
Multichannel sparse spike inversion

Deborah Pereg1,3, Israel Cohen1 and Anthony A Vassiliou2

1 Technion—Israel Institute of Technology, Israel
2 GeoEnergy, Houston, TX, United States of America

E-mail: deborahp@tx.technion.ac.il

Received 18 February 2017, revised 8 June 2017
Accepted for publication 26 June 2017
Published 18 September 2017

Abstract
In this paper, we address the problem of sparse multichannel seismic deconvolution. We
introduce multichannel sparse spike inversion as an iterative procedure, which deconvolves the
seismic data and recovers the Earth two-dimensional reflectivity image, while taking into
consideration the relations between spatially neighboring traces. We demonstrate the improved
performance of the proposed algorithm and its robustness to noise, compared to competitive
single-channel algorithm through simulations and real seismic data examples.
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1. Introduction

In the field of signal processing, it is often necessary to
recover an input signal from its filtered version. The operation
of deconvolution is ideally set to achieve this goal, and to
undo the operation of a linear time invariant system per-
formed on the input signal. In the seismic setting, a short-
duration acoustic pulse is transmitted from the Earth’s sur-
face. The reflected pulses from the ground are then received
by a sensor array [1]. Our goal is to reveal the ground layerʼs
structure hidden in each of the received seismic traces.

We assume that the short seismic pulse (the wavelet) is
known and approximately time invariant. This assumption
is common in seismic data processing [2–6]. Even under this
assumption, the inversion process is often unstable. The
seismic wavelet is bandlimited, and the seismic trace might be
noisy. Due to this instability, there are many possible reflec-
tivity series that could fit the same measured seismic traces.
The objective of our work is to find the best estimate of the
reflectivity. We assume the reflectivity is sparse. Hence, its
extraction could be done by sparse inversion techniques.

In previous works, the solution to the multichannel decon-
volution problem involves separation of the seismic data into
independent vertical one-dimensional (1D) deconvolution pro-
blems, where each reflectivity channel is estimated apart from
the other channels [1–5, 7–10]. The wavelet is taken to be a 1D
column signal, and each 1D reflectivity column appears in the
vertical direction as a sparse spike train. Some of these methods

describe the reflectivity and the noise as two independent sto-
chastic processes with known second-order statistics. Berkhout
[1] tried to solve the seismic blind deconvolution problem by
assuming that the reflectivity is a white sequence and that the
seismic wavelet is a minimum phase signal. Many attempts have
been made to avoid the minimum phase assumption. Some of
these methods are blind, meaning that both the reflectivity and
the wavelet are unknown. Homomorphic deconvolution [11],
implemented in exploration seismology by Ulrych [7], was first
developed for restoring reverberated and resonated sound and
speech. It was also implemented for the case of blurred images
[11]. In homomorphic deconvolution, we find the log amplitude
of the distorting system in the frequency domain. Then we can
restore the signal of interest by simply subtracting the log
amplitude of the distorting system from the log amplitude of the
observation signal in the frequency domain. Minimum entropy
deconvolution (MED) [8] and maximum kurtosis adaptive fil-
tering [10], try to find a deconvolution filter, by optimization of a
sparsity cost function. The struggling point of these methods is
that they are suboptimal and produce unstable results due to the
certain shortcomings. Homomorphic deconvolution is unable to
correct the unknown phase distortions and tend to be highly
sensitive to noise. MED and maximum kurtosis adaptive filter-
ing are sensitive to noise and greatly influenced by the assumed
length of the deconvolution filter, in addition to their inclination
to cancel small reflectivity spikes.

