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We present a novel approach for real-time multichannel speech enhancement in environments of nonstationary noise and time-
varying acoustical transfer functions (ATFs). The proposed system integrates adaptive beamforming, ATF identification, soft signal
detection, and multichannel postfiltering. The noise canceller branch of the beamformer and the ATF identification are adaptively
updated online, based on hypothesis test results. The noise canceller is updated only during stationary noise frames, and the
ATF identification is carried out only when desired source components have been detected. The hypothesis testing is based on
the nonstationarity of the signals and the transient power ratio between the beamformer primary output and its reference noise
signals. Following the beamforming and the hypothesis testing, estimates for the signal presence probability and for the noise
power spectral density are derived. Subsequently, an optimal spectral gain function that minimizes the mean square error of the
log-spectral amplitude (LSA) is applied. Experimental results demonstrate the usefulness of the proposed system in nonstationary
noise environments.
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1. INTRODUCTION

Postfiltering methods for multimicrophone speech enhance-
ment algorithms have recently attracted an increased inter-
est. It is well known that beamforming methods yield a sig-
nificant improvement in speech quality [1]. However, when
the noise field is spatially incoherent or diffuse, the noise
reduction is insufficient and additional postfiltering is nor-
mally required [2]. Most multimicrophone speech enhance-
ment methods comprise a multichannel part (either delay-
sum beamformer or generalized sidelobe canceller (GSC)
[3]) followed by a postfilter, which is based on Wiener fil-
tering (sometimes in conjunction with spectral subtraction).
Numerous articles have been published on that subject, for
example, [4, 5, 6, 7, 8, 9, 10, 11, 12] to mention just a few.
A major drawback of these multichannel postfiltering tech-
niques is that highly nonstationary noise components are not
dealt with. The time variation of the interfering signals is

assumed to be sufficiently slow such that the postfilter can
track and adapt to the changes in the noise statistics. Unfor-
tunately, transient interferences are often much too brief and
abrupt for the conventional tracking methods.

Recently, a multichannel postfilter was incorporated into
the GSC beamformer [13, 14]. The use of both the beam-
former primary output and the reference noise signals (re-
sulting from the blocking branch of the GSC) for distin-
guishing between desired speech transients and interfering
transients enables the algorithm to work in nonstationary
noise environments. In [15], the multichannel postfilter is
combined with the transfer function GSC (TF GSC) [16],
and compared with single-microphone postfilters, namely,
the mixture-maximum (MIXMAX) [17] and the optimally
modified log-spectral amplitude (OM LSA) estimator [18].
The multichannel postfilter, combined with the TF GSC,
proved the best for handling abrupt noise spectral varia-
tions. However, in all past contributions the beamformer
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stage feeds the postfilter but the adverse is not true. The deci-
sions made by the postfilter, distinguishing between speech,
stationary noise, and transient noise, might be fed back to
the beamformer to enable the use of the method in real-time
applications. Exploiting this information will also enable the
tracking of the acoustical transfer functions (ATFs), caused
by talker movements.

In this paper, we present a real-time multichannel speech
enhancement system, which integrates adaptive beamform-
ing and multichannel postfiltering. The beamformer is based
on the TF GSC. However, the requirement for the stationar-
ity of the noise is relaxed. Furthermore, we allow the ATFs
to vary in time, which entails an online system identification
procedure. We define hypotheses that indicate either the ab-
sence of transients, presence of an interfering transient, or
presence of desired source components (the stationary noise
persists in all cases). The noise canceller branch of the beam-
former is updated only during the absence of transients, and
the ATF identification is carried out only when desired source
components are present. Following the beamforming and the
hypothesis testing, estimates for the signal presence proba-
bility and for the noise power spectral density (PSD) are de-
rived. Subsequently, an optimal spectral gain function that
minimizes the mean square error of the log-spectral ampli-
tude (LSA) is applied.

The performance of the proposed system is evaluated un-
der nonstationary noise conditions, and compared to that
obtained with a single-channel postfiltering approach. We
show that single-channel postfiltering is inefficient at attenu-
ating highly nonstationary noise components since it lacks
the ability to differentiate such components from the de-
sired source components. By contrast, the proposed system
achieves a significantly reduced level of background noise,
whether stationary or not, without further distorting the sig-
nal components.

