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ABSTRACT

Typical transient interferences, e.g. door knocks and keyboard tap-

ping, are short in time, widely spread across the frequency domain,

and have an abrupt nature. Thus, traditional speech enhancement

techniques that use temporal smoothing to estimate the power spec-

tral density (PSD) of the interference are inadequate. In this paper,

we present a speech enhancement algorithm that suppresses tran-

sient interferences and pseudo-stationary background noise. The al-

gorithm comprises an estimation of the transient and the pseudo-

stationary noise PSDs, and enhancement of speech. The proposed

algorithm is capable of tracking rapid variations of the input sig-

nal spectra and enables to effectively estimate the PSD of the tran-

sients. Experimental results show that the proposed algorithm is

robust, does not rely on transient periodicity or reoccurrence, and

exhibits good performance for various transient interference types.

Index Terms— Speech enhancement, speech processing, acous-

tic noise, impulse noise, transient noise.

1. INTRODUCTION

Transients are undesired abrupt interferences which can be origi-

nated by keyboard typing, construction operations, knocking, ham-

mering, etc. Characteristic transients are featured by a short time

duration and a wide spread over the frequency domain with respect

to speech phonemes. Traditional speech enhancement techniques as-

sume pseudo-stationary noise, which enables to estimate the power

spectral density (PSD) of the noise via temporal smoothing [1, 2, 3,

4]. This assumption does not hold for transient interferences due to

their fast varying nature.

Recently, an approach based on nonlocal filtering has been pro-

posed to enhance speech interfered by transients [5, 6, 7]. First, the

transient interferences are enhanced using a modified speech esti-

mator. Then, diffusion maps [8] is used to learn the geometric struc-

ture of the transients, which is in turn utilized to estimate the tran-

sients PSD using nonlocal diffusion filtering. Finally, the speech

is enhanced and the interferences are suppressed by the optimally-

modified LSA (OM-LSA) filter equipped with an estimate of the

transients PSD. Unfortunately, the main drawback imposed by the

nonlocal diffusion filtering is the key assumption that the same in-

terference pattern appears several times in the measurement. Thus, a

single transient is generally not identified as interference, and hence

not suppressed.
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In this paper, we present an algorithm that enhances speech cor-

rupted by transient interferences and pseudo-stationary noise. The

algorithm comprises an estimation of the transient and the pseudo-

stationary noise PSDs, and enhancement of speech. We introduce a

modified version of [6] based entirely on extensions of the OM-LSA

algorithm [4]. The proposed algorithm is capable of tracking rapid

variations of the input signal spectra and enables to efficiently esti-

mate the PSD of the transients. We show that the proposed solution

is robust to the type of transient noise, does not require off-line nor

pre- or post-processing, and does not rely on transient periodicity or

recurrence.

The remainder of this paper is structured as follows. In Section

2, we formulate the problem. In Section 3, we present the proposed

algorithm, and in Section 4, experimental results demonstrate the

performance for various transient interferences.

2. PROBLEM FORMULATION

Let x(n) denote a speech signal and let d(n) and t(n) denote an

additive stationary (or quasi-stationary) noise and a transient inter-

ference, respectively. The measured signal y(n) is given by:

y(n) = x(n) + t(n) + d(n). (1)

Let Y (k, l) be the measured signal represented in the time-frequency

domain by applying the short-time Fourier transform (STFT):

Y (k, l) =

N−1∑

n=0

y(n+ lM)h(n)e−j 2π

N
nk

(2)

where k is the frequency bin index, l is the time frame index, h is

an analysis window (e.g. Hamming window) of length N , and M is

the number of overlapping samples between two successive frames.

Applying the STFT on each component in (1) yields

Y (k, l) = X(k, l) + T (k, l) +D(k, l) (3)

where X(k, l), T (k, l) and D(k, l) are the STFTs of x(n), t(n) and

d(n), respectively. The objective is to find an estimator X̂(k, l) for

the speech signal from the measured signal Y (k, l) for each spectral

component.

Let λy(k, l) = E
[
|Y (k, l)|2

]
be the spectral variance of the

measured signal. We assume that the speech, the transient interfer-

ence, and the stationary noise are uncorrelated. Thus, the spectral

variance of the measurement is given by

λy(k, l) = λx(k, l) + λt(k, l) + λd(k, l) (4)



where λx(k, l) = E
[
|X(k, l)|2

]
, λt(k, l) = E

[
|T (k, l)|2

]
, and

λd(k, l) = E
[
|D(k, l)|2

]
.