Sparse seismic inversion methods have managed to
produce stable reflectivity solutions, see e.g. [3, 5, 9, 12]
where they use matching pursuit decomposition (MPD) to
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decompose the seismic trace into reflectivity patterns. In order
to increase the lateral resolution beyond the resolution that
could be achieved by wavelet inverse filtering, they depend
on a priori knowledge. A starting model is built according to
this prior information. Unfortunately, the starting model can
be inaccurate due to lateral variations in the waveform
interference path, in the propagation rate or in the Earth
layers’ impedances. Also, the myopia limitation of the MPD
method becomes apparent when the dictionary is non-ortho-
gonal. Basis pursuit decomposition (BPD) [13] is more
advantageous. Originally developed as a compressive sensing
technique. BPD utilizes an l1 norm optimization and finds a
single global solution in a computationally more efficient
way. Moreover, it performs well even when dictionary ele-
ments are non-orthogonal.

Other important methods are sparse spike inversion (SSI)
[2] and basis pursuit inversion (BPI) [4]. SSI and BPI recover
each column of the reflectivity by solving a simple basis
pursuit denoising problem [14]. These methods perform very
well under sufficiently high signal-to-noise ratio (SNR).
Dosal and Mallat [15] provide a lower bound on the minimum
distance between spikes that can be recovered by ℓ1 penalized
deconvolution. However, one of the main disadvantages of
these methods is that they ignore the correlation between
adjacent traces. This correlation emerges from the natural
assumption that the Earth’s layers are horizontally structured.
We refer the reader to [6] for a full comparison between SSI
versus BPI.

Obviously, utilization of 1D restoration methods in the
case of 2D seismic data is not optimal. Single-channel
methods do not exploit the relations between spatially near
traces. Thus, multichannel deconvolution is more robust.
Zhang et al [16] suggest to extend the BPI method to a multi-
trace process with spatial regularization added in order to
enhance lateral continuity and vertical resolution. Two var-
iations of multichannel Bayesian deconvolution methods are
suggested by Idier and Goussard [17]. Their approach is
based on two Markov–Bernoulli–Gaussian reflectivity models
(MBG I and II). The first model is a 2D extension of the 1D
Bernoulli–Gaussian (BG) representation. Mendel et al
[18, 19] use this 1D BG model in their maximum-likelihood
algorithm to estimate the reflectivity and the wavelet. The
second model (MBG II) is more adapted to the physical and
geometrical characteristics of the Earth layers’ acoustic
impendances. The deconvolution is performed by a sub-
optimal maximum a posteriori estimator. Then, they use a
method similar to the single most likely replacement (SMLR)
algorithm [18] to iteratively recover each reflectivity column
from the corresponding observed seismic trace and the pre-
ceding estimated reflectivity column. Kaaresen and Taxt [20]
also propose a multichannel version of their single-channel
blind deconvolution algorithm. The procedure repeats two
stages: first, the wavelet is estimated by least-squares fit, and
then the reflectivity is estimated by the iterated window
maximization algorithm [21]. The algorithm produces better
channel estimates since it updates more than one reflector in
one trace at once, and also encourages lateral smoothness of
the reflectors. However, these methods rely on a parametric

model that leads to a non-convex optimization problem.
Usually, it is very difficult to find a global optimal solution to
this kind of problems. The solution is normally found by
searching for correct reflectivity spikes’ locations, within a
limited number of potential reflectivity sequences (as in the
SMLR algorithm mentioned above [19]). This way, an opti-
mal solution is achieved at the expense of heavy computa-
tional burden and an extended search.

Heimer et al [22, 23] also propose a multichannel blind
deconvolution. They integrate the algorithm of Kaaresen and
Taxt [20] with dynamic programming [24, 25]. Valid reflec-
tivity states and transitions between reflector arrangements of
spatially neighboring traces are defined. Then, the sequences
of reflectors that are legally concatenated to other reflectors by
valid transitions are extracted. Heimer and Cohen [26] also
propose a method based on the Markov–Bernoulli random
field modeling. The Viterbi algorithm [27] is applied to the
search of the most likely sequences of reflectors concatenated
across the traces by legal transitions.

