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Local discontinuity measures for 3-D seismic data

Israel Cohen∗ and Ronald R. Coifman‡

ABSTRACT

In this work, an analysis method is developed for the
robust and efficient estimation of 3-D seismic local struc-
tural entropy, which is a measure of local discontinu-
ity. This method avoids the computation of large co-
variance matrices and eigenvalues, associated with the
eigenstructure-based and semblance-based coherency
estimates. We introduce a number of local discontinu-
ity measures, based on the relations between subvolumes
(quadrants) of the analysis cube. The scale of the analysis
is determined by the type of geological feature that is of
interest to the interpreter. By combining local structural
entropy volumes using various scales, we obtain a higher
lateral resolution and better discrimination between in-
coherent and coherent seismic events. Furthermore, the
method developed is computationally much more effi-
cient than the eigenstructure-based coherency method.
Its robustness is demonstrated by synthetic and real data
examples.

INTRODUCTION

One of the most challenging tasks facing the seismic
interpreter is locating subtle geological features, such as faults,
within a potentially enormous data volume. These geological
features are significant since they are often associated with
the formation of subsurface traps in which petroleum might
accumulate. A major step forward in the interpretation of
3-D seismic data was the introduction of the coherency cube
by Bahorich and Farmer (1995). This fundamental tool,
which replaces the original seismic volume by a volume of
coherency estimates, ideally gives an interpreter a much
clearer visual indication of the continuity between neighbor-
ing windowed seismic traces. Unfortunately, Bahorich and
Farmer’s coherency measure is based on a classical normal-
ized crosscorrelation of only three traces. This approach is
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computationally very efficient, but lacks robustness when
dealing with noisy data (Marfurt et al., 1998).

Marfurt et al. (1998) proposed a multitrace semblance mea-
sure, which estimates coherency over an arbitrary number of
traces. This measure provides a greater stability in the pres-
ence of noise, and improved vertical resolution compared to
the crosscorrelation algorithm. However, increasing the num-
ber of traces used for the coherency analysis decreases lateral
resolution and increases the computational cost.

Gersztenkorn and Marfurt (1999) introduced a coherence
estimate based on an eigenstructure approach. Accordingly, an
analysis cube enclosing a relatively small subvolume of traces is
used for constructing a covariance matrix. The (i, j )th compo-
nent of the covariance matrix represents the cross covariance
of the i th and j th traces within the analysis cube. A coherence
measure is then estimated by the ratio of the dominant eigen-
value and the trace of that covariance matrix. It was shown that
the eigenstructure-based coherence estimate provides a more
robust measure of coherence when compared to the crosscorre-
lation and semblance based computations (Gersztenkorn and
Marfurt 1999; Marfurt et al. 1999). Its main drawback, however,
is the expensive calculations required for the building of large
covariance matrices and the computation of their dominant
eigenvalues.

In this paper, we propose an analysis method for the esti-
mation of seismic local structural entropy which is both ro-
bust to noise and computationally efficient. Similarly to the
eigenstructure-based coherence algorithm, an analysis cube is
selected by the interpreter, according to the type of geological
feature that is of interest. Structural features, such as faults, hav-
ing a longer vertical duration are analyzed with larger analysis
cubes. Stratigraphic features (such as channels) characterized
by shorter vertical duration are analyzed with smaller analy-
sis cubes. However, the present method avoids the computa-
tion of large covariance matrices and their dominant eigen-
values. We define a small (4× 4) correlation matrix formed
from the crosscorrelations of four subvolumes (quadrants) of
the analysis cube. Then, the normalized trace of this matrix
is used as a local structural entropy estimate. A number of
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alternative local discontinuity functionals are also introduced,
derived from similar relations between the quadrants of the
analysis cube. Synthetic and real data examples demonstrate
the robustness of the proposed method. Furthermore, by com-
bining local structural entropy volumes using various sizes of
analysis cubes, higher resolutions are obtained. Specifically, the
detection of features is restricted to larger-scale discontinuities
while suppressing small-scale discontinuities which are gener-
ally not of interest to an interpreter.