The paper is organized as follows. In Section 2, we intro-
duce a novel approach for real-time beamforming in non-
stationary noise environments, under the circumstances of
time-varying ATFs. The noise canceller branch of the beam-
former and the ATF identification are adaptively updated on-
line, based on hypothesis test results. In Section 3, the prob-
lem of hypothesis testing in the time-frequency plane is ad-
dressed. Signal components are detected and discriminated
from the transient noise components based on the transient
power ratio between the beamformer primary output and its
reference noise signals. In Section 4, we introduce the mul-
tichannel postfilter and outline the implementation steps of
the integrated TF GSC and multichannel postfiltering algo-
rithm. Finally, in Section 5, we evaluate the proposed system
and present experimental results which validate its useful-
ness.

2. TRANSFER FUNCTION GENERALIZED
SIDELOBE CANCELLING

Let x(t) denote a desired speech source signal that, sub-
ject to some acoustic propagation, is received by M micro-
phones along with additive uncorrelated interfering signals.

The interference at the ith sensor comprises a pseudostation-
ary noise signal dis(t) and a transient noise component dit(t).
The observed signals are given by

zi(t) = ai(t)∗ x(t) + dis(t) + dit(t), i = 1, . . . ,M, (1)

where ai(t) is the impulse response of the ith sensor to the
desired source and ∗ denotes convolution. Using the short-
time Fourier transform (STFT), we have

Z(k, �) = A(k, �)X(k, �) + Ds(k, �) + Dt(k, �) (2)

in the time-frequency domain, where k represents the fre-
quency bin index, � the frame index, and

Z(k, �) �
[
Z1(k, �) Z2(k, �) · · · ZM(k, �)

]T
,

A(k, �) �
[
A1(k, �) A2(k, �) · · · AM(k, �)

]T
,

Ds(k, �) �
[
D1s(k, �) D2s(k, �) · · · DMs(k, �)

]T
,

Dt(k, �) �
[
D1t(k, �) D2t(k, �) · · · DMt(k, �)

]T
.

(3)

The observed noisy signals are processed by the system
shown in Figure 1. This structure is a modification to the
recently proposed TF GSC [16], which is an extension of the
linearly constrained adaptive beamformer [3, 19] for arbi-
trary ATFs, A(k, �). In [16], transient interferences are not
dealt with since signal enhancement is based on the non-
stationarity of the desired source signal, contrasted with the
stationarity of the noise signal. As such, the ATF estimation
was conducted in an offline manner. Here, the requirement
for the stationarity of the noise is relaxed. So a mechanism
for discriminating interfering transients from desired sig-
nal components must be included. Furthermore, in contrast
to the assumption of time-invariant ATFs in [16], we allow
time-varying ATFs provided that their change rate is slow in
comparison to that of the speech statistics. This entails online
adaptive estimates for the ATFs.

The beamformer comprises three parts: a fixed beam-
former W, which aligns the desired signal components; a
blocking matrix B, which blocks the desired components,
thus yielding the reference noise signals {Ui : 2 ≤ i ≤ M};
and a multichannel adaptive noise canceller {Hi : 2≤ i≤M},
which eliminates the stationary noise that leaks through the
sidelobes of the fixed beamformer. The reference noise sig-
nals U(k, �) = [U2(k, �) U3(k, �) · · · UM(k, �)]T are gen-
erated by applying the blocking matrix to the observed signal
vector:

U(k, �)=BH(k, �)Z(k, �)

=BH(k, �)
[

A(k, �)X(k, �) + Ds(k, �) + Dt(k, �)
]
.

(4)

The reference noise signals are emphasized by the adaptive
noise canceller and subtracted from the output of the fixed
beamformer, yielding

Y(k, �) = [
WH(k, �)−HH(k, �)BH(k, �)

]
Z(k, �), (5)
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Figure 1: Block diagram of the TF GSC.

where H(k, �) = [H2(k, �) H3(k, �) · · · HM(k, �)]T . It is
worth mentioning that a perfect blocking matrix implies
BH(k, �)A(k, �) = 0. In that case, U(k, �) indeed contains
only noise components:

U(k, �) = BH(k, �)
[

Ds(k, �) + Dt(k, �)
]
. (6)

In general, however, BH(k, �)A(k, �) �= 0, thus desired signal
components may leak into the noise reference signals.