Ram et al [28] also propose two multichannel blind
deconvolution algorithms for the restoration of 2D seismic data.
Both algorithms are based on the Markov–Bernoulli–Gaussian I
(MBG I) reflectivity model. In the first algorithm, each reflec-
tivity channel is estimated from the corresponding observed
seismic trace, while taking into consideration the estimate of the
previous reflectivity channel. The procedure is carried out using
a slightly modified maximum posterior mode algorithm [29].
The second algorithm considers estimates of both the previous
and following neighboring columns.

Our main contribution in this paper is a sparse multi-
channel seismic deconvolution algorithm. The algorithm
iteratively attempts to find a sparse reflectivity solution, while
considering the relations between spatially neighboring tra-
ces. MSSI can be modified to take into account the spatial
dependencies between reflectivity sequences for a user-
dependent number of preceding and subsequent neighboring
reflectivity columns. We apply the algorithm to synthetic and
real data, and demonstrate improved results compared to
those obtained by the single-channel deconvolution method,
SSI. The performance of the algorithm is evaluated for dif-
ferent levels of SNRs.

The remainder of the paper is organized as follows. In
section 2, we review the basic theory of the seismic decon-
volution problem. In section 3, we introduce our algorithm. In
section 4, we present simulation and real data results. Finally,
in section 5, we conclude and discuss further research.

2. Problem formulation

We can model ( )s t , the received seismic 1D signal (the
observation) as

= * +( ) ( ) ( ) ( ) ( )s t w t r t n t , 1

where ( )w t is the seismic wavelet, ( )r t is the reflectivity
series, and ( )n t is the noise. The symbol * denotes 1D linear
convolution operation. This model assumes that the Earth’s
structure is stratified. It consists of planar horizontal layers of
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constant impedance and reflections are generated at impe-
dance discontinuities, i.e., at the boundaries between adjacent
layers. Each 1D seismic trace is a convolution of the seismic
wavelet and the reflectivity pattern. All channels are excited
by the same wavelet ( )w t . The support of the wavelet is finite
and shorter than the channelʼs length.

Note that a seismic image does not represent the actual
image of the Earth’s subsurface. Each reflection has been
distorted during its propagation through the medium. The
objective is to find an estimate of the reflectivity ( )r t . The
reflectivity is assumed to be sparse as only boundaries
between adjacent layers may cause a reflection of the seis-
mic wave.

A seismic trace consists of a linear combination of ( )w t
and its time shifts, corresponding to the non-zero reflectors in
( )r t . The discrete convolution (1) can be written in matrix-
vector form as

= +´ ´ ´ ´ ( )s W r n , 2N N M M N1 1 1

where Î´
´WN M

N M , represents the dictionary.
In the SSI method ´WN M is the convolution matrix

formed by the seismic discrete wavelet ( )w t . The optimization
problem for extracting ´rM 1 from the seismic trace ´sN 1 is
formulated as

e- <´ ´ ´ ´    ( )r s W rmin subject to . 3M N N M M1 0 1 1 2
2

After relaxing l0 to l1-norm we obtain the problem:

l- +´ ´ ´ ´
´

    ( )s W r rmin
1

2
. 4

r
N N M M M1 1 2

2
1 1

M 1

The optimization problem as defined in (4) is called least
absolute shrinkage and selection operator [30]. The l1 penalty
in similar problems is used in order to promote a sparse
solution ´rM 1 [13, 14].

On the other hand, the BPI method, proposed by Zhang
and Castagna [4], applies ‘dipole decomposition’, i.e., each
pair of neighboring impulses in the reflectivity sequence is
represented as a linear combination of even and odd impulse
pairs. Each even and odd pair corresponds to the top and base
reflector of a layer. Since the layer thickness is unknown, the
dictionary comprises all possible thicknesses up to a max-
imum layer time-thickness.

3. Multichannel sparse spike inversion

In this section, we estimate the reflectivity while taking into
account spatial dependencies between neighboring reflectivity
sequences.

