extended to the entire image shown in Fig. 1(c), the pixels of
the anomaly are given coordinates representing the background,
and the anomaly is not visible. Calculating the anomaly score,
Fig. 1(d), yields there are no anomalies in the image. In the ex-
ample on the bottom row, a different subset of random samples
is used. In this case, the diffusion map Fig. 1(b) captures both
the anomaly and the periodic nature of the background, and sep-
arates the anomaly from the background. The anomaly score
in Fig. 1(d) displays the existence of an anomaly in the image.
These examples demonstrate that the success of the diffusion
map in capturing the nature of the anomaly is dependent on the
pixels included in . For this image, in average only one out of
every five random subsets yielded a detection of the anomaly,
when the size of the subset was 15% of the pixels.
A second approach is to perform the detection on a coarser

resolution of the image. The advantage of using a coarse resolu-
tion is that a higher percentage of samples can be used since the
image is down-sampled, and it is more likely that the anomaly
will be properly sampled. A disadvantage of this approach is
that the chosen scale may limit the ability to detect small anom-
alies. Also, since the fine details are blurred, the anomalymay be
less distinctive from the background. This will require lowering
the detection threshold which will result in more false-alarms.
An example of anomaly detection on a coarse scale is shown in
Fig. 2. The original side-scan sonar images are presented in the
top row and the anomaly score for each image is displayed on
the bottom. In Fig. 2(a) the detection is successful. In Fig. 2(b),

the anomaly is detected as well as other regions in the back-
ground. Successful detection of the anomaly in this case, would
detect false alarms as well. In Fig. 2(c), the anomaly received
a low score. In order to keep the detection rate high, a low
threshold would be necessary, which could cause false alarms
in other images. The anomaly in Fig. 2(d) is not detected at all.
A third possibility is to divide the image into several sub-im-

ages, and perform anomaly detection on each sub-image sepa-
rately. For each sub-image, a high percentage of samples can
be used to avoid sub-sampling. This method is computationally
intensive since it requires the calculation of a diffusion map for
every sub-image. In addition, it can cause a higher false alarm
rate. The reason for this is that regions which are unique in
their immediate surroundings, yet similar to other regions in
the image, will be treated in separate sub-images and can be
detected as anomalies. Also, the anomaly itself might be split
between sub-images, making it smaller in each sub-image and
reducing the detection rate. To avoid this, the image will have to
be divided into overlapping sub-images, raising the computation
complexity even more. Finally, even if the sub-image itself is
rather homogeneous, the nature of the diffusion maps is that the
embedding for such a sub-image will include the inner-cluster
variations, and cause possible false alarms.

B. Multiscale Anomaly Detection

Our method aims at reducing the computational complexity
while improving the detection rate. To overcome the limitations
of random sampling, we propose a multiscale approach. As-
sume that the anomalies in the image are larger than a single
pixel. Therefore, they can be detected at several resolutions of
the image. At a lower resolution, it is computationally possible
to sample a larger percentage of the image. Thus, detecting an
anomaly at a lower resolution is less likely to fail due to sam-
pling. We propose to take advantage of the anomaly detection at
different scales to overcome the limitations of random sampling.
Since our method performs anomaly detection at different reso-
lutions of the image, even if the anomaly is missed on a coarse
level, for example since it is too small at that level, it can still
be detected on the following finer levels. In addition, it is pos-
sible to lower the threshold for anomaly detection on the coarser
levels, since this will not harm the false alarm rate as a decision
is only reached at the full-scale level. Thus we are able to de-
tect anomalies on the higher levels, even at the cost of detecting
more false alarms, since these false alarms will be removed at
the final level.
Our multiscale approach is based on constructing a Gaussian

pyramid [32] representation of the image. Starting with the
coarsest scale, a diffusion map is constructed, based on a subset
of the data set. Since the image is smaller at this scale, a larger
percentage of the image can be sampled for the construction of
the diffusion map, perhaps even all pixels. Then, an anomaly
score is used to determine which pixels are anomalies at this
level. These pixels are used as input to the next level as the
pixels at the finer level corresponding to the anomalous pixels
at the coarser level are included in . The rest of the pixels in
are sampled randomly from the image. This algorithm con-

tinues from level to level, with each previous level providing
prior information on which samples of the data set are used to
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Fig. 3. An example how the anomaly score for a certain level of the pyramid,
affects the sampling in the next level. (a) Anomaly score . (b) Suspicious
pixels obtained from thresholding . (c) is determined by the suspicious
pixels from level and random pixels. (d) Anomaly score .