Let three hypotheses H0s, H0t, and H1 indicate, respec-
tively, the absence of transients, presence of an interfer-
ing transient, and presence of a desired source transient at
the beamformer output. The optimal solution for the filters
H(k, �) is obtained by minimizing the power of the beam-
former output during the stationary noise frames (i.e., when
H0s is true) [20]. Let ΦDsDs(k, �) = E{Ds(k, �)DH

s (k, �)} de-
note the PSD matrix of the input stationary noise. Then, the
power of the stationary noise at the beamformer output is
minimized by solving the unconstrained optimization prob-
lem

min
H

{[
W(k, �)− B(k, �)H(k, �)

]H
ΦDsDs(k, �)

× [
W(k, �)− B(k, �)H(k, �)

]}
.

(7)

A multichannel Wiener solution is given by [21]

H(k, �) = [
BH(k, �)ΦDsDs(k, �)B(k)

]−1

× BH(k, �)ΦDsDs(k, �)W(k, �).
(8)

In practice, this optimization problem is solved by using the
normalized least mean squares (LMS) algorithm [20]

H(k, � + 1)

=



H(k, �) +
µh

Pest(k, �)
U(k, �)Y∗(k, �), if H0s is true,

H(k, �), otherwise,

(9)

where

Pest(k, �)

=


αpPest(k, � − 1) +

(
1− αp

)∥∥U(k, �)
∥∥2
, if H0s is true,

Pest(k, � − 1), otherwise,
(10)

represents the power of the noise reference signals, µh is a
step factor that regulates the convergence rate, and αp is a
smoothing parameter.

The fixed beamformer implements the alignment of the
desired signal by applying a matched filter to the ATF ratios
[16]:

W(k, �) � Ã(k, �)∥∥Ã(k, �)
∥∥2 , (11)

where

Ã(k, �) � A(k, �)
A1(k, �)

=
[

1
A2(k, �)
A1(k, �)

· · · AM(k, �)
A1(k)

]T

�
[

1 Ã2(k, �) · · · ÃM(k, �)
]T

(12)

denotes ATF ratios, withA1(k, �) chosen arbitrarily as the ref-
erence ATF. The blocking matrix B is aimed at eliminating
the desired signal and constructing reference noise signals.
A proper (but not unique) choice of the blocking matrix is
given by [16]

B(k, �) =




−Ã∗2 (k, �) −Ã∗3 (k, �) · · · −Ã∗M(k, �)
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



. (13)

Hence, for implementing both the fixed beamformer and the
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blocking matrix, we need to estimate the ATF ratios. In con-
trast to previous works [14, 15, 16], the system identification
should be incorporated into the adaptive procedure since the
ATFs are time varying. In [16], the system identification pro-
cedure is based on the nonstationarity of the desired sig-
nal. Here, a modified version is introduced, employing the
already available time-frequency analysis of the beamformer
and the decisions made by hypothesis testing.

From (4) and (13), we have the following input-output
relation between Z1(k, �) and Zi(k, �):

Zi(k, �) = Ãi(k, �)Z1(k, �) + Ui(k, �), i = 2, . . . ,M. (14)

Accordingly,

φZiZ1 (k, �)

= Ãi(k, �)φZ1Z1 (k, �) + φUiZ1 (k, �), i = 2, . . . ,M,
(15)

where φZiZ1 (k, �) = E{Zi(k, �)Z∗1 (k, �)} is the cross PSD be-
tween zi(t) and z1(t), and φUiZ1 (k, �) is the cross PSD between
ui(t) and z1(t). The use of standard system identification
methods is inapplicable since the interference signal ui(t) is
strongly correlated to the system input z1(t). However, when
hypothesis H1 is true, that is, when transient noise is ab-
sent, the cross PSD φUiZ1 (k, �) becomes stationary. Therefore,
φUiZ1 (k, �) may be replaced with φUiZ1 (k).