Assume J adjacent columns, and for simplicity assume
that J is odd. Denote the current column, which we wish to
estimate, by ri, and a previous or subsequent column by +ri k

where  - - -kJ J1

2

1

2
. We estimate each reflectivity col-

umn from the corresponding observed seismic trace si, taking
into consideration the current estimate of -J 1

2
preceding

reflectivity columns, and of -J 1

2
subsequent reflectivity col-

umns. Out of J estimated columns only the middle reflectivity

column is kept. The estimates of the other -J 1 columns are
discarded. If we wish to use only the subsequent column (i.e.
J=2), we keep the first reflectivity column, and discard the
subsequent column (in this case - < kJ J

2 2
).

We formulate the problem as a minimization of the fol-
lowing cost function:
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where ¼  -r r, ,i i J 1
2

are J reflectivity columns, and
¼  -s s, ,i i J 1

2
are J corresponding seismic traces. W is the

convolution matrix formed by the seismic discrete wavelet w,
assumed to be known. The tradeoff parameter l0 controls the
balance between the reflectivity sparseness and the least-
squares error. The tradeoff parameterslk promote smoothness
of the reflectivity in the horizontal direction. Hk is the con-
volution matrix of a low-pass filter. We can choose Hk to be
the convolution matrix of a Hamming window or an aver-
aging filter. Hence, Hk controls the smoothness as it reduces
the penalty for layer boundaries whose orientation is diag-
onally descending, horizontal, and diagonally ascending. The
size of the smoothing filter controls the desired smoothness of
the resultant reflectivity image. This way, the minimization is
performed by taking into account the distances between each
reflectivity column and the preceding and subsequent reflec-
tivity columns.

Without loss of generality we assume that each reflec-
tivity column has unit variance (i.e., =r r 1i

T
i ). Accordingly,

we can express the solution as
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For small ò, such as  = 0.01 [31], the regularization para-
meter  ( )r is a smoothed ℓ1 norm approximation that
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promotes sparsity of the solution (also called hybrid –ℓ ℓ1 2 or
hyperbolic penalty [32]).  ( )r is also used for seismic blind
deconvolution in [31]. The use of the hybrid –ℓ ℓ1 2 norm,
which is differentiable, rather than the ℓ1 norm, enables the use
of simple optimization techniques such as steepest descent
method.

To solve the constrained optimization problem above, we
wish to minimize the following cost function:
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with Lagrange multipliers given by the scalars hk. The
minimization must satisfy
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Multiplying (10) by +ri k
T and using the constraint

=+ +r r 1i k
T
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h =+ + + ( )r g . 11i k i k
T
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Then, the projection of the gradient on the unit sphere can be
expressed via
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The classical update rule of steepest descent algorithm is
given by

m= -+ + + +r r hi k l i k l l i k l, 1 , ,

with a normalized gradient

 =+
¶

¶
¶

¶+ +
∣ ∣h ,i k l r r,

i k i k

where ml is the adaptive step size and l indicates an iteration
index. Each step in the direction of the gradient could divert
+ +ri k l, 1 off the unit sphere. Therefore, we normalize + +ri k l, 1 to

the unit sphere at each iteration.
As in [31], it should be mentioned that we must initialize

the steepest descent algorithm by a solution that is close to the
final reflectivity. Since the data is structurally close to the true
sparse reflectivity, we can use it as an initial solution. Prac-
tically, this choice is advantageous and resolves into a sparse
estimate of the reflectivity.

4. Experimental results

The proposed algorithm is evaluated using synthetic and real
data. It demonstrates better results than those obtained by a
single-channel deconvolution method.

4.1. Synthetic data

First, we tried to evaluate the performance of the algorithm on
a 2D reflectivity section of size 76×98. The algorithm was
implemented for J=2 and for J=3.

For J=2 the above optimization problem reduces to:
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For J=3 the above optimization problem is:
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These schemes were tested for different values of l l,0 1

andl-1, with SNR = 10 and 5dB. As was mentioned before,
the tradeoff parameter l0 balances the reflectivity sparseness
and the minimization of the residual term. Increasing l0

decreases the sparsity of the solution, whereas decreasing l0

may lead to noise amplification. The tradeoff parameters l1

promote smoothness of the reflectivity in the horizontal
direction.