3. PROPOSED ALGORITHM

The proposed algorithm for transient interference suppression is di-

vided into two steps. First, in Subsection 3.1, we propose a modified

version of the OM-LSA adapted to track fast variations and used for

transient PSD estimation. Then, in Subsection 3.2, we compute an

OM-LSA filter using the PSD estimate from Subsection 3.1 to en-

hance the speech. Figure 1 depicts a block diagram of the proposed

algorithm.

3.1. Transient PSD Estimation

We exploit the different variation rates of speech, transients and

background noise. We assume that the transient interference is

rapidly varying in time compared to the slower speech and the

pseudo-stationary background noise. Thus, we propose to adjust

the noise PSD estimation component of the OM-LSA to track faster

PSD changes and to make the non-transient components (both

speech and background noise) appear as “pseudo-stationary”. Then,

computing the OM-LSA estimator based on the PSD estimate of the

non-transient components enables to enhance the transient part and

suppress the speech and background noise.

We use short STFT frames which reduce the speech variation be-

tween consecutive time frames. We note that the usage of short time

frames reduces the frequency resolution. In our empirical experi-

ments, a time frame length of 64 samples was shown to be suitable

and yielded good performance. This particular length corresponds

to 4 ms for a 16 KHz sampling rate.

We modify the minima controlled recursive averaging (MCRA)

method [9] to estimate the PSD of the non-transient components.

The PSD estimation is based on a smoothed periodogram obtained

by a temporal recursive averaging of the spectral amplitude as fol-

lows

S(k, l) = αsS(k, l − 1) + (1− αs)|Y (k, l)|2. (5)

Thus, assigning a smaller value to the smoothing parameter αs en-

ables faster tracking of the PSD. The lower αs is, the more weight is

assigned to the current time frame, and as a result faster variations of

the PSD of the speech or background noise can be captured. In the

proposed algorithm we reduce the value of αs from a typical range

of 0.9− 0.99 to 0.7.

The transient presence probability is controlled by the minima

values of the smoothed periodogram [10], which are obtained from

a finite causal window of length L

S
L
min(k, l) = min{S(k, l), S(k, l − 1) . . . S(k, l − L+ 1)}. (6)

Then, the transient presence decision is made using the following

rule

Sr(k, l) ≡
S(k, l)

SL
min(k, l)

≶ δ (7)

where δ is an empirical threshold. When Sr(k, l) > δ the current

slot is marked as containing a transient. Otherwise, it is regarded

as containing speech and background noise. Let I(k, l) denote the

transient presence indicator, defined as

I(k, l) =

{
1, if Sr(k, l) > δ,
0, otherwise.

(8)

Fig. 1. Block diagram of the proposed algorithm.

Let p(k, l) be the transient presence probability, which is smoothed

according to

p(k, l) = αpp(k, l − 1) + (1− αp)I(k, l) (9)

where αp (0 < αp < 1) is a smoothing parameter. Finally, the

PSD of the non-transient components is estimated by averaging past

spectral power values using a smoothing parameter that is adjusted

by the transient presence probability:

λ̂(k, l + 1) = α̃(k, l)λ̂(k, l) + [1− α̃(k, l)]|Y (k, l)|2 (10)

where

α̃(k, l)
.
= α+ (1− α)p(k, l) (11)

and α is a fixed smoothing parameter (0 < α < 1).
The proposed procedure captures most of the speech and back-

ground noise parts. Unfortunately, speech phoneme onsets, which

are characterized by sudden bursts, are not tracked by the spectral

recursive smoothing. Therefore, according to (7), speech phoneme

onsets may be wrongly considered as transients and as a result may

not be properly suppressed in this stage. We propose to take into ac-

count “future” time frames in order to distinguish between transients

and speech onsets when a sudden burst is encountered. After a short-

duration transient, the power of the signal is expected to decay fast,

whereas after a speech phoneme onset, the power level is expected

to stay steady for the duration of the phoneme.

We implement this distinction using an additional anti-causal

window of length T . Let ST
min−ac(k, l) be the minimum value in

the anti-causal window, which is calculated according to

S
T
min−ac(k, l) = min{S(k, l), S(k, l + 1) . . . S(k, l + T − 1)}.

(12)

Then, the maximal value of the two minimal spectra values from the

causal and anti-causal windows is computed

Smin(k, l) = max{SL
min(k, l), S

T
min−ac(k, l)}, (13)

and regarded as the estimate of the non-transient spectral level.

This ensures that onsets spectra are compared to the rest of the



phoneme rather than the preceding background noise. By substitut-

ing SL
min(k, l) with Smin(k, l) in (7) we obtain the new decision

rule. Since the phoneme onset spectral level is now not higher than

Smin, the value of Sr does not cross the threshold δ and the onsets

are suppressed as desired.