For estimating the ATF ratios Ã(k, �), we need to collect
several estimates of the PSD φZZ1

(k, �), each of which is based
on averaging several frames. Let a segment define a concate-
nation of N frames for which the hypothesis H1 is true, and
let an interval contain R such segments. Then, the PSD esti-
mation in each segment r (r = 1, . . . , R) is obtained by aver-
aging the periodograms over N frames:

φ̂
(r)
ZZ1

(k, �) = 1
N

∑
�∈�r

Z(k, �)Z∗1 (k, �), (16)

where �r represents the set of frames that belong to the rth

segment. Denoting by ε(r)
i (k, �) = φ̂(r)

UiZ1
(k, �) − φUiZ1 (k) the

estimation error of the cross PSD between ui(t) and z1(t) in
the rth segment, (15) implies that

φ̂(r)
ZiZ1

(k, �) = Ãi(k, �)φ̂(r)
Z1Z1

(k, �) + φUiZ1 (k) + ε(r)
i (k, �),

i = 2, . . . ,M, r = 1, 2, . . . , R.
(17)

The least squares (LS) solution to this overdetermined set of
equation is given by [16]

Ã(k, �)=
〈
φ̂Z1Z1 (k, �)φ̂ZZ1

(k, �)
〉−〈φ̂Z1Z1 (k, �)

〉〈
φ̂ZZ1

(k, �)
〉

〈
φ̂2
Z1Z1

(k, �)
〉−〈φ̂Z1Z1 (k, �)

〉2 ,

(18)

where the average operation on β(k, �) is defined by

〈
β(k, �)

〉
� 1

R

R∑
r=1

β(r)(k, �). (19)

Practically, the estimates for φ̂
(r)
ZZ1

(k, �) (r = 1, . . . , R) are
recursively obtained as follows. In each time-frequency bin
(k, �), we assume that R PSD estimates are already avail-
able (excluding initial conditions). Values of Ã(k, �) are thus
ready for use in the next frame (k, � + 1). Frames for which
hypothesis H1 is true are collected for obtaining a new PSD

estimate φ̂
(R+1)
ZZ1

(k, �):

φ̂
(R+1)
ZZ1

(k, � + 1) = φ̂
(R+1)
ZZ1

(k, �) +
1
N

Z(k, �)Z∗1 (k, �). (20)

A counter nk is employed for counting the number of times
(20) is processed (counting the number of H1 frames in fre-
quency bin k). Whenever nk reaches N , the estimate in seg-
ment R + 1 is stacked into the previous estimates, the oldest
estimate (r = 1) is discarded, and nk is initialized. The new R
estimates are then used for obtaining a new estimate for the
ATF ratios Ã(k, � + 1) for the next bin (k, � + 1). This proce-
dure is active for all frames � enabling a real-time tracking of
the beamformer.

Altogether, an interval containing N × R frames, for
which H1 is true, is used for obtaining an estimate for Ã(k, �).
Special attention should be given for choosing this quantity.
On the one hand, it should be long enough for stabilizing the
solution. On the other hand, it should be short enough for
the ATF quasistationarity assumption to hold during the in-
terval. We note that for frequency bins with low speech con-
tent, the interval (observation time) required for obtaining
an estimate for Ã(k, �) might be very long, since only frames
for which H1 is true are collected.

3. HYPOTHESIS TESTING

Generally, the TF GSC output comprises three components:
a nonstationary desired source component, a pseudostation-
ary noise component, and a transient interference. Our ob-
jective is to determine which category a given time-frequency
bin belongs to, based on the beamformer output and the ref-
erence signals. Clearly, if transients have not been detected
at the beamformer output and the reference signals, we can
accept hypothesis H0s. In case a transient is detected at the
beamformer output, but not at the reference signals, the
transient is likely a source component, and therefore we de-
termine that H1 is true. On the contrary, a transient that is
detected at one of the reference signals but not at the beam-
former output is likely an interfering component, which im-
plies that H0t is true. In case a transient is simultaneously
detected at the beamformer output and at one of the refer-
ence signals, a further test is required, which involves the ra-
tio between the transient power at beamformer output and
the transient power at the reference signals.