We will hereafter refer to the proposed algorithm above
implementations as MSSI-2 and MSSI-3, which stands for
MSSI implemented for J=2 and J=3 respectively.

In MSSI-2, the minimization is performed by taking into
account the distance between each reflectivity column and the
subsequent reflectivity column. In each step, we estimate two
adjacent columns simultaneously. Even though two reflec-
tivity columns estimates were obtained, we keep only the
current reflectivity column estimate. The estimate of the
subsequent column is discarded, since this column will be
estimated with its subsequent column in the next step. In
MSSI-3, the minimization is performed by taking into
account the distances between each reflectivity column and
both the preceding and subsequent reflectivity columns. In
each step, we estimate three adjacent columns simulta-
neously. Out of the three obtained estimates, only the middle
reflectivity column is kept. The estimates of the preceding and
the subsequent columns are discarded.

With different experiments, we concluded that the best
results are achieved when H 1 is a convolution matrix of a
three taps averaging filter,

=
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where Lr is the length of a reflectivity column (in this example
=L 76r ). Hence, spikes of two neighboring traces are pre-

sumed close by less than three samples. Though this
hypothesis seems very restrictive in the case of real data, we
observe that the results are better when H 1 is a convolution
matrix of a short averaging filter, not longer than three taps,
since this choice balances between the ability to detect layers’
discontinuities and still create a smooth reflectivity image.
This is a great advantage compared to other existing methods.
Choosing a longer filter usually causes over-smoothing of the
recovered reflectivity and blurring of natural breaks in the
Earth’s structure.

To analyze the stability of the method under different
levels of noise, we generated 20 different realizations of 2D
reflectivities of size 76×98, one example is shown in
figure 1(a). We then convolved it with a 27 samples long
Ricker wavelet and added white Gaussian noise with SNRs of
10 and 5dB. Two of the realizations with SNRs of 10 and
5dB are shown in figures 1(b) and (c), respectively. The
seismic wavelet is shown in figure 1(d).

As a figure of merit we used the correlation coefficient
defined as

r =
   

ˆ
ˆ

( )ˆ
r r

r r
, 15

T

rr
2 2

where r̂ and r are column-stack vectors of the estimated
reflectivity and the true generated reflectivity, respectively.
The algorithm finds unscaled versions of the reflectivity, but it
is clear that this does not affect the computation of r r̂r.

We compare our results to a single-channel deconvolu-
tion (SSI) and to the multichannel deconvolution algorithm
described in [28] (MC-II). The estimated reflectivities,
obtained by SSI, MC-II, and by MSSI, for the seismic data
with SNR of 10dB, are shown in figure 2. The SSI method
was implemented by simply assigning l1 to zero, using the
best estimated l0 for SSI. For this example, the correlation
coefficients between the original reflectivity and the estimated
reflectivity, with our method, are r = 0.88 and r = 0.9 for
J=2 and J=3, respectively, whereas the correlation coef-
ficient achieved by single-channel deconvolution is r = 0.78,

Figure 1. Synthetic reflectivity, wavelet and data sets: (a) synthetic 2D reflectivity section; (b) 2D seismic data (SNR = 10 dB); (c) 2D
seismic data (SNR = 5 dB); (d) wavelet.
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and r = 0.86 for MC-II. The best results in terms of corre-
lation coefficients were achieved with l = 3.10 and l = 0.91

for the two channel implementation, with l l= =-2.8, 10 1

and l = 0.71 for the three-channel implementation, and with
l = 2.80 for SSI. Practically, the values of l0 and l1 are
data dependent and determined empirically. The best result is
not necessarily achieved by setting l l= -1 1.

The average correlation coefficients between the original
reflectivity and the estimated reflectivity and standard devia-
tions (in brackets), for SNR of 10dB, with our method, are
r = ( )0.87 0.022 and r = ( )0.9 0.018 for J=2 and J=3,
respectively, whereas the correlation coefficient achieved by
single-channel deconvolution is r = ( )0.78 0.027 , and
r = ( )0.83 0.093 for MC-II.