We observe that an anti-causal window shorter than a typical

transient yields unwanted tracking of transients, whereas a window

longer than a typical speech phoneme captures the spectral minimal

level of the stationary noise instead of the speech phoneme. Thus,

the length T of the anti-causal window is set to be longer than a typ-

ical transient and shorter than a typical speech phoneme. Our empir-

ical tests suggest that a 40ms long anti-causal window is appropriate

for many transients. However, the window length should generally

be set according to the specific transient interferences. We also note

that an inevitable consequence of using an anti-causal window is the

addition of time lag.

Finally, we use the modified OM-LSA output signal, which con-

tains mainly the energy of the transient, to estimate the PSD of the

transient as follows

λ̂t(k, l) = |T̂ (k, l)|2 (14)

where T̂ (k, l) is the modified OM-LSA output transient amplitude

estimation. This estimation is performed for the simplicity of the

discussion. Alternatively, the PSD of the transient interference could

be estimated directly based on the a-priory SNR [4].

3.2. Speech Enhancement

In this section, we propose to use the output of Subsection 3.1 (the

transient PSD estimate λ̂t(k, l)) as an additional input for a second

application of the OM-LSA filter as presented in Figure 1.

As described in [4], the OM-LSA algorithm assembles an opti-

mal log spectral amplitude (LSA) filter in which the transient PSD

estimate is incorporated into the filter computation and enables tran-

sient interference suppression. We compute a new total interference

PSD estimate, which is given by

λ̂
∗
d(k, l) = λ̂d(k, l) + λ̂t(k, l) (15)

where λ̂d is the estimate of the stationary noise PSD obtained by the

original MCRA, and λ̂t is the estimate of the transient noise PSD

from Subsection 3.1. Let ξ
.
= λx(k,l)

λ∗

d
(k,l)

and γ
.
= |Y (k,l)|2

λ∗

d
(k,l)

be the a-

priori and posteriori SNRs, respectively. Then, the spectral gain is

derived according to

G(k, l) = {GH1
(k, l)}p(k,l)G

1−p(k,l)
min (16)

where Gmin is a constant low gain used when speech is absent, and

GH1
(k, l) =

ξ(k, l)

1 + ξ(k, l)
exp

(
1

2

∫ ∞

v(k,l)

e−t

t
dt

)
, (17)

with

v(k, l) =
γ(k, l)ξ(k, l)

1− ξ(k, l)
.

As shown in [4], the optimal gain G(k, l) minimizes the mean-

square error of the LSA under speech presence uncertainty

min{(log(A(k, l))− log(Â(k, l)))}

where A(k, l) = |X(k, l)| is the speech spectral amplitude.
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Voiced phoneme beginning

Fig. 2. Estimated transient interference PSD. Top: without the anti-

causal window. Bottom: with the anti-causal window.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed algo-

rithm. We use recorded speech signals of different speakers, both

male and female, with an average length of 3 s. We arbitrarily add

4− 15 recorded transient instances of 40− 140 ms durations along

the speech signal. The transients and speech signals are taken from

[11] and [12], respectively, and are both sampled at 16 KHz. We

note that unlike [6, 5, 7] the proposed method does not require sev-

eral repetitions of the transient instances. For the first stage of the

transient PSD estimation we use STFT frames of length 64 and for

the speech enhancement stage we use longer frames of length 512.

In both cases, we use 75% overlap between consecutive frames. The

amplitudes of the speech and the transients are re-scaled to the same

maximal amplitude value. This provides a fair comparison between

different types of speech and transients. We employ the algorithm

on signals contaminated with 5 types of transients.

Figure 2 demonstrates the onsets problem described in Section

3.1 by presenting the output of the first stage of the algorithm. In Fig.

2 (top) we present the PSD estimate without the anti-causal window.

We observe that the speech onsets are recognized as transients and

therefore are not suppressed. In Fig. 2 (bottom) we present the PSD

estimate with the anti-causal window. As shown, the beginnings of

the phonemes are suppressed while transient interferences remain

undistorted.

Figure 3 (top) depicts the spectrograms of a speech signal con-

taminated by a metronome interference, and Fig. 3 (bottom) depicts

the enhanced speech. It can be seen that the transients are of short

duration in time and span a wide range of frequencies. In Fig. 3 (bot-

tom) we observe significant suppression of the interference while

imposing merely a small distortion on the speech.

The results are evaluated using a common objective measure -

the Segmental SNR (SegSNR) and summarized in Table 1. It can be

seen clearly that the proposed method enables to suppress a variety

of transient interferences and improves substantially the SegSNR of
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Fig. 3. Signal spectrograms. Top: the noisy measurement. Bottom:

the enhanced speech obtain by the proposed algorithm.