Let � be a smoothing operator in the PSD

�Y(k, �) = αs ·�Y(k, � − 1)

+
(
1− αs

) w∑
i=−w

bi
∣∣Y(k − i, �)

∣∣2
,

(21)

where αs (0 ≤ αs ≤ 1) is a forgetting factor for the smoothing
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Figure 2: Block diagram for the hypothesis testing.

in time, and b is a normalized window function (
∑w

i=−w bi =
1) that determines the order of smoothing in frequency. Let
� denote an estimator for the PSD of the background pseu-
dostationary noise, derived using the minima controlled re-
cursive averaging approach [18, 22]. The decision rules for
detecting transients at the TF GSC output and reference sig-
nals are

ΛY (k, �) � �Y(k, �)
�Y(k, �)

> Λ0, (22)

ΛU(k, �) � max
2≤i≤M

{
�Ui(k, �)
�Ui(k, �)

}
> Λ1, (23)

respectively, where ΛY and ΛU denote measures of the local
nonstationarities (LNS), and Λ0 and Λ1 are the correspond-
ing threshold values for detecting transients [14]. The tran-
sient beam-to-reference ratio (TBRR) is defined by the ratio
between the transient power of the beamformer output and
the transient power of the strongest reference signal:

Ω(k, �) = �Y(k, �)−�Y(k, �)
max2≤i≤M

{
�Ui(k, �)−�Ui(k, �)

} . (24)

Transient signal components are relatively strong at the
beamformer output, whereas transient noise components are
relatively strong at one of the reference signals. Hence, we
expect Ω(k, �) to be large for signal transients and small
for noise transients. Assuming that there exist thresholds
Ωhigh(k) and Ωlow(k) such that

Ω(k, �)|H0t ≤ Ωlow(k) ≤ Ωhigh(k) ≤ Ω(k, �)|H1 , (25)

the decision rule for differentiating desired signal compo-
nents from the transient interference components is

H0t : γs(k, �) ≤ 1 or Ω(k, �) ≤ Ωlow(k),

H1 : γs(k, �) ≥ γ0 and Ω(k, �) ≥ Ωhigh(k),

Hr : otherwise,

(26)

where

γs(k, �) �
∣∣Y(k, �)

∣∣2

�Y(k, �)
(27)

represents the a posteriori SNR at the beamformer output
with respect to the pseudostationary noise, γ0 denotes a con-
stant satisfying �(γs(k, �) ≥ γ0|H0s) < ε for a certain sig-
nificance level ε, and Hr designates a reject option where the
conditional error of making a decision between H0t and H1

is high.
Figure 2 summarizes a block diagram for the hypothe-

sis testing. The hypothesis testing is carried out in the time-
frequency plane for each frame and frequency bin. Hypothe-
sis H0s is accepted when transients have been detected nei-
ther at the beamformer output nor at the reference sig-
nals. In case a transient is detected at the beamformer out-
put but not at the reference signals, we accept H1. On the
other hand, if a transient is detected at one of the refer-
ence signals but not at the beamformer output, we accept
H0t . In case a transient is detected simultaneously at the
beamformer output and at one of the reference signals, we
compute the TBRR Ω(k, �) and the a posteriori SNR at
the beamformer output with respect to the pseudostation-
ary noise γs(k, �), and decide on the hypothesis according to
(26).

4. MULTICHANNEL POSTFILTERING

In this section, we address the problem of estimating the
time-varying PSD of the TF GSC output noise and present
the multichannel postfiltering technique. Figure 3 describes
a block diagram of the multichannel postfiltering. Follow-
ing the hypothesis testing, an estimate q̂(k, �) for the a pri-
ori signal absence probability is produced. Subsequently, we
derive an estimate p(k, �) � �(H1|Y,U) for the signal pres-
ence probability and an estimate λ̂d(k, �) for the noise PSD.
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Figure 3: Block diagram of the multichannel postfiltering.

Finally, spectral enhancement of the beamformer output is
achieved by applying the OM LSA gain function [18], which
minimizes the mean square error of the LSA under signal
presence uncertainty.

