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ABSTRACT

In our recent work we proposed an image denoising
scheme based on reordering of the noisy image pixels to a
one dimensional (1D) signal, and applying linear smoothing
filters on it. This algorithm had two main limitations: 1) It did
not take advantage of the distances between the noisy image
patches, which were used in the reordering process; and 2)
the smoothing filters required a separate training set to be
learned from. In this work, we propose an image denoising
algorithm, which applies similar permutations to the noisy
image, but overcomes the above two shortcomings. We elim-
inate the need for learning filters by employing the nonlocal
means (NL-means) algorithm. We estimate each pixel as a
weighted average of noisy pixels in union of neighborhoods
obtained from different global pixel permutations, where the
weights are determined by distances between the patches. We
show that the proposed scheme achieves results which are
close to the state-of-the-art.

Index Terms— patch-based processing, traveling sales-
man, pixel permutation, denoising.

1. INTRODUCTION

In recent years, many image denoising methods achieved high
quality results by operating on local patches, and exploiting
interrelations between them. There are various ways in which
the relations between patches are taken into account by differ-
ent algorithms: weighted averaging of pixels with similar sur-
rounding patches, as the NL-means algorithm does [1], clus-
tering the patches into disjoint sets and treating each set dif-
ferently, as performed in [2], [3], [4], [5], seeking a represen-
tative dictionary for the patches and using it to sparsely rep-
resent them, as practiced in [6], [7] and [8], gathering groups
of similar patches and applying a sparsifying transform on
them [8], [9], [10], [11]. A common theme to many of these
methods is the expectation that every patch taken from the
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image may find similar ones extracted elsewhere in the im-
age. Put more broadly, the image patches are believed to
exhibit a highly-structured geometrical form in the embed-
ding space they reside in. Thus, non-local processing schemes
can achieve better recovery through joint treatment of similar
patches.

In our recent work [12] we took a different approach, and
proposed a denoising scheme which consists of reordering the
noisy image pixels to what should be a 1D regular signal, and
applying it linear smoothing filters. We applied several per-
mutations to the image, each was obtained by calculating dis-
tances between the noisy image patches, and ordering them
such that they were chained in the shortest possible path, es-
sentially solving the traveling salesman problem [13]. We
note that similar permutations were employed in [10] and [11]
to construct image-adaptive wavelet transforms, which were
used for image denoising. The algorithm proposed in [12] had
two main limitations: 1) the distances between the patches
were not employed in the denoising scheme, although they
carry additional information regarding patch similarity; 2) the
smoothing filters required a separate training set to be learned
from.

In this paper we embark from our earlier work as reported
in [12], and apply similar permutations to the noisy image.
However, we eliminate the need for learning filters by em-
ploying the NL-means algorithm [1], which estimates each
pixel as a weighted average of noisy pixels in a surrounding
neighborhood. We propose to replace this neighborhood with
a union of neighborhoods obtained from different global pixel
permutations, and determine the weights using the distances
between the patches. We demonstrate the performance of the
proposed image denoising scheme, and show that combined
with a patch classification and a subimage averaging schemes,
it outperforms both the NL-means algorithm and the algo-
rithm presented in [12], and achieves results which are close
to those of the BM3D algorithm [9].

The paper is organized as follows: In Section 2 we in-
troduce the basic image denoising scheme. In Section 3 we
explain how the performance of the basic scheme can be im-
proved using patch classification, subimage averaging, and
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the application of a second iteration. In Section 4 we present
experimental results that demonstrate the advantages of the
proposed scheme.

2. IMAGE DENOISING USING PATCH ORDERING

2.1. Problem Formulation

Let Y be an image of size N1 × N2 where N1N2 = N , and
let Z be its noisy version

Z = Y + V. (1)

V denotes an additive white Gaussian noise independent of Y
with zero mean and variance σ2. Also, let z and y be the col-
umn stacked representations of Z and Y, respectively. In our
previous work [12], we employed K different permutations
matrices Pk of size N × N to reconstruct y from z. When
each such matrix is applied to the unknown target signal y, it
produces a smooth signal yp

k = Pky. Therefore if we apply
the same permutation to z, we attain the prior knowledge that
the clear version of the obtained signal zp

k = Pkz is smooth,
which can simplify the reconstruction process. The denoising
algorithm in [12] recovers y by applying linear smoothing fil-
ters to zp

k, and applying the inverse permutation P−1
k to the

result.
The algorithm proposed in [12] has two main limitations.