Based on this work we have derived efficient methods for
background rejection, detection, and classification of anoma-
lies in images and multidimensional data. Some methods have
been successfully tested in a variety of applications, including
medical diagnostics, underwater mine detection, and adaptive
noise removal. These ideas and examples will be detailed in
subsequent publications.

LOCAL SEISMIC DISCONTINUITY MEASURES

The local structural entropy

The local structural entropy (LSE) is a measure of discon-
tinuity on a scale from zero to one. It indicates the degree of
discontinuity within a given subvolume of the seismic data.
By translating the 3-D seismic volume into a LSE volume,
interpreters can often reveal subtle geological features, such
as faults and channels, which are not readily apparent in the
seismic data.

As a preprocessing stage for the computation of the LSE,
each trace is modified by subtracting its mean value:

d̂xyt = dxyt − Et
{
dxyt

} = dxyt − 1
Nt

Nt∑
k=1

dxyk, (1)

where dxyt and d̂xyt are, respectively, the original and modified
tth sample of the trace at position (x, y), and Nt is the total
number of samples in each trace.

Subsequently, a relatively small 3-D analysis cube is selected
by the interpreter. The analysis cube moves throughout the
3-D modified seismic volume and outputs for each point a mea-
sure of LSE. The size and shape of the analysis cube defines
the geometrical distribution of traces and samples to be used
for the LSE computation. For the following discussion, we as-
sume that the analysis cube is a 3-D box enclosing 2L1 inline
traces, 2L2 crossline traces, and N samples. The analysis cube is
split into four L1 by L2 by N quadrants, which are rearranged
in a consistent fashion into column vectors {ai | i = 1, . . . , 4}.
The correlation matrix of the analysis cube is formed from the
correlations between the quadrants:

S = 1
NL1L2


aT

1 a1 · · · aT
1 a4

...
. . .

...

aT
4 a1 · · · aT

4 a4

 . (2)

This matrix contains on its diagonal the autocorrelations of in-
dividual quadrants, and on off-diagonals the crosscorrelations
between distinct quadrants ai and a j . It should be noted that
the correlation matrix S is symmetric, and that its six unique off-
diagonal components correspond to two inline, two crossline,
and two spatially diagonal crosscorrelations.

The LSE measure is associated with a distinguished point
within the analysis cube, generically represented here by
(x, y, t). It is defined as the normalized trace of the correspond-
ing correlation matrix:

ε(x, y, t) = tr S
‖S‖ − 1 =

4∑
i=1

aT
i ai√

4∑
i, j=1

(
aT

i a j
)2

− 1

=

4∑
i=1

aT
i ai√√√√ 4∑

i=1

[(
aT

i ai
)2 + 2

4∑
j=i+1

(
aT

i a j
)2

] − 1, (3)

where ‖·‖ is the Hilbert-Schmidt norm (known also as the
Frobenius or Euclidian norm) (Golub and Van Loan, 1996).
If all the quadrants are perfectly correlated (minimum discon-
tinuity), the elements of the correlation matrix are identical, so
tr S= ‖S‖ and ε= 0. If there is no correlation at all among the
quadrants (maximum discontinuity), tr S ≤ 2 ‖S‖ and ε ≤ 1.
The structural entropy, in this respect, is a cost function that
measures the amount of disorder (uncertainty) within an anal-
ysis cube. Notice that the LSE measure is assigned to a point
which is not the center of the analysis cube. However, it is
possible to space out the (L1× L2× N) quadrants one trace
apart on each side. In that case, the analysis cube encloses an
odd number of traces on each side (2L1 + 1 inline traces and
2L2 + 1 crossline traces), making it possible to associate the
LSE measure with its center.

Normalized trace of the covariance matrix

Instead of subtracting the mean value from each trace and
working with the correlation matrices, one can define discon-
tinuity measures based on covariance matrices. In this case,
the analysis cube moves throughout the 3-D original seismic
volume. For each analysis cube, the covariances of the corre-
sponding quadrants are computed and arranged into a matrix
Σ, whose normalized trace defines a discontinuity measure:

ε1(x, y, t)= tr Σ
‖Σ‖−1=

4∑
i=1
σ 2

i i√√√√ 4∑
i=1

[
σ 2

i i + 2
4∑

j=i+1
σ 2

i j

] − 1, (4)

where σ 2
i j are the elements of the covariance matrix. This

measure can also be written as

ε1(x, y, t) =

4∑
i=1
λi√

4∑
i=1
λ2

i

− 1, (5)

where {λi | i = 1, . . . , 4} are the eigenvalues of Σ. (In fact, the
normalized trace of the correlation matrix S [equation (3)] can
also be written in terms of the eigenvalues of S, because the
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trace of a matrix is equal to the sum of its eigenvalues and
the Hilbert-Schmidt norm of a matrix A is equal to the trace
of ATA.)

