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ABSTRACT

In this paper, we introduce a new local frequency-based detector for

improved resolvability of closely-spaced exponential signals. The

frequency resolution problem is defined as a hypothesis-testing prob-

lem in the frequency domain, and a corresponding detector, based

on the generalized likelihood ratio test is constructed. We derive

a theoretical resolution limit in terms of the signal-to-noise ratio,

the observable-data length, and the probabilities of detection and

false-alarm. Experimental results validate the theoretical results and

demonstrate the effectiveness of the proposed detector over a time-

based detector.

Index Terms— Detection, resolution, hypothesis testing.

1. INTRODUCTION

Resolvability of exponential signals with nearby frequencies has

been studied extensively and is of major importance in diverse fields

of signal processing, such as spectral estimation [1–4] and array pro-

cessing [5]. A wide variety of approaches has been proposed for that

purpose, including subspace-based and parametric-estimation meth-

ods [5], and model-order selection approaches [1].

Recently, several techniques based on detection theory have

been proposed for resolving closely-spaced signals [2, 3]. The res-

olution problem is formulated as a hypothesis-testing problem, and

the small separation between the signals is exploited to derive ex-

plicit resolution limits. This formulation allows for defining the res-

olution in terms of a desired probability of correctly deciding the

number of signals, which is extremely essential in real-world appli-

cations. In [3], the theoretical resolution limit is derived assuming

the signal parameters (e.g., phases, amplitudes and frequencies) are

known to the detector. On the other hand, Shahram and Milanfar [2]

assume unknown signal parameters and construct a practical detec-

tor for real closely-spaced sinusoids which is based on a generalized

likelihood ratio test (GLRT). Nonetheless, since this detector is lo-

cally confined in the time domain, its detection capabilities may be

severely worsened when the observed data consists of additional (in-

terfering) spectral components. Moreover, the performance of this

detector is insufficient in practical scenarios, where the data may not

be entirely available to the detector (e.g., beamspace processing [5]).

In this paper, we extend the time-based detector in [2] and in-

troduce a new local detector operating in the frequency domain. The

observed signal is first transformed to the spectrum domain using the

discrete-Fourier transform (DFT), and a hypothesis-testing problem

is formulated in that domain. A corresponding GLRT-based detector

is constructed and a theoretical resolution limit is derived as a func-

tion of the signal-to-noise ratio (SNR), the observable-data length,

and the probabilities of detection and false-alarm. When no interfer-

ence signal is present, the detectability performance of the proposed

detector with only a few samples in the spectrum domain is com-

parable to that of the time-domain detector. However, a substantial

improvement in performance is achieved by the proposed detector

when an additional spectral component is present. The theoretical

resolution curve is also compared with related theoretical results in

the literature and validated by experimental results.

The paper is organized as follows. In Section 2, we formulate

the detection problem as a hypothesis-testing problem. In Section 3,

we propose a local detector operating in the frequency domain. In

Section 4, we analyze the detector performance, and finally in Sec-

tion 5, we present experimental results which verify the theoretical

derivations.

2. PROBLEM FORMULATION

Let an observation signal y(n) consist of two closely-spaced com-

plex exponentials in noise

y(n) = α1e
jθ1n + α2e

jθ2n + v(n) � x(n) + v(n) , (1)

where αi (i = 1, 2) are the complex amplitudes of the signals, θi

(i = 1, 2) are their discrete-time frequencies in radians, x(n) de-

notes the clean signal, and v(n) is a complex zero-mean white Gaus-

sian noise with variance σ2. In the sequel, we assume a general uni-

form sampling of the form n = n̄, n̄+1, . . . , n̄+N−1, with n̄ being

the first sample index. By ”closely-spaced signals” we mean that the

spectral resolution of the two exponentials, defined by |θ1 − θ2|, is

less than the Fourier resolution limit, defined by

δF � 2π

N
. (2)

In such a case, the observation signal y(n) would often provide a

single peak in the frequency domain, such that the two frequencies

could not be resolved by conventional spectral estimation techniques

(e.g., the periodogram). For notational simplicity, we express the

2690978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010



frequencies of the two exponentials, respectively, as θ1 = θ0 − δ1

and θ2 = θ0 + δ2, where θ0 is an ”average” frequency and δ1 and

δ2 are positive quantities whose sum δ1 + δ2 defines the spectral

resolution of the two exponentials (δ1 + δ2 < δF ). Using the above

notations, x(n) from (1) can be rewritten as

x(n) = α1e
j(θ0−δ1)n + α2e

j(θ0+δ2)n
. (3)

Our objective is to decide whether the noisy observation signal

y(n) is generated by either two closely-spaced signals or a single-

frequency signal. Similarly to [2, 3], we propose to solve the res-

olution problem by formulating it as a hypothesis-testing problem

and to construct a suitable detector. Specifically, the following two

hypotheses are considered:

H0 : δ1 = 0 and δ2 = 0

H1 : δ1 > 0 or δ2 > 0 (4)

where under hypothesis H0 a single signal is present and under H1

two distinct signals are present.