construct the diffusion map. This approach greatly increases
the detection rate of the diffusion-based anomaly detector.
Our approach is less computationally intensive than a single-

scale detector using an equivalent amount of samples, since on
the coarser scales, smaller patches can be used as features, re-
ducing computation time of the calculation of the affinity ma-
trix. Also, the detection process is faster on a coarser scale.
The anomaly score itself is based on a nearest neighbor ap-

proach. In the low dimensional embedding, background pixels
will have similar diffusion coordinates, lying in a dense neigh-
borhood, whereas the anomalies are separated from the back-
ground and lie in a low density neighborhood. The diffusion
distances in the low dimensional embedding can be used in a
measure of the density of the neighborhood of each pixel, deter-
mining which pixels are anomalies and which pixels are normal.
Using the diffusion distance in a nearest neighbor approach is
both computationally efficient compared to the calculation in
the original dimensionality and robust to noise.

C. Implementation

Given an image , the Gaussian pyramid representation of
the image is computed, yielding , where is the orig-
inal image and is the coarsest resolution. At each level ,
is calculated by convolving the image from the previous level

with a Gaussian low-pass filter and then down-sampling
by a factor of two. Starting with , a subset of random
pixels is sampled from the image. Since the image at this level
is at very low resolution, the subset can include all pixels, if
it is feasible given memory constraints. The diffusion map is
calculated using this subset, and extended to the remaining
pixels. Then, an anomaly score is calculated for all pixels.
A threshold on the anomaly score is used to mark suspicious
pixels. We then proceed to the image . On this level,
pixels which correspond to the suspicious pixels found in
are included in . The rest of the pixels in the subset are
chosen at random.
The threshold used at the output of each level is chosen

to be the 95th percentile of the anomaly score for that level. If
the image does not hold an anomaly this will result in random
samples with the highest anomaly scores. If the image holds an
anomaly, the anomaly will have a high score compared to the
rest of the image and it will be sampled more densely in the next
level. An example of this process is shown in Fig. 3. Fig. 3(a)
shows the calculated anomaly score for level . Thresholding
this score yields a group of suspicious pixels, including both the
anomaly and some background pixels. The corresponding pixels
on the next level, , are included in . The rest of the

pixels are randomly sampled. Calculation of the diffusion map
and its extension to the image, yields the anomaly score ,
in which only the anomaly received a high score, separating it
from the background.
The process of sampling, dimensionality reduction and

anomaly detection repeats for every level, with the output of
each level serving as input to the next level, determining the
samples in . At the full-scale level , the anomaly score for
each pixel determines the existence of anomalies in the image.
We use a hard threshold on and then smooth the resulting
image. Anomalies have a high score, close to 1. Fig. 4 presents
a flowchart of the algorithm.
At each level, the affinity matrix is calculated for the subset
using (8), with the scaling parameter set as explained in

Section II-A. In order to reduce computation time and memory
requirements, the matrix is calculated using nearest neighbors,
i.e. patch is connected to patch if is among the nearest
neighbors of or vice-versa. Otherwise , as in
[28]. This enables the matrix to be sparse.
The anomaly score for each level is calculated based on

a nearest-neighbor approach. This requires calculating the
distance to each point’s nearest neighbors. Calculating the
distances using the low-dimensional diffusion representation,
greatly reduces the complexity of the distance computation. To
further reduce the complexity, we take advantage of the spatial
nature of the original data. We limit ourselves to computing the
diffusion distance between each pixel to the pixels in a window
surrounding it. Our method is similar to the one presented
in [7], [33], where anisotropic kernels were used for defect
detection in images of wafers, given a clean reference image.
There, anisotropic kernels were used to measure the similarity
of a patch in a test image to patches in a window in a reference
image. In our approach, instead of calculating the similarity
between a patch in a test image and patches in a clean reference
image, we compare the test image to itself. In addition, we
compare the patches in the embedded diffusion coordinates