It is easy to verify that ε1 is also bounded between zero and
one. If all the quadrants are perfectly correlated (minimum
discontinuity), the components of the covariance matrix are
identical. Accordingly, the rank of Σ is equal to one (Σ has
a single nonzero eigenvalue λ1) and ε1= 0. If there is no cor-
relation at all among the quadrants (maximum discontinuity),
then the maximum value of ε1 occurs when all the eigenvalues
of Σ are equal and, hence, ε1≤ 1.

Generalized trace of the covariance matrix

The relation between ε1 and the eigenvalues of the covari-
ance matrix was obtained using the fact that the trace of the
covariance matrix is equal to the sum of its eigenvalues, and
the Hilbert-Schmidt norm of the covariance matrix is equal
to the sum of the eigenvalues squared (Golub and Van Loan,
1996). Generally, we can define a discontinuity measure that is
proportional to the ratio between `1 and `p (p > 1) norms of
the vector of eigenvalues by

ε1,p(x, y, t) = α
[ ‖λ‖1

‖λ‖p
− 1

]
= α


4∑

i=1
λi

(
4∑

i=1
λ

p
i

) 1
p

− 1



= α

 2
2
p−1

tr Σ[
tr
(
Σp
)] 1

p

− 1

 , (6)

where the constant α = (4
1− 1

p − 1)−1 is a normalization factor,
restricting the maximum value of ε1,p to one. In the special case
where p = 2, ε1,2 ≡ ε1, since ‖Σ‖=‖λ‖2.

Normalized scatter of the correlation matrix

If one is working with matrices of correlation coefficients,
the energy of the off-diagonal components, suitably normal-
ized, may be used for defining a measure of discontinuity.
Specifically,

ε2(x, y, t) = 1 −
√
‖R‖2 − 4

12
= 1 −

√√√√√ 4∑
i, j=1

ρ2
i j − 4

12
, (7)

where R is the matrix of correlation coefficients whose ele-
ments are related to those of the covariance matrix by

ρi j = σi j√
σi i σ j j

, i, j = 1, . . . , 4. (8)

Again, the range of the discontinuity measure is between zero
and one. If all the quadrants are perfectly correlated (minimum
discontinuity), the components of R are all ones, so ‖R‖2= 16
and ε2= 0. If there is no correlation at all among the quadrants
(maximum discontinuity), the off-diagonal components of R
are all zero and ε2= 1.

Normalized scatter of the covariance matrix

A similar discontinuity measure, defined using the covari-
ance matrix, is given by

ε3(x, y, t) = 1−

√√√√√√√√
‖6‖2 −

4∑
i=1
σ 2

i i

4∑
i=1

4∑
j 6=i
σi i σ j j

= 1−

√√√√√√√√√
3∑

i=1

4∑
j=i+1

σ 2
i j

3∑
i=1

4∑
j=i+1

σi i σ j j

.

(9)

In this case, the discontinuity is determined by the relative
energy of the off-diagonal components (normalized scatter) of
the covariance matrix. As before, we have 0 ≤ ε3 ≤ 1 and
higher ε3 values imply greater discontinuity.