3. PROPOSED DETECTION ALGORITHM

In this section, we derive a local detector in the frequency domain

for solving the hypothesis-testing problem (4). We assume that the

complex amplitudes α1 and α2 and the parameters δ1 and δ2 are

unknown to the detector and should be estimated from the N data

samples. Let us assume for now that the average frequency θ0 is

assumed to be known a priori (an efficient estimation procedure for

θ0 is described in Section 5).

For controlling spectral leakage effects, we multiply the obser-

vation signal y(n) with a window function w(n) lying in the interval

n̄ ≤ n ≤ n̄ + N − 1. Applying the discrete-time Fourier transform

(DTFT) to the windowed signal yw(n) = y(n)w(n) yields

Yw (θ) =

n̄+N−1∑
n=n̄

yw(n)e−jθn = Xw (θ) + Vw (θ) , (5)

where

Xw (θ) = α1W (θ − θ0 + δ1) + α2W (θ − θ0 − δ2) , (6)

and Xw (θ), Vw (θ) and W (θ) are the DTFT of the windowed-

version signals xw(n) and vw(n), and the window function w(n),

respectively. Following a similar reasoning as in [2], we exploit

the small frequency separation to approximate the observed signal

in the Fourier transform domain using a Taylor expansion around

(δ1, δ2) = (0, 0). Specifically, using the DTFT definition from (5),

the second-order Taylor expansion of Xw (θ) can be expressed as

Xw (θ) ≈ η0W0 (θ) + η1W1 (θ) + η2W2 (θ) (7)

where

W� (θ) =
1

�!

n̄+N−1∑
n=n̄

(jn)� w(n)e−j(θ−θ0)n
; � = 0, 1, 2 (8)

and

η� = (−δ1)
� α1 + (δ2)

� α2 ; � = 0, 1, 2 . (9)

Combining (5) and (7), and evaluating the observable data at equidis-

tance frequencies, we have

Ȳw (k) ≈
2∑

�=0

η�W̄� (k) + V̄w (k) , (10)

where Ȳw (k) = Yw (θk) for θk = k ·2π/N1 (k = 0, 1, . . . N1−1),

and N1 ≥ N is the number of samples in the the DFT spectrum

[obtained by zero-padding the signal yw(n)]. The signals W̄� (k)

and V̄w (k) are defined similarly. Let k0 denote the closest discrete

frequency bin to θ0, and let the vector

ȳw =
[

Ȳw

(
k0 −

⌊
M−1

2

⌋)
, . . . , Ȳw

(
k0 +

⌊
M
2

⌋) ]T
(11)

represents M samples of the observed DFT signal around k0. The

value of M determines the number of DFT samples that are useful

for the detection process, and should be relatively small (3 ≤ M ≤
7) to maintain the high SNR around the main-lobe. Finally, equation

(10) can be written in a vector form as

ȳw = Wη + v̄w (12)

where W =
[

w̄0 w̄1 w̄2

]
and η =

[
η0 η1 η2

]T
is

the model parameters vector, and v̄w and w̄� are defined similarly

to ȳw as the M × 1 vector representations of V̄w (k) and W̄� (k),

respectively. Using the above notations, the hypothesis-testing prob-

lem in (4) can be formulated in a vector form as

H0 : Bη = 0 H1 : Bη �= 0 (13)

where

B =

[
0 1 0

0 0 1

]
. (14)

Equations (12)-(14) represent the classical linear-model detection

problem, which can be solved by the GLRT by substituting the

maximum-likelihood (ML) estimate of the parameters vector into

the Neyman-Pearson criterion [6]. It is easy to verify from (5) and

(10) that the noise in the spectrum domain v̄w is a complex zero-

mean Gaussian vector with covariance matrix Cv = E
{
v̄wv̄H

w

}
whose (m, �)th term is

(Cv)m,� = σ2
n̄+N−1∑

n=n̄

|w(n)|2 e
−j 2π

N1
(m−�)n

. (15)

Therefore, given the observable data (12), the ML estimate of the

parameters vector η is given by

η̂ =
(
WHC−1

v W
)−1

WHC−1
v ȳw . (16)

Assuming that σ2, the variance of the time-series noise signal v(n),

is known to the detector, the covariance matrix in the spectrum do-

main Cv is also known. Hence, the corresponding GLRT-based de-

tector decides H1 if [6]

T (ȳw) = 2η̂HBH
[
B(WHC−1

v W)−1BH
]−1

Bη̂ > γ (17)
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where the threshold γ is chosen as to maintain a constant pre-

specified probability of false-alarm1 .

4. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed detector

and derive relations between the attainable resolution and the SNR.

4.1. Relation Between Resolution and SNR

It is well known that the detection performance of the classical

linear-model hypothesis test (12)-(14) is [6]

PFA = P [T (ȳw) > γ|H0] = Qχ2
4
(γ) (18)

PD = P [T (ȳw) > γ|H1] = Qχ2
4(λ) (γ) (19)

where Qχ2
4
(·) and Qχ2

4(λ) (·) are the right-tail probabilities for a

central and a non-central Chi-Squared PDF, respectively, with 4 de-

grees of freedom. The noncentrality parameter λ is given by [6]

λ = 2ηHBH

[
B

(
WHC−1

v W
)−1

BH

]−1

Bη (20)

where η is defined in (12). For pre-specified PD and PFA, the non-

centrality parameter λ is explicitly determined by (18)-(19). Sub-

stituting the resulting value of λ, denoted by λ (PFA, PD), into (20)

yields an implicit relation between the achievable resolution (δ1+δ2)

and other relevant model parameters (e.g., window type, observable

signal length, noise level, etc.).

To provide further insights into the implicit relation in (20), we

consider the interesting case of equal amplitudes, i.e., α1 = Aejφ1

and α2 = Aejφ2 , where φ1 and φ2 denotes the initial phases of the

two exponentials. Moreover, we assume that θ0 is properly chosen,

such that δ1 ≈ δ2 = δ/2 (see [2, Appendix B]). Accordingly, let the

SNR be defined by2

SNR � A2

σ2
(21)

and let D �
[
B

(
WHC̄−1

v W
)−1

BH
]−1

, where C̄v � σ−2Cv.

Then, we can rearrange (20) to obtain

SNR =
λ (PFA, PD)∑3
�=1 d� · (δ)�+1

� G (δ, PFA, PD) , (22)

where d1 = (1 − cos Δφ) |D1,1|2, d2 = (cos Δφ) Im {D1,2},

d3 = 0.25 (1 + cosΔφ) |D2,2|2, and Δφ = φ2 − φ1 is the ini-

tial phase difference. Since the attainable resolution is heavily influ-

enced by the initial phase difference Δφ (see e.g., [3]), it is useful to

assume that the phases are uniformly distributed over [0, 2π], and to

compute the averaged resolution limit as

δ = EΔφ

{
G−1 (SNR, PFA, PD)

}
, (23)

1A detector for (13) in the case of an unknown covariance matrix Cv can

be derived using the Rao test [6].
2The SNR definition in (21) is considerably different from that defined

in [2] (SNR � ‖Bη‖2 /σ2) due to the influence of the initial phases.

Nonetheless, we use the (standard) definition in (21) in order to allow for a

fair and simple comparison with common literature results (see Section 4.2).
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Fig. 1. Comparison of several theoretical (normalized) resolution-

limit curves as a function of N ·SNR.

where the function G (·) is defined in (22). Equations (22)-(23) pro-

vide an expression for the (averaged) resolution achievable by the

proposed detector as a function of the SNR, PD and PFA.

4.2. Comparison with Literature Results

In [3], as was previously mentioned, the amplitudes, phases and fre-

quencies of the signals are assumed known to the detector. There-

fore, the resulting limit curve might be of limited use, since no prac-

tical detector, which performs without knowing the exact parameters

values, may ever reach this limit. Nonetheless, it is presented here

only as a reference for the proposed-detector performance.The re-

sulting (normalized) optimal resolution is approximated by [3]

δO

δF
≈ 3.07√

N · SNR

(
P̄D − 0.5

)
, (24)

where δF is defined in (2). It should be noted that the probability

of detection P̄D in (24) is defined as the probability of correctly

deciding the number of signals (either one or two signals), which

is different from the definition in (19).