Another example is shown in figure 3. We added white
Gaussian noise of =SNR 5 dB. The estimated reflectivities,
obtained by single-channel deconvolution (SSI), by MC-II
and by MSSI, for the seismic data with SNR of 5dB , are
shown in figure 3. The best results in terms of correlation
coefficients were achieved with l = 3.90 and l = 2.31 for the

two channel implementation, with l l= =-2.6, 10 1 and
l = 0.61 for the three-channel implementation, and with
l = 2.90 for SSI. The correlation coefficients between the
original reflectivity and the estimated reflectivity with our
method is r = 0.77, and r = 0.82 for J=2 and J=3
respectively. Whereas the correlation coefficient achieved by
single-channel deconvolution is only r = 0.66, and for MC-II
we have only r = 0.69.

The average correlation coefficients between the original
reflectivity and the estimated reflectivity and standard devia-
tions (in brackets), for SNR of 5dB, with our method, are
r = ( )0.80 0.039 and r = ( )0.78 0.054 for J=2 and J=3,
respectively. Whereas the correlation coefficient achieved by
single-channel deconvolution is r = ( )0.66 0.040 , and
r = ( )0.64 0.167 for MC-II.

The series of synthetic tests that we have performed
during our research indicate that the optimal correlation can
be achieved using different l0 and l1 values, depending on
the channel characteristics: the number of reflectors, the lay-
ers’ thicknesses (distances between reflectors), the channel

Figure 2. Synthetic 2D data deconvolution results: (a) single-channel deconvolution results for =SNR 10 dB; (b) MC-II deconvolution
results for =SNR 10 dB; (c) MSSI-2 results for =SNR 10 dB; (d) MSSI-3 results for =SNR 10 dB.
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sparsity, and the SNR. It is recommended that l1 and l-1

values will not be too large so as to avoid over-smoothing of
the estimated reflectivity. The parameters can be chosen by
inspecting the correlation coefficient of a few columns.

Figure 4 presents the correlation coefficient values as a
function of l0 and l1, for 10 columns of the seismic data with
SNR of 5dB, depicted in figure 1(c). As can be seen, there is
an area of values that gives the best results. This implies that
the user does not have to know the exact value of the reg-
ularization parameters in order to get a good recovery. The
correlation coefficients for l = 01 , which represent the single-
channel scores are significantly smaller than the values
achieved by a non-zero value of l1. This implies that the
MSSI outperforms the single-channel method (SSI).

The average processing times of a data set of size
76×98 on an Intel®CoreTMi5-4430 CPU @3GHz, by
Matlab implementations of the single-channel and the pro-
posed algorithms—MSSI-2 and MSSI-3 are 1.18, 1.41 and
1.57 min, respectively.

Visual comparison between the above results confirms
that the multichannel algorithm outperforms the single-

channel algorithm. For both SNR levels the estimates of the
MSSI are more continuous. In addition, false detections are
less common in MSSIʼs estimates. Generally, MSSIʼs
recovered reflectivities are closer to the true reflectivity than
the single-channel deconvolution results. MC-II performs
well in high SNR environments, but when the SNR is low it
appears to have many false detections. MSSI, on the other
hand, tends to diminish small spikes. It can also be observed
that the values of the correlation coefficients for MSSI are
higher. This implies that both MSSI-2 and MSSI-3 produce
better results than the single-channel algorithm. In addition,
as one would expect, for both SNR levels, MSSI-3 outper-
forms MSSI-2. Naturally, the improvement is getting smaller
as the SNR increases, meaning that all algorithms perform
better when the noise level is lower.