Ratio between the second and first eigenvalues

As mentioned above, the eigenvalues of the covariance ma-
trix are closely related to the degree of discontinuity within a
prescribed analysis cube. Small amounts of discontinuity yield
one large nonzero eigenvalue λ1, with the other eigenvalues
being negligible. Higher degrees of discontinuity are observed
when λ2, λ3, and λ4 become more significant. In particular, the
ratio between the second and first eigenvalues can be used as
a discontinuity measure:

ε4(x, y, t) = λ2

λ1
. (10)

In general, the ratio of an eigenvalue to the summation of all
eigenvalues expresses the percentage of the mean-square er-
ror introduced by eliminating the corresponding eigenvector
(Rao 1968). In our case, when the quadrants of a given analysis
cube are perfectly correlated, they can be represented by a sin-
gle eigenvector. Hence, the ratio between the second and first
eigenvalues indicates a degree of inconsistency with a model
of perfectly correlated quadrants (0 ≤ ε4 ≤ 1, with higher ε4

values implying greater discontinuity).

Normalized dominant eigenvalue

Another version of such a discontinuity measure could use
the mean-square error introduced by eliminating all eigenvec-
tors but the first. In this case, the discontinuity measure is pro-
portional to the ratio between the summation of all eigenvalues
besides λ1 and the summation of all eigenvalues:

ε5(x, y, t) = 4
3

4∑
i=2
λi

tr Σ
= 4

3

(
1− λ1

tr Σ

)
, (11)

where we have again normalized to keep the measure between
0 and 1.

It is worth mentioning that the above definitions are just ex-
amples of discontinuity measures derived using the relations
among quadrants of the analysis cubes. Other definitions can
be obtained either by combining the above measures or using
higher-order statistics, as will be shown in subsequent publi-
cations. The data examples that were tested showed slightly
better results using ε4. However, the computational efficiency
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in estimating ε [equation (3)] made it the best candidate for
quantifying seismic discontinuities.

EXAMPLES

In this section we use synthetic, as well as real, data examples
to demonstrate the usefulness of the proposed discontinuity
measures.

Synthetic data

A synthetic data set was constructed, simulating a 3-D mi-
grated seismic volume with two apparent faults. The data set
consists of 128 inline traces and 128 crossline traces, each con-
taining 128 samples. A vertical cross-section through the syn-
thetic seismic data is shown in Figure 1a. A horizontal slice
is shown in Figure 2a. The corresponding slices through the
LSE volumes, obtained with three different sizes of analysis
cubes, are displayed in Figures 1b–d and 2b–d. We used analy-

FIG. 1. Vertical cross-sections through (a) synthetic seismic data, and through the corresponding LSE volumes using analysis cubes
of sizes (b) [2 2 7], (c) [4 4 15], and (d) [6 6 31].

sis cubes of sizes [2 2 7], [4 4 15], and [6 6 31], where the three
numbers between the square brackets designate, respectively,
the number of inline traces, crossline traces, and time samples.
The LSE values are mapped to shades of gray; darker shades
indicate greater discontinuity. Clearly, a smaller analysis cube
yields a sharper image of the seismic discontinuity. Further-
more, regions of large structural dips give artifacts when the
analysis cube is too large.

To evaluate the performance of the LSE measure under
noise conditions, we created a noisy version of the synthetic
data by adding a white Gaussian noise to the data values and a
uniform noise to the phase of the seismic layers with a signal-
to-noise ratio (SNR) of 5.6 dB. Specifically, the noisy data is
given by

d̃xyt = Axyt sin(ϕxyt + uxyt)+ nxyt, (12)

where dxyt= Axyt sin(ϕxyt) designates the clean simulated data,
uxyt is white uniform noise, and nxyt is white Gaussian noise.
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The SNR is defined as the ratio between the variance of the
original data and the mean square error, expressed in decibels
as

SNR = 10 log10
Var(dxyt)

E
[
(dxyt − d̃xyt)2

] . (13)

A vertical cross-section and horizontal slice through the noisy
synthetic data are shown in Figures 3a and 4a, respectively.
The corresponding cross-sections and slices through the LSE
volumes are presented in Figures 3b–d and 4b–d. Compared to
the original LSE volumes (Figures 1 and 2), the LSE measure
evaluated for the noisy data is characterized by a higher SNR
when a larger analysis cube is used. In this example, the SNR
increases from −5.8 dB to 9.7 dB, by expanding the analysis
cube from [2 2 7] to [6 6 31]. However, the sensitivity to noise
decreases at the price of generally reduced lateral resolution.