, using the diffusion distance between
patches as a similarity measure.
An affinity measure is calculated between each pixel and the
pixels in the window surrounding the pixel. Similarly to [13],

[14], the affinity measure is defined using a Gaussian kernel
based on diffusion distances:

(19)
Unlike the kernel in (1) which relies on the Euclidean distance
between grayscale levels of the patch, this kernel relies on dif-
fusion distances.
As opposed to the local scale (9) used in the affinity measure

(1), here a single global scale is required for . Using a local
scale as described in (9), which relies on the distance to the -th
nearest neighbors, would result in each point having approxi-
mately neighbors. Here we do not want to overcome the dif-
ference in neighborhood densities between data points. Instead,
our purpose is to utilize this difference to detect the anomalies
by finding which data points are far removed from their neigh-
bors on the low-dimensional manifold. This scale greatly influ-
ences the results as it determines how close pixels are in the
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Fig. 4. Flowchart of the multiscale algorithm.

diffusion embedding. Too small a scale will result in all pixels
being different and too large a scale will result in the anomaly
being considered similar to the background.
We set the scale by the following procedure. We select

pairs of pixels in the image and calculate the diffusion distance
for each pair: . Since these are random pixels
from the image, most, if not all of them, are background pixels.
Thus, these distances represent typical diffusion distances be-
tween pixels in the image. The empirical variance of these
distances is . We set the scale to be . The pa-
rameter determines how close we want two normal points to
be in the diffusion embedding. This procedure enables a method
of automatically setting the scale, with negligible computation
time, and gave good empirical results.
To determine whether a pixel is an anomaly, we use the total

similarity measure presented in [7], [33]. Our anomaly score of
a tested pixel is defined as

(20)

Pixel is compared to its neighbors in the spatial neighbor-
hood denoted , with being the number of pixel in . The
neighborhood is a square window surrounding pixel of size

in each dimension. The inner part of the window sur-
rounding the tested pixel is masked, and only the pixels in the
outer window are used. Let be the size of the mask
in each dimension. Then the pixel is compared to all pixels

, where is the Man-
hattan distance. The reason for masking the inner pixels in the
window is that we do not want to compare the pixel to its im-
mediate neighbors, since we assume the anomaly is larger than
a single pixel. If a pixel belongs to an anomaly, its surrounding
pixels are also anomalous and they may all have similar dif-
fusion coordinates, compared to the background pixels. There-
fore, if the window is too small, the anomalous pixel will re-
ceive a low anomaly score, due to its affinity to its immediate
spatial neighbors in the image. To avoid this, the inner pixels are
masked and ignored and the window surrounding each pixel is
chosen to be large enough in comparison with the expected size
of an anomaly.
The sum can be seen as a smoothed estimate

of the number of close neighbors the data point has in the
window surrounding it, where the notion of closeness is deter-
mined by the diffusion distance. Pixels which are anomalous

have few close neighbors in the diffusion embedding and there-
fore a very high anomaly score. Pixels with a low anomaly score
are similar to the pixels in the window surrounding them. The
size of the window and the masked area should be determined
by the application and prior knowledge of the size of possible
anomalies.

V. EXPERIMENTAL RESULTS

We demonstrate the proposed algorithm on real sea-mine
side-scan sonar images, achieving a high detection rate with a
low rate of false-alarms. We treat the sea-mines in the images
as anomalies and the reflections from the seabed are considered
normal background clutter. We compare the multiscale detector
with five variations of a single-scale detector, to demonstrate
the improvement gained by our multiscale approach.
Automatic detection of sea mines in side-scan sonar imagery

is a challenging task due to the high variability in the appear-
ance of the target and sea-bed reverberations (background
clutter). Objects in side-scan sonar appear as a strong bright
region (highlight) aside a dark region (shadow). The shadow is
due to the object blocking the sonar waves from reaching the
seabed. Typically, the shadow region is larger than the highlight
region in the image.
Research in this field focuses on two aspects of the problem:

detection of mine-like-objects (MLO) in the image and clas-
sification of these objects as mine or non-mine. Algorithms
proposed for detection of the MLOs include MRF models for
modeling the background [34], [35], a 2-D multiscale GMRF
with matched subspace detector (MSD) [4], a multidimensional
GARCH model with MSD [3], non-linear matched filters [36],
etc. The detection is sometimes accompanied by extraction of
the shadow, for example using snakes [34]. The detection of
the shadow increases the ability to correctly classify mines and
non-mines.
Most algorithms for detection of sea-mines in side-scan sonar

make use of a training set, based on real images and/or syn-
thetic ones [35], [37]. In [3], a few examples of sea-mines are
used for creating the anomaly subspace for the MSD. Our diffu-
sion-based approach does not require a training set and makes
no assumptions regarding the appearance of the mine and its
shadow in the image. The only prior information used is that
the expected size of the sea-mine is approximately 15 pixels by
3 pixels. This information is used in determining the size of the
surrounding window and mask for each pixel, as explained in
Section IV-C.
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TABLE I
PARAMETERS USED IN MULTISCALE DETECTOR

We evaluated our algorithm on a set of 28 side-scan sonar
images with sea-mines, each image sized 200 200 pixels. For
the multiscale detector, we used a Gaussian pyramid of
levels. The parameters used in the multiscale detector are given
in Table I. To allow efficient computation times, the affinity ma-
trix was calculated using exact k-nearest-neighbor search with
16 neighbors for each point, resulting in a sparse weight ma-
trix. For the k-nearest neighbors search we use the Matlab func-
tion pdist2, which uses the exhaustive search method to find
the exact k-nearest neighbors. For the spectral decomposition
of sparse matrices we use the Matlab function eigs. We choose
the global scale in (19) to be . Note that the size
of the images used in our results enables denser sampling of
the image than what we used. We intentionally use a small per-
centage of the pixels in the image to demonstrate that this frame-
work is applicable also for larger images. Using diffusion maps
for larger images requires small subsets at the full scale level,
due to memory constraints in calculating the affinity matrix.
We compared the performance of our multiscale algorithm

(MS) with five single-scale sampling schemes:
1) SS1: 10% of the image was randomly sampled to construct
the diffusion map.

2) SS2: 20% of the image was randomly sampled to construct
the diffusion map.

3) SS3: The images were blurred with a Gaussian filter and
down-sampled to 100 100. 30% of the image was ran-
domly sampled to construct the diffusion map.

4) SS4: The image is divided into 16 overlapping sub-images.
A diffusion map is constructed for each sub-image using
all the pixels in the sub-image such that no out-of-sample
extension is necessary. Anomaly detection is performed on
each sub-image separately and for the overlapping pixels,
the maximal anomaly score is taken.

5) SS5: The diffusion map is calculated for the entire image
at once, without the need for performing sampling and
out-of-sample extension. This is done using RANN [22],
a recently proposed fast approximate nearest neighbors al-
gorithm. The sparse affinity matrix is calculated for all 8
8 patches using 16 neighbors for each patch. We used

5 iterations of RANN and supercharging; for details about
these parameters the reader is referred to [22].

In SS1 the parameters were chosen to be identical to that of
the multiscale detector for level , given in Table I. SS2
is intended to demonstrate the effect of using more samples. In
addition, the number of samples used in this scheme is equiv-
alent to the total number of samples used in the multiscale de-
tector. We demonstrate that for the same number of samples,
the multiscale detector achieves superior results. SS3 has iden-
tical parameters to the middle-scale level, , of the multi-
scale detector given in Table I. This demonstrates the effect of

TABLE II
NUMBER OF TRUE POSITIVE FOR GIVEN NUMBER OF FALSE ALARMS

a decimated scale, in which the fine details are blurred, on the
detection. In SS4, the dependence on random samples is com-
pletely removed. In each sub-image, all pixels are used in the
construction of the diffusion map. Instead of using a window
surrounding each pixel, the pixels in a sub-image are compared
to all other pixels in the sub-image in the calculation of the
anomaly score. To avoid border issues, the sub-images are over-
lapping. In SS5, the dependence on random samples is com-
pletely removed. Comparing SS5with ourmethod demonstrates
the effect the multiscale driven sampling has on the final full-
scale diffusion map compared to a diffusion map calculated for
all points together.
Detections are found by thresholding the anomaly score

image resulting in a binary image. A detection is a connected
component in the binary image. We considered detection of the
sea-mine to be a true positive (TP) and any other detections to
be false alarms (FA). The size of the connected component can
be used to reject noisy detections. We compare two thresholds
on the size of the detection: 5 pixels and 20 pixels. Using a
larger threshold on the size rejects more FAs, but can also result
in a decreased amount of TPs, for small sized anomalies.
We compared the number of TPs for each method for a given