First, it ignores altogether the distances between the patches.
These distances carry additional information, because they
have a key role in the construction of the matrices Pk, as
will be explained in Section 2.2. Additionally, the smooth-
ing filters require a separate training set to be learned from.
Our goal is to develop an image denoising algorithm which
employs the matrices Pk, takes into account the distances be-
tween the patches, and do not require filter learning. To this
end we modify the NL-means algorithm, which takes into ac-
count these distances in the denoising process. We next de-
scribe how we construct the reordering matrices Pk. After-
wards we present our image denoising scheme.

2.2. Building a Permutation Matrix P

We wish to design a matrix P which produces a smooth signal
when applied to the target image y. When the image Y is
known, the optimal solution would be to reorder it as a vector,
and then apply a simple sort operation on the obtained vector.
However, we are interested in the case where we only have
the noisy image Z. Therefore, we seek a suboptimal ordering
operation, using patches from this image.

Let yi and zi denote the ith samples in the vectors y and
z, respectively. We denote by xi the column stacked version
of the

√
g × √

g patch around the location of zi in Z. We
refer to the patches as points in Rg , and assume that a small
Euclidean distance between the two points xi and xj suggests
proximity between the clear versions of their center pixels yi

and yj . Thus, we shall try to reorder the points xi so that they
form a smooth path, hoping that the corresponding reordered
1D signal yp will also become smooth. The “smoothness”
of the reordered signal yp can be measured using its total-
variation measure

∥yp∥TV =
N∑

j=2

|yp(j) − yp(j − 1)|. (2)

Let {xp
j}N

j=1 denote the points {xi}N
i=1 in their new order.

Then by analogy, we measure the “smoothness” of the path
through the points xp

j by the measure

Xp
TV =

N∑
j=2

∥xp
j − xp

j−1∥. (3)

Minimizing Xp
TV comes down to finding the shortest path

that passes through the set of points xi, visiting each point
only once. This can be regarded as an instance of the travel-
ing salesman problem [13], which can become very computa-
tionally expensive for large sets of points. We choose a simple
approximate solution, which is to start from a random point
and then continue from each point xj0 to its nearest neighbor

xj1 with a probability p1 = α exp
(
−∥xj0−xj1∥

2

gϵ

)
, or to its

second nearest neighbor xj2 with a probability p2 = 1−p1 =

α exp
(
−∥xj0−xj2∥

2

gϵ

)
, where ϵ is a design parameter, and xj1

and xj2 are taken from the set of unvisited points.
We restrict the nearest neighbor search performed for each

patch to a surrounding square neighborhood which contains
B × B patches. When no unvisited patches remain in that
neighborhood, we search for the nearest neighbor among all
the unvisited patches in the image. This restriction decreases
the overall computational complexity, and our experiments
show that with a proper choice of B it also leads to improved
results. The permutation applied by the matrix P is defined
as the order in the found path. We obtain K different matrices
Pk by simply running the proposed ordering solver K times,
and the randomness (both in the initialization and in assigning
the neighbors) leads to different permutation results.

2.3. The Basic Denoising Scheme

We start by calculating K permutation matrices Pk from the
image patches xj . We apply these matrices to z and obtain
zp

k = Pkz. We wish to modify the NL-means algorithm [1]
so it will make use of these signals. The NL-means algorithm
estimates each pixel y[n] as a weighted average of pixels in
Z, which reside in a square neighborhood SNL

n surrounding
z[n]. The weights are determined by the distances between
the patch surrounding the estimated pixel and the patches sur-
rounding the pixels in SNL

n . More formally,

ŷ[n] =
1

Dn

∑
m∈SNL

n

z[m]wn,m (4)
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where the weights wm,n and Dn satisfy

wn,m = exp
(
−∥xn − xm∥2

gγ

)
, Dn =

∑
m∈SNL

n

wn,m. (5)

Let pk denote a vector containing the permutation of the
pixel indices applied by the matrix Pk. We next use the per-
mutations to construct for each pixel z[n] a neighborhood Sn.
Let jk

n be the index of the pixel y[n] in yp
k, i.e. yp

k[jk
n] = y[n].