FIG. 2. Horizontal slices through (a) synthetic seismic data, and through the corresponding LSE volumes using analysis cubes
of sizes (b) [2 2 7], (c) [4 4 15], and (d) [6 6 31].

Real data

The real data example (courtesy of GeoEnergy) is from
the Gulf of Mexico. The data is decimated in both time and
space. The time interval is 8 ms, inline trace spacing is 25 m,
and crossline trace spacing is 50 m. A small subvolume with
an inline distance of 5.025 km and a crossline distance of
10.05 km (201× 201 traces) is used for demonstration. Each
trace is 1.808 s in duration (226 samples). Figures 5a and 6a
show, respectively, a horizontal slice at t = 480 ms and a vertical
cross-section at x= 2.5 km through the seismic data. The cor-
responding cross-sections and slices through the LSE volumes,
obtained with three different sizes of analysis cubes, are dis-
played in Figures 5b–d and 6b–d. The size of the analysis cube
is determined by the type of geological feature that is of inter-
est to the interpreter. Structural features such as faults, hav-
ing a longer vertical duration, are analyzed with a larger cube
(lower resolution). Stratigraphic features such as channels,
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characterized by shorter vertical duration, are better resolved
with smaller cubes (higher lateral resolution).

In addition to the LSE measure, we proposed six other local
discontinuity measures, namely the normalized trace of the
covariance matrix (ε1), the generalized trace of the covari-
ance matrix (ε1,p), the normalized scatter of the correlation
matrix (ε2), the normalized scatter of the covariance matrix
(ε3), the ratio between the second and first eigenvalues (ε4),
and the normalized dominant eigenvalue (ε5). These measures
are closely related to the LSE measure, but entail a higher
computational complexity. In Figure 7, we compare these six
alternative measures for the horizontal slice at t = 480 ms us-
ing an analysis cube of size [6 6 31]. The results are practically
similar, but it was found that ε4 generally produces enhanced
images with improved contrast between faults and background
(cf. Figure 7e). This may be attributed to the fact that princi-
pal eigenvalues are closely related to the local seismic struc-
ture, whereas smaller eigenvalues contribute noise to the
measure.

FIG. 3. Vertical cross-sections through (a) noisy synthetic seismic data (SNR= 5.6 dB), and through the corresponding LSE volumes
using analysis cubes of sizes (b) [2 2 7] (SNR=−5.8 dB), (c) [4 4 15] (SNR= 4.0 dB), and (d) [6 6 31] (SNR= 9.7 dB).

MULTISCALE LSE VOLUMES

LSE volumes generated by smaller sizes of analysis cubes
entail a lower computational complexity and provide a sharper
image of seismic discontinuities. However, the sensitivity to
noise and smaller-scale discontinuities, which are generally not
of interest to an interpreter, increases as the size of the analysis
cube gets smaller. Hence, by combining LSE volumes using
various sizes of analysis cubes, higher lateral resolutions can be
obtained while restricting the detection of features to larger-
scale discontinuities, such as fault surfaces.

Figures 8 and 9 illustrate combinations of LSE volumes using
analysis cubes of [2 2 7], [4 4 15], and [6 6 31], samples. Specif-
ically, the multiscale LSE volumes are obtained by arithmetic
mean of the LSE values (Figures 8a and 9a), geometric mean
(Figures 8b and 9b), and maximum LSE where its value is larger
than a certain threshold (highly discontinuous regions) and
minimum LSE elsewhere (Figures 8c and 9c). The multiscale
LSE volumes emphasize points which likely correspond to fault
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surfaces. Such points are characterized by a high degree of dis-
continuity in all relevant scales.