Based on a Gaussian statistical model [23], the signal
presence probability is given by

p(k, �) =
{

1 +
q(k, �)

1− q(k, �)

(
1 + ξ(k, �)

)
exp

(− υ(k, �)
)}−1

,

(28)

where ξ(k, �) � λx(k, �)/λd(k, �) is the a priori SNR, λd(k, �)
is the noise PSD at the beamformer output, υ(k, �) �
γ(k, �)ξ(k, �)/(1 + ξ(k, �)), and γ(k, �) � |Y(k, �)|2/λd(k, �)
is the a posteriori SNR. The a priori signal absence probabil-
ity q̂(k, �) is set to 1 if signal absence hypotheses (H0s or H0t)
are accepted and is set to 0 if signal presence hypothesis (H1)
is accepted. In case of the reject hypothesis Hr , a soft signal
detection is accomplished by letting q̂(k, �) be inversely pro-
portional to Ω(k, �) and γs(k, �):

q̂(k, �) = max
{
γ0 − γs(k, �)

γ0 − 1
,
Ωhigh −Ω(k, �)

Ωhigh −Ωlow

}
. (29)

The a priori SNR is estimated by [18]

ξ̂(k, �) = αG2
H1

(k, � − 1)γ(k, � − 1)

+ (1− α) max
{
γ(k, �)− 1, 0

}
,

(30)

where α is a weighting factor that controls the trade-off be-
tween noise reduction and signal distortion, and

GH1 (k, �) � ξ(k, �)
1 + ξ(k, �)

exp

(
1
2

∫∞
υ(k,�)

e−t

t
dt

)
(31)

is the spectral gain function of the LSA estimator when the
signal is surely present [24]. An estimate for noise PSD is
obtained by recursively averaging past spectral power values
of the noisy measurement, using a time-varying frequency-
dependent smoothing parameter. The recursive averaging is
given by

λ̂d(k, � + 1) = α̃d(k, �)λ̂d(k, �)

+ β
[
1− α̃d(k, �)

]∣∣Y(k, �)
∣∣2
,

(32)

where the smoothing parameter α̃d(k, �) is determined by the
signal presence probability p(k, �):

α̃d(k, �) � αd +
(
1− αd

)
p(k, �), (33)

and β is a factor that compensates the bias when the signal
is absent. The constant αd (0 < αd < 1) represents the min-
imal smoothing parameter value. The smoothing parameter
is close to 1 when the signal is present to prevent an increase
in the noise estimate as a result of signal components. It de-
creases when the probability of signal presence decreases to
allow a fast update of the noise estimate.

The estimate of the clean signal STFT is finally given by

X̂(k, �) = G(k, �)Y(k, �), (34)

where

G(k, �) = {
GH1 (k, �)

}p(k,�)
G

1−p(k,�)
min (35)

is the OM LSA gain function and Gmin denotes a lower bound
constraint for the gain when the signal is absent. The im-
plementation of the integrated TF GSC and multichannel
postfiltering algorithm is summarized in Algorithm 1. Typ-
ical values of the respective parameters, for a sampling rate
of 8 kHz, are given in Table 1. The STFT and its inverse are
implemented with biorthogonal Hamming windows of 256
samples length (32 milliseconds) and 64 samples frame up-
date step (75% overlap between successive windows).

5. EXPERIMENTAL RESULTS

In this section, we compare under nonstationary noise con-
ditions the performance of the proposed real-time system
to an offline system consisting of a TF GSC and a single-
channel postfilter. The performance evaluation includes ob-
jective quality measures, a subjective study of speech spectro-
grams, and informal listening tests.

A linear array, consisting of four microphones with 5 cm
spacing is mounted in a car on the visor. Clean speech sig-
nals are recorded at a sampling rate of 8 kHz in the absence
of background noise (standing car, silent environment). An
interfering speaker and car noise signals are recorded while
the car speed is about 60 km/h, and the window next to the
driver is slightly open (about 5 cm; the other windows are
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Initialize variables at the first frame for all frequency bins k:
GH1 (k, 0) = γ(k, 0) = 1; Pest(k, 0) = ‖U(k, 0)‖2;
�Y(k, 0) = �Y(k, 0) = λ̂d(k, 0) = |Y(k, 0)|2;
Let nk = 0; % nk is a counter for H1 frames in frequency bin k.
For i = 2, . . . ,M,

�Ui(k, 0) = �Ui(k, 0) = |Ui(k, 0)|2; Hi(k, 0) = 0; Ãi(k, 0) = 1.