4.2. Real data

We applied the proposed deconvolution scheme, to real
seismic data from a small land 3D survey in North America
(courtesy of GeoEnergy Inc., TX) of size 350×200, shown

Figure 3. Synthetic 2D data deconvolution results: (a) single-channel deconvolution results for =SNR 5 dB; (b)MC-II deconvolution results
for =SNR 5 dB; (c) MSSI-2 results for =SNR 5 dB; (d) MSSI-3 results for =SNR 5 dB.
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in figure 5(a). The assumed wavelet is shown in figure 5(b).
The reflectivity sections obtained by single-channel decon-
volution, by MC-II, by MSSI-2 and by MSSI-3 are shown in
figures 6(a)–(d), respectively. The seismic data reconstructed
as a convolution between the estimated reflectivity and a
given wavelet, are shown in figures 6(e)–(h). Visually com-
paring these reflectivity sections, it can be seen that the layer
boundaries in the estimates obtained by MSSI are more
continuous and smooth than the layer boundaries in the sin-
gle-channel deconvolution estimates. Moreover, MSSI also
detects parts of the layers that the single-channel deconvo-
lution misses. It can also be seen that the reconstructed
seismic data obtained by MSSI is more accurate than the one
obtained by SSI. Since the ground truth is unknown, to asses
the performance of the methods, we calculate the correlation
coefficient between the reconstructed data to a noise-free
seismic data. The obtained correlation between the original
and reconstructed seismic data for MSSI is r =ˆ 0.9s s, when
l = 90 and l = 301 for MSSI-2, and r =ˆ 0.91s s, when
l = 90 and l = 281 for MSSI-3. Whereas for SSI we get
r =ˆ 0.89s s, when l = 50 , and for MC-II we have r =ˆ 0.76s s, .
The parameters for all methods were chosen to best fit the
observed data using the correlation of a few columns. The
estimates produced by MSSI-2 and MSSI-3 are quite close,
though the latter manages to recover a slightly more con-
tinuous image.

As mentioned before, experimental results show that the
best results are achieved when H 1 is a convolution matrix of
a three taps averaging filter, which means that we assume that
spikes of two neighboring traces are close by less than three
samples. This hypothesis might seem very restrictive in the
case of real data. However, H 1 as a convolution matrix of a
three taps only averaging filter outperforms other filter choi-
ces, for the reason that this choice balances between the
ability to detect layers’ discontinuities and more complex

structure and at the same time also to create a smooth
reflectivity image. This is a great advantage compared to other
existing methods. Choosing a longer filter causes over-
smoothing of the recovered reflectivity and blurring of natural
breaks in the Earth’s structure. Choosing the lateral derivative
instead of the third term as defined in (7) would encourage
horizontal lines ignoring the subsurface curves structure.

5. Conclusions

We have presented a multichannel deconvolution algorithm in
seismic applications. The algorithm both promotes sparsity of
the solution and also takes into consideration the spatial
dependency between neighboring traces in the deconvolution
process. We have demonstrated that our deconvolution results
are visually superior, compared to a single-channel decon-
volution algorithm, for synthetic and real data, under suffi-
ciently high SNR. Our second implementation (MSSI-3)
performs better, on both synthetic and real data. The reason
for that is that MSSI-3 takes into account more information
from neighboring traces in the deconvolution process of each
trace, compared to the first implementation (MSSI-2) that
uses information from only one neighboring trace. The
improved performance of the proposed algorithm compared
to the single-channel algorithm was also apparent in qualita-
tive assessment. It also shows that the second implementa-
tionʼs results are more accurate.

The choice of regularization parameters is still an open
problem. The use of a too small l0 could result in an
increased resolution of the estimated reflectivity which is not
necessarily real. In addition, one needs to find the correct
balance between all regularization parameters. It should also
be mentioned that in this study we used a time-spatial-
invariant known wavelet for simplicity. In practice, a time and

Figure 5. Real data and assumed wavelet: (a) real seismic data
( =SNR 5 dB); (b) wavelet.

Figure 4. Correlation coefficient versus deconvolution parameters l1

and l0 for synthetic 2D data deconvolution ( =SNR 5 dB).
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spatial varying wavelet could produce better results, taking
into account wave propagation effects, such as attenuation
and dispersion.
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