As yp
k should be smooth, yp

k[jk
n] should be close to its Q

neighboring pixels, and therefore we choose to estimate it
from their noisy versions. Thus, we first define the neigh-
borhood Sk,n of z[n] as the set of indices

Sk,n = {pk[jk
n − Q

2
], . . . , pk[jk

n +
Q

2
]}. (6)

Then we define the total neighborhood of z[n] as

Sn =
K∪

k=1

Sk,n. (7)

We obtain our proposed image denoising algorithm by replac-
ing the neighborhood SNL

n with Sn in (4) and (5). As can be
seen, unlike the algorithm in [12] we do make use of the dis-
tances between the patches, and we do not require a prelim-
inary filter-learning stage. We next describe how the results
obtained with our method can be further improved.

3. IMPROVING THE DENOISING RESULTS

We employ the three following methods in order to further
improve the denoising results.

3.1. Patch classification

Similarly to our previous work [12], we improve our results
by treating smooth areas in the image differently than areas
with edges or texture. We first divide the patches into two
sets: Ss - which contains smooth patches, and Se - which
contains patches with edges or texture. Let std(xi) denote
the standard deviation of the patch xi and let C be a scalar
design parameter. Then we use the following classification
rule: if std(xi) < Cσ then xi ∈ Ss, otherwise xi ∈ Se.
We next divide the image z into two signals: zs - which con-
tains the pixels corresponding to the smooth patches, and ze

- which contains the pixels corresponding to the patches with
edges and texture. We apply the denoising scheme described
above to the signals zs and ze, with the sets of patches Ss

and Se, and two sets of parameters Qs, γs and Qe, γe for the
NL-means, respectively. We recover the two signals ŷs and
ŷe from zs and ze, respectively, and obtain the final estimate
ŷ by returning the pixels in each signal to their original place
in the image canvas.

3.2. Subimage Averaging

Let X be an g×(N1−
√

g+1)(N2−
√

g+1) matrix, contain-
ing column stacked versions of all the

√
g×√

g patches inside
the image Z. We extract these patches column by column,
starting from the top left-most patch. When we calculated
each matrix Pk as described in Section 2.2, we assumed that
each patch is associated only with its middle pixel. Therefore
Pk was designed to reorder the signal composed of the mid-
dle points in the patches, which reside in the middle row of
X. However, we can alternatively choose to associate all the
patches with a pixel located in a different position, e.g., the
top left pixel in each patch. This means that the matrices Pk

can be used to reorder any one of the signals located in the
rows of X. These signals are the column stacked versions of
all the n subimages of size (N1 −

√
g + 1)× (N2 −

√
g + 1)

contained in the image Z. We denote these subimages by Z̃j ,
j = 1, 2, . . . , g.

Similarly to [12], in order to improve the quality of the re-
covered image we utilize all the g subimages of a noisy image
in its denoising process. Let z̃j be the column stacked version
of Z̃j . Then we apply the proposed denoising scheme, with
the patch classification described above, to each of the subim-
ages z̃j , and obtain reconstructed subimages ŷj . We next re-
construct the image y from all the subimages ŷj by plugging
each subimage into its original place in the image canvas and
averaging the different values obtained for each pixel.

3.3. Applying a Second Iteration

We can further improve the quality of the recovered image by
applying the noisy image a second iteration of our proposed
scheme, similarly to the algorithms proposed in [9] and [12].
In the second iteration, all the processing stages remain the
same, but the applied permutations, the standard deviations
of the patches, and the weights wm,n, are all calculated using
patches extracted from the first iteration clean result.