For all time frames �
For all frequency bins k

Compute the reference noise signals U(k, �) using (4), and the TF GSC output Y(k, �) using (5).
Compute the recursively averaged spectrum of the TF GSC output and reference signals, �Y(k, �) and �Ui(k, �), using
(21), and update the MCRA estimates of the background pseudostationary noise �Y(k, �) and �Ui(k, �) (i = 2, . . . ,M)
using [22].
Compute the local nonstationarities of the TF GSC output and reference signals ΛY (k, �) and ΛU(k, �) using (22) and (23).
Using the block diagram for the hypothesis testing (Figure 2), determine the relevant hypothesis; it possibly requires
computation of the transient beam-to-reference ratio Ω(k, �) using (24), and the a posteriori SNR at the beamformer
output with respect to the pseudostationary noise γs(k, �) using (27).
Update the estimate for the power of the reference signals Pest(k, �) using (10). In case of absence of transients (H0s), update
the multichannel adaptive noise canceller H(k, � + 1) using (9).

In case of desired signal presence (H1), update the estimate φ̂
(R+1)

ZZ1
(k, � + 1) using (20), and increment nk by 1.

If nk ≡ N , then store φ̂
(r+1)

ZZ1
(k, � + 1) as φ̂

(r)

ZZ1
(k, � + 1) for r = 1, . . . , R, update the ATF ratios Ã(k, �) using (18), and reset

φ̂
(R+1)

ZZ1
(k, � + 1) and nk to zero.

In case of H0s or H0t , set the a priori signal absence probability q̂(k, �) to 1. In case of H1, set q̂(k, �) to 0. In case of Hr ,
compute q̂(k, �) according to (29).
Compute the a priori SNR ξ̂(k, �) using (30), the conditional gain GH1 (k, �) using (31), and the signal presence probability
p(k, �) using (28).
Compute the time-varying smoothing parameter α̃d(k, �) using (33) and update the noise spectrum estimate λ̂d(k, � + 1)
using (32).
Compute the OM LSA estimate of the clean signal X̂(k, �) using (34) and (35).

Algorithm 1: The integrated TF GSC and multichannel postfiltering algorithm.

Table 1: Values of parameters used in the implementation of the
proposed algorithm for a sampling rate of 8 kHz.

Normalized LMS αp = 0.9 µh = 0.05

ATF identification N = 10 R = 10

Hypothesis testing αs = 0.9 γ0 = 4.6

Λ0 = 1.67 Λ1 = 1.81

Ωlow = 1 Ωhigh = 3

b = [0.25 0.5 0.25]

Noise PSD estimation αd = 0.85 β = 1.47

Spectral enhancement α = 0.92 Gmin = −20 dB

closed). The input microphone signals are generated by mix-
ing the speech and noise signals at various SNR levels in the
range [−5, 10] dB.

Offline TF GSC beamforming [16] is applied to the
noisy multichannel signals, and its output is enhanced us-
ing the OM LSA estimator [18]. The result is referred to
as single-channel postfiltering output. Alternatively, the pro-
posed real-time integrated TF GSC and multichannel post-

filtering is applied to the noisy signals. Its output is referred
to as multichannel postfiltering output. Two objective quality
measures are used. The first is segmental SNR, in dB, defined
by [25]

SegSNR

= 10
L

L−1∑
�=0

10 log

∑K−1
n=0 x2(n + �K/2)∑K−1

n=0

[
x(n + �K/2)− x̂(n + �K/2)

]2 ,

(36)

where L represents the number of frames in the signal, and
K = 256 is the number of samples per frame (correspond-
ing to 32 milliseconds frames, and 50% overlap). The SNR at
each frame is limited to perceptually meaningful range be-
tween 35 dB and −10 dB [26, 27]. The second quality mea-
sure is log-spectral distance (LSD), in dB, which is defined
by

LSD

= 10
L

L−1∑
�=0

{
1

K/2 + 1

K/2∑
k=0

[
log �X(k, �)− log �X̂(k, �)

]2
}1/2

,

(37)
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Figure 4: (a) Average segmental SNR and (b) average LSD at (	)
microphone 1, (◦) TF GSC output, (×) single-channel postfilter-
ing output, (solid line) multichannel postfiltering output, and (∗)
theoretical limit postfiltering output.

where �X(k, �) � max{|X(k, �)|2, δ} is the spectral power,
clipped such that the log-spectral dynamic range is confined
to about 50 dB (i.e., δ = 10−50/10 maxk,�{|X(k, �)|2}).