Table 1. Speech enhancement evaluation for different types of tran-

sient interference.

Transient SegSNR delay

Noise Improvement [dB] [ms]

Metronome 4.7 40
Knocks 4.9 40
Shot 3.7 250
Scissors 5.3 100
Keyboard 4.5 40

the signal. We mention that the length of the anti-causal window is

empirically set for each type of transient to yield maximal perfor-

mance; The obtained SegSNR for each type of transient is measured

for different lengths of anti-causal windows. Then, the length that

yields the maximal SegSNR is set. The determined lengths of the

anti-causal windows are presented in Table 1. The obtained results

demonstrate the robustness of the proposed method. Transient in-

terferences of various types, durations, and spectral features are re-

duced regardless of their location along the speech and regardless of

the particular speaker.

5. CONCLUSIONS

We introduced an algorithm for transient interference suppression

based on two applications of the OM-LSA estimator. First, the tran-

sient interference is enhanced and its PSD is estimated using a ver-

sion of the OM-LSA adjusted to track rapid signal variations. In

addition, in this step we use both causal and anti-causal windows for

minimum statistics tracking. This circumvents false identification of

voiced phonemes onsets as transients. Then, the pseudo-stationary

noise PSD is estimated using the MCRA method. The sum of the

PSDs of the transient interfernce and pseudo-stationary noise is uti-

lized as the total interference PSD estimate. Finally, the total in-

terference PSD estimate is used in the OM-LSA filter for speech

enhancement.

The proposed algorithm enables to suppress a variety of tran-

sients. In addition, the algorithm is shown to be speaker indepen-

dent. A particularly good performance is achieved for transients that

span a wide frequency range and have short temporal support. Ex-

perimental results demonstrate successful suppression of transients

without a-priori knowledge on their location along the speech sig-

nal. Moreover, unlike previous methods, several transient instances

are not required for successful suppression and even a single tran-

sient can be suppressed with minimal speech distortion.

6. REFERENCES

[1] S. Boll, “Suppression of acoustic noise in speech using spectral

subtraction,” IEEE Trans. Acoust. Speech, and Signal Process.,

vol. 27, no. 2, pp. 113 – 120, Apr. 1979.

[2] Y. Ephraim and D. Malah, “Speech enhancememt using a

minimum mean square error short time spectral amplitude es-

timator,” IEEE Trans. Acoust. Speech and Signal Process., pp.

1109–1121, Dec. 1984.

[3] Y. Ephraim and D. Malah, “Speech enhancement using a

minimum mean square error log spectral amplitude estimator,”

IEEE Trans. Acoust. Speech and Signal Process., pp. 443–445,

Apr. 1985.

[4] I Cohen and B. Berdugo, “Speech enhancement for non sta-

tionary noise environments,” Signal Process., vol. 81, no. 11,

pp. 2403–2418, Nov. 2001.

[5] R. Talmon, I. Cohen, and S. Gannot, “Transient noise re-

duction using nonlocal diffusion filters,” IEEE Trans. Audio,

Speech and Lang. Process., vol. 19, Issue 6, pp. 1584–1599,

Aug. 2011.

[6] R. Talmon, I. Cohen, and S. Gannot, “Clustering and sup-

pression of transient noise in speech signals using diffu-

sion maps,” Proc. 36th IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP11), Prague,

Czech Republic, May 22-28, 2011.

[7] R. Talmon, I. Cohen, and S. Gannot, “Single-channel transient

interference suppression with diffusion maps,” to appear in

IEEE Trans. Audio, Speech and Lang. Process., Apr. 2012.

[8] R. Coifman and S. Lafon, “Diffusion maps,” Applied and Com-

putational Harmonic Analysis, vol. 21, pp. 5–30, Jul. 2006.

[9] I. Cohen, “Noise spectrum estimation in adverse environments:

improved minima controlled recursive averaging,” IEEE Trans.

Speech, Audio Process., vol. 11, no. 5, pp. 466–475, Sep. 2003.

[10] R. Martin, “Noise power spectral density estimation based

on optimal smoothing and minimum statistics,” IEEE Trans.

Speech and Audio Process., vol. 9, pp. 504–512, Jul. 2001.

[11] [Online]. Available: http://www.freesound.org.

[12] J. S. Garofolo, “Getting started with the DARPA TIMIT CD-

ROM: An acoustic-phonetic continous speech database,” Na-

tional Inst. of Standards and Technology (NIST), Gaithersburg,

MD, Feb 1993.