FA rate. Results are given in Table II. Our multiscale approach
has the highest TP rate. In SS2, using twice as many samples
than in SS1, results in a better detection rate, but at a high com-
putational cost. In addition, the difference in detection for using
twice as many samples is not dramatic.Most importantly, it does
not overcome the limitations of sub-sampling the image, as the
multiscale detector which uses the same number of samples, has
a significantly better detection rate. This is due to the propaga-
tion of information from level to level. SS3 shows better results
than both SS1 and SS2, as it has a lower FA rate. This demon-
strates that different scales of the image are useful in detecting
the anomalies and combining this information as in our multi-
scale approach, gives the best results. SS4 demonstrates results
which are comparable to that of our multiscale approach. How-
ever, as explained in Section IV-A, this method has various false
alarms in the background, due to the limited region each diffu-
sion map is calculated for. This results in a higher false alarm
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Fig. 5. Side-scan sonar images of sea-mines. The sea-mine locations are marked with a red (white in print) arrow.

rate to ensure positive detection of the anomalies. In addition,
such a method faces scalability issues when applied to larger
images.
The SS5 approach also gave results which are comparable

to that of our multiscale approach. However, for two images,
Fig. 5(g) and (h), the SS5 approach was unable to detect the
sea-mines at all, even for a detection threshold as low as
. In addition, the MS approach has better results for a small

threshold. In fact, for the low threshold on detection size, there
was no threshold on the SS5 anomaly score which resulted in
zero FAs. For a threshold of , the results of SS5 were
3 FAs and 43% detection rate. This because the SS5 results
had more small FAs with very high anomaly score values, than
the MS algorithm. Therefore it is harder to get a good detec-
tion rate with low FAR for a small size anomaly. On the other
hand, for the higher threshold on anomaly size, the results of
the SS5 approach are slightly better. This is because for a few
of the images, the number of anomalous pixels which received
a high anomaly score in the MS method was smaller compared
to the SS5 method. Therefore, there were more TPs for the SS5
method, for the larger anomaly size and low FAR rate.
Eight of the tested images are shown in Fig. 5. Each image

contains one sea-mine on highly cluttered seabed background.
The background patterns are diverse. Some appear as noise
(Fig. 5(b), (d), and (h)) whereas others contain relatively
slow changing backgrounds (Fig. 5(a)). Images with a rapidly
changing background (Fig. 5(g) and (c)) or dominant periodical
pattern (Fig. 5(e) and (f)) are especially difficult. Also, the
size of the mine and its shadow differ from image to image,
as well as its orientation. For example, in Fig. 5(a) the mine
is quite large, whereas in Fig. 5(h) the mine is very small and
its shadow is also thin. In most images, the highlight is rather
bright, yet in image Fig. 5(d) its intensity is similar to that of
the noise and in Fig. 5(f), the mine highlight is not visible at
all, with only its shadow seen in the image.

TABLE III
AVERAGE RUNNING TIMES OF THE ALGORITHM IN SECONDS,
COMPARING MULTISCALE APPROACH WITH SINGLE-SCALE

EXACT AND APPROXIMATE NN APPROACH

Results of the multiscale detector are presented in Fig. 6 and
for the single scale detector SS1 in Fig. 7. Positive detection of
the sea-mines is achieved in all displayed images using the mul-
tiscale detector. The single scale detector on the other hand, does
not detect any anomalies in Fig. 7(e)–(h). The single scale de-
tector also suffers from a higher false alarm rate, as can be seen
in Fig. 7(a). The multiscale detector has a single false alarm in
image Fig. 6(d), on a small shadow in the image. This same false
alarm is detected by the single scale detector. The multiscale de-
tector performs very well in detecting both the sea-mine and its
highlight in the image, demonstrated for diverse, challenging
backgrounds and various sea-mine sizes and orientations.
In Table III, we report the average total running time and