In [4], the resolution limit is defined as twice the root Cramér-

Rao (CR) bound on the frequency-estimates variance. Assuming

unknown amplitudes, phases, frequencies and noise variance, it was

shown that the best resolution is obtained for Δφ ≈ π/2, whereas

the worst resolution is obtained for Δφ ≈ 0. The corresponding CR

resolution limits are given by [4]

δCR;best

δF
≈ 0.98

(N · SNR)1/4
(25)

δCR;worst

δF
≈ 1.21

(N · SNR)1/6
. (26)

Figure 1 shows the normalized resolution limits as a function

of N ·SNR, obtained by the optimal (reference) bound (24) with

P̄D = 0.99 , the CR-based limit (25)-(26), and the proposed ap-

proach (23) with PFA = 0.01 and both PD = 0.8 and 0.99 (for

other simulation parameters see Section 5). Clearly, the proposed

approach achieves resolution beyond the Fourier limit at reasonable

SNR conditions. Moreover, for N ·SNR values higher than 25 dB,

the resolution achieved by the proposed approach outperforms the

best CR-based resolution limit.
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5. EXPERIMENTAL RESULTS

In this section, we present experimental results which verify the the-

oretical results derived in this paper. The data is generated according

to (1) and (3) using |α1| = |α2| = A, θ0 = 0.4π, N = 51, and

n̄ = −(N −1)/2. For each value of SNR, we determine the empiri-

cal resolution limit by the value of δ whose empirical detection prob-

ability equals the desired PD . We use PD = 0.99 and PFA = 0.01.

For the proposed frequency-based detector, we employ a rectangular

window and utilize five samples in the spectrum domain after zero-

padding by a factor of two (i.e., M = 5 and N1 = 2N ).

For completeness of discussion, we have also evaluated the em-

pirical resolution in a more practical scenario when the average fre-

quency θ0 is unknown to the detector. In [2], it was suggested

to estimate θ0 using the peak produced by the MUSIC algorithm.

To ease the computational burden of such an approach, we pro-

pose to estimate θ0 using a parabolic-fitting procedure by interpo-

lating the discrete spectrum bins. More specifically, let kmax =

arg max
k

∣∣Ȳw (k)
∣∣ [where Ȳw (k) is defined in (10)], and let y0 �∣∣Ȳw (kmax)

∣∣, y1 �
∣∣Ȳw (kmax + 1)

∣∣ and y−1 �
∣∣Ȳw (kmax − 1)

∣∣.
Then, an estimate of θ0 is obtained by the centroid position defined

by

θ̂0 =
2π

N1

(
kmax +

y−1 − y1

2 (y−1 + y1) − 4y0

)
. (27)

Figure 2 shows the resulting resolution curves as a function of

N ·SNR, obtained from simulation results and from the theoretical

derivations [see (23)]. It can be seen that the experimental results

are accurately described by the theoretical resolution curve. More-

over, we observe that the performance of a detector with an estimated

θ0 is comparable to that with a known θ0. It should be noted that in

this case, the detectability performance of a time-domain detector [2]

would be similar to that of the proposed frequency-based detector, as

both detectors solve an equivalent hypothesis problem.

In the second experiment, we demonstrate the effectiveness of

the proposed approach in detecting two closely-spaced signals of

the form Aej(θ0−δ)n + Aej(θ0+δ)n in the presence of an addi-

tive exponential-signal interference Aejθ3n where |θ0 − θ3| > δF .

Note that all exponentials have equal power. We use N = 101,

θ0 = 0.4π, and δ = 0.4δF , and evaluate the probabilities of de-

tection and false-alarm for an N ·SNR of 30 dB and θ3 = 0.1π and

0.2π. A comparison is made between the proposed frequency-based

detector with rectangular and Hamming windows and the time-based

detector proposed in [2], where the latter is slightly modified to the

case of complex exponentials. Table 1 specifies the resulting empiri-

cal probabilities. We observe that the PFA achieved by the proposed

detector is substantially lower than that of the time-based detector,

without compromising for lower probability of detection PD . This

is a consequence of efficiently suppressing the interference influence

by performing the detection procedure locally in the frequency do-

main. Therefore, windows with lower sidelobe levels (e.g., Ham-

ming window) yields better detectability performance of the pro-

posed frequency-based approach
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Fig. 2. Comparison of experimental and theoretical and (normal-

ized) resolution curves as a function of N ·SNR.

Table 1. Detectabililty Performances of the Proposed Detector

and the Time-Based Detector [2] in the Presence of an Additive

Exponential-Signal Interference.

Detector
θ3 = 0.1π θ3 = 0.2π
PD PFA PD PFA

Proposed (Rectangular) 0.97 0.05 0.96 0.26

Proposed (Hamming) 0.99 0.02 0.99 0.09
Time 0.98 0.11 0.93 0.31

6. CONCLUSIONS

We have introduced a new detection algorithm for resolving complex

exponentials with nearby frequencies. Formulating the resolution

problem as a classical linear-model detection problem, we employ

the GLRT to construct a local frequency-based detector. Theoretical

resolution limits were derived and compared to related literature re-

sults. The effectiveness of the proposed detector over a time-domain

detector was demonstrated in detecting two closely-spaced signals

in the presence of an additional interfering spectral component.
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