RELATION TO OTHER WORK

The local discontinuity measures proposed in this paper are
closely related to the eigenstructure-based coherence compu-
tations (Gersztenkorn 1999). Gersztenkorn and Marfurt (1999)
have shown that an eigendecomposition of the data covari-
ance matrix (Kirlin, 1992; Gersztenkorn and Marfurt 1996a,b)
provides a more robust measure of coherence compared to
crosscorrelation (Bahorich and Farmer 1995, 1996) and sem-
blance (Neidell and Taner, 1971; Marfurt et al. 1998) based
computations. The eigenstructure-based coherence algorithm
constructs for each point a J× J covariance matrix, where
its (i, j )th component is a crosscovariance of the i th and j th
traces within the analysis cube. Then, a coherence estimate
is given by the ratio between the dominant eigenvalue and
the trace of the covariance matrix. Figure 10 shows horizontal

FIG. 4. Horizontal slices through (a) noisy synthetic seismic data (SNR= 5.6 dB), and through the corresponding LSE volumes using
analysis cubes of sizes (b) [2 2 7] (SNR=−5.8 dB), (c) [4 4 15] (SNR= 4.0 dB), and (d) [6 6 31] (SNR= 9.7 dB).

slices at t = 480 ms and vertical cross-sections at x= 2.5 km
through the eigenstructure-based coherence volumes obtained
with analysis cubes of sizes [4 4 15] and [6 6 31]. For a compar-
ison between the eigenstructure-based coherence algorithm
and our LSE algorithm, let [2L1 2L2 N] denote the size of the
analysis cube (i.e., the analysis cube contains 2L1 inline and
2L2 crossline traces, each of N samples). The main differences
between Gersztenkorn and Marfurt’s algorithm and ours are
as follows:

1) Their algorithm computes crosscovariances of traces.
Our method is based on crosscorrelations of subvolumes
(quadrants of the analysis cube).

2) The size of the eigenstructure-based covariance matrix is
4Ll L2× 4Ll L2, whereas the size of the LSE-based corre-
lation matrix is only 4× 4.

3) Their algorithm requires computations of dominant
eigenvalues of large covariance matrices. Our algorithm
avoids that.
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4) In terms of computational complexity, their algorithm
requires 8(L1 L2)2 N + 2L1 L2(N + 2) multiplications and
8(L1 L2)2(N − 1)+ 10L1 L2(N − 1)+ 4L1 L2 additions for
the construction of a covariance matrix. Our method uses
only 10L1 L2 N multiplications and 10(L1 L2 N − 1) addi-
tions for the construction of a 4× 4 correlation matrix.
For example, if the size of the analysis cube is [6 6 21],
then a computation of an eigenstructure-based covari-
ance matrix needs 14 022 multiplications and 14 796 ad-
ditions, whereas that of an LSE-based correlation matrix
requires only 1890 multiplications and 1880 additions. We
note that their computational complexity is even higher,
compared to our algorithm, since their method needs also
the first dominant eigenvalues of the respective covari-
ance matrices. Furthermore, as the analysis cube moves
throughout the seismic data volume, the number of com-
putations required for updating the LSE-based correla-
tion matrix is significantly lower than that associated with
the eigenstructure-based covariance matrix.

FIG. 5. Horizontal slices at t = 480 ms through (a) seismic data, and through the corresponding LSE volumes using analysis cubes
of sizes (b) [2 2 7], (c) [4 4 15], and (d) [6 6 31].

CONCLUSION

We have introduced an analysis method for the estimation
of seismic local structural entropy which is both robust to noise
and computationally efficient. This method avoids the compu-
tation of large covariance matrices and eigenvalues associated
with the eigenstructure-based coherency estimates. Efficient
discontinuity measures were proposed based on the relations
between quadrants of the analysis cube. In particular, the LSE
measure was found advantageous over the alternative mea-
sures in terms of computational cost. Whereas the discontinuity
measure, based on the ratio between the second and first eigen-
values, is advantageous in producing enhanced images with im-
proved contrast between faults and background. By combining
LSE volumes using various sizes of analysis cubes, we obtained
a higher lateral resolution while suppressing smaller-scale dis-
continuities, which are generally not of interest to an inter-
preter. The robustness of the proposed method was demon-
strated using synthetic and real data examples.
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FIG.6. Vertical cross-sections at x= 2.5 kmthrough(a)seismic data,andthrough the corresponding LSE volumes using analysis cubes
of sizes (b) [2 2 7], (c) [4 4 15], and (d) [6 6 31].
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FIG.7. Horizontal slices at t = 480 ms through entropy volumes produced using six alternative entropy measures and an analysis cube
of [6 6 31]: (a) normalized trace of the covariance matrix (ε1), (b) generalized trace of the covariance matrix (ε