the running time for the two parts of the MS algorithm: dimen-
sionality reduction, including sampling the image, constructing
a diffusion map and out-of-sample-extension to all image
patches, and anomaly detection in the reduced dimensionality.
We compare the runtime of the MS algorithm with those of
two single-scale schemes: calculating the affinity matrix for the
entire image using RANN method (SS5) and using Matlab’s
exact NN method. In these schemes dimensionality reduction is
based only on constructing the diffusion map, without the need



MISHNE AND COHEN: MULTISCALE ANOMALY DETECTION USING DIFFUSION MAPS 121

Fig. 6. Results of Anomaly Detection for multiscale detector, corresponding to the images displayed in Fig. 5.

Fig. 7. Results of Anomaly Detection for single scale detector, corresponding to the images displayed in Fig. 5.

for out-of-sample-extension. Results are given in seconds. Our
algorithm has been implemented in Matlab and the numerical
experiments have been carried out on a Dell laptop computer,
with an Intel Core i5 QuadCore CPU 2.67 GHz and 4.0 GB
RAM. It should be noted that this a Matlab implementation and
it has not been optimized for runtime. The RANN search been
implemented in FORTRAN.
The results first enable us to compare between the MS al-

gorithm and SS1, which is equivalent to the runtime of scale
of the MS approach. The MS takes about 15% longer

but with greatly improved detection results. Next, comparing
RANN with Matlab’s exact NN search, the improvement factor
in runtime using RANN for dimensionality reduction is around
18. The diffusion maps constructed by the two methods are
not identical, as RANN does not always return the true nearest

neighbors, so the sparse affinity matrix is different. Overall, the
detection statistics for both methods are very similar so we do
not report those for the exact NN search in Table II. Based
on this comparison, we can assume that using RANN in our
multi-scale approach instead of the exact NN search should im-
prove the runtime of our algorithm, without affecting the detec-
tion results. This will be verified empirically in future work. In
such a framework, RANN will be used initially to construct the
affinity matrix for the sampled points in , and then a query
will be run on each of the points in . The improvement in run-
time entails a cost in memory on the order of , with
being the number of points in and being the number of it-
erations used by RANN [22]. For the lower-resolution scales of
the pyramid the improvement factor will be modest considering
the small size of and the low dimension of the points (small
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patches are used as features). However, we expect a meaningful
improvement for the higher-resolution scale.

VI. CONCLUSION

We have introduced an anomaly detection algorithm using
diffusion maps representation of the data. Based on the clus-
tering properties of the diffusion map, we proposed to detect
anomalies in the reduced dimension based on a nearest-neighbor
approach. To improve the detection process and ensure that
the normal pixels and the anomaly regions are separable in the
lower dimensional embedding of the data, we implemented a
multiscale framework to overcome the possible limitations in
using diffusion maps with out-of-sample extension.
The successful performance of the algorithm was demon-

strated in automatic target detection in side-scan sonar images,
which is a challenging task due to the high variability of the
target and sea-bottom reverberation. The results show the capa-
bility of the proposed model and algorithm to cope with a va-
riety of targets and background clutter patterns. The results also
demonstrate the advantage of the multiscale framework over
using only a single scale.
Although our algorithm is used in an unsupervised setting, it

also has implications for using diffusion maps in a supervised
setting, using out-of-sample extension to extend the diffusion
map from a training set to a test set. Our results imply that con-
structing a training set using only background data points will
not be successful in a supervised anomaly detection application.
The anomalous data points will be assigned coordinates similar
to those of the background, and the detection will fail in the
lower dimensional embedding.
A possibility for future research is combining the anomaly

scores from the different multiscale levels into a single anomaly
score. We predict this will improve performance, as the coarser
levels have information on the presence of the anomaly, which
we currently disregard in our final output. This can also assist
in detecting anomalies whose size differ from the expected size.
In addition, computational complexity of the algorithm can be
reduced by employing the RANN algorithm for computing the
affinity matrix for the diffusion map, as explained in Section V.
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