4. EXPERIMENTAL RESULTS

In order to assess the performance of the proposed image
denoising scheme we apply it to noisy versions of the im-
ages Lena, Barbara and House, with noise standard deviations
σ = 10, 25, 50. In all our experiments we used K = 10 per-
mutation matrices, which resulted in a PSNR gain of 1.1 to 2.2
dB, compared to the case where only one matrix is used. The
rest of the parameters employed by the proposed scheme for
the three noise levels are shown in Table 1. For comparison,
we also apply the NL-means and BM3D [9] algorithms, and
two iterations of the algorithm proposed in [12], to the noisy
images. The PSNR values of the results obtained with these
methods, and with two iterations of our scheme are shown in
Table 2. The noisy and recovered Barbara and House images,
obtained with two iterations of our scheme for σ = 25 and
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Table 1: Parameters used in the denoising experiments.
σ Iter

√
g B C ϵ Qs Qe γs γe

10
1 7 31 1.2 10 9 5 3.3 1.7
2 4 231 1.1 103 33 3 0.4 1.4

25
1 12 31 1.1 102 11 5 4.1 1.7
2 4 131 0.3 107 71 11 0.3 0.5

50
1 16 31 1.1 102 11 5 5 5.5
2 6 141 0.1 103 91 19 0.2 0.3

Table 2: Denoising results (PSNR in dB) of noisy versions of the
images Lena, Barbara and House, obtained with the NL-means and
BM3D algorithms, two iterations of the algorithm proposed in [12],
and two iterations of the proposed (prop.) scheme. For each image
and noise level the best result is highlighted.

Image Method
σ/PSNR

10/28.14 25/20.18 50/14.16

Lena
NL-means 34.73 30.43 26.84

BM3D 35.93 32.08 29.05
[12] (2 iter.) 35.39 31.80 28.96
prop. (1 iter.) 35.41 31.50 28.46
prop. (2 iter.) 35.78 32.03 29.16

Barbara
NL-means 33.34 28.35 24.62

BM3D 34.98 30.72 27.23
[12] (2 iter.) 34.39 30.47 27.35
prop. (1 iter.) 34.46 30.08 26.67
prop. (2 iter.) 34.75 30.76 27.48

House
NL-means 35.22 30.66 26.27

BM3D 36.71 32.86 29.69
[12] (2 iter.) 35.80 32.54 29.64
prop. (1 iter.) 36.2 32.23 28.96
prop. (2 iter.) 36.55 33.07 30.21

σ = 50, are shown in Figs. 1 and 2, respectively. First, it
can be seen that the second iteration improves the results of
our proposed scheme in all the cases. It can also be seen that
the results obtained with two iterations of our scheme are bet-
ter than the ones obtained with NL-means and the algorithm
in [12]. Further, compared with BM3D results, our second
iteration results are slightly better for σ = 50, comparable for
σ = 25, and slightly worse for σ = 10.

5. CONCLUSIONS

We have proposed a new image denoising scheme which is
based on the NL-means algorithm and smooth 1D ordering of
the pixels in the noisy image. We replaced the square neigh-
borhoods employed by each pixel in the NL-means algorithm
with a union of neighborhoods obtained from different global
pixel permutations. We have shown that combined with patch
classification and subimage averaging schemes, applying two
iterations of our proposed scheme produces results which are
close to the state-of-the-art.

In our future work, we wish to improve state-of-the-art

PSNR=20.18 dB PSNR=30.76 dB

PSNR=20.18 dB PSNR=33.07 dB

Fig. 1: Denoising results for the images Barbara and House (σ =
25): Left column - noisy images, Right column - 2 iterations results.

PSNR=14.16 dB PSNR=27.48 dB

PSNR=14.16 dB PSNR=30.21 dB

Fig. 2: Denoising results for the images Barbara and House (σ =
50): Left column - noisy images, Right column - 2 iterations results.

algorithms like the BM3D and the algorithm proposed in [8]
by employing our proposed patch neighborhoods in their
block matching procedure. Additionally, the proposed im-
age denoising scheme may be further improved by dividing
the patches to more than two types, and treating each type
differently.
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