Figure 4 shows experimental results obtained for various
noise levels. The quality measures are evaluated at the first
microphone, the offline TF GSC output, and the postfilter-
ing outputs. A theoretical limit postfiltering, achievable by
calculating the noise PSD from the noise itself, is also con-
sidered. It can be readily seen that TF GSC alone does not
provide sufficient noise reduction in a car environment ow-
ing to its limited ability to reduce diffuse noise [16]. Further-
more, multichannel postfiltering is considerably better than
single-channel postfiltering.

A subjective comparison between multichannel and
single-channel postfiltering was conducted using speech
spectrograms and validated by informal listening tests. Typ-
ical examples of speech spectrograms are presented in
Figure 5. The noise PSD at the beamformer output varies
substantially due to the residual interfering components of
speech, wind blows, and passing cars. The TF GSC output is

characterized by a high level of noise. Single-channel post-
filtering suppresses pseudostationary noise components, but
is inefficient at attenuating the transient noise components.
By contrast, the proposed system achieves superior noise at-
tenuation, while preserving the desired source components.
This is verified by subjective informal listening tests.

6. CONCLUSION

We have described an integrated real-time beamforming and
postfiltering system that is particularly advantageous in non-
stationary noise environments. The system is based on the
TF GSC beamformer and an OM LSA-based multichannel
postfilter. The TF GSC beamformer primary output and the
reference noise signals are exploited for deciding between
speech, stationary noise, and transient noise hypotheses. The
decisions are used for deriving estimators for the signal pres-
ence probability and for the noise PSD. The signal presence
probability modifies the spectral gain function for estimat-
ing the clean signal spectral amplitude. It is worth men-
tioning that the postfilter is designed for suppressing the
stationary noise as well as transient noise components that
do not overlap with desired signal components in the time-
frequency domain. The overlapping part between desired
and undesired transients is not eliminated by the postfil-
ter, to avoid signal distortion, particularly since such noise
components are perceptually masked by the desired speech
[28].

The proposed system was tested under nonstationary
car noise conditions, and its performance was compared to
that of a system based on single-channel postfiltering. While
transient noise components are indistinguishable from de-
sired source components when using a single-channel post-
filtering approach, the enhancement of the beamformer out-
put by multichannel postfiltering produces a significantly re-
duced level of residual transient noise without further dis-
torting the desired signal components. We note that the
computational complexity and practical simplifications of
the proposed system were not addressed. Here, the main
contribution is the incorporation of the hypothesis test re-
sults into the beamformer stage. The hypotheses control the
noise canceller branch of the beamformer as well as the ATF
identification, thus enabling real-time tracking of moving
talkers.

The novel method has applications in realistic environ-
ments, where a desired speech signal is received by several
microphones. In a typical office environment scenario, the
speech signal is subject to propagation through time-varying
ATFs (due to talker movements), stationary noise (e.g., air
conditioner), and nonstationary interferences (e.g., radio or
another talker). By adaptively updating the ATF ratios esti-
mates, the TF GSC beamformer is consistently directed to-
ward the desired speaker. An interfering source that is spa-
tially separated from the desired source is therefore associ-
ated with TBRR lower than the desired source. Accordingly,
transient noise components at the beamformer output can
be differentiated from the desired speech components, and
further suppressed by the postfilter.
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Figure 5: Speech spectrograms. (a) Original clean speech signal at microphone 1 (transcribed text: “five six seven eight nine”). (b) Noisy
signal at microphone 1 (SNR = −0.9 dB, SegSNR = −6.2 dB, and LSD = 15.4 dB). (c) TF GSC output (SegSNR = −5.3 dB, LSD = 12.2 dB).
(d) Single-channel postfiltering output (SegSNR = −3.8 dB, LSD = 7.4 dB). (e) Multichannel postfiltering output (SegSNR = −1.3 dB,
LSD = 4.6 dB). (f) Theoretical limit (SegSNR = −0.4 dB, LSD = 4.0 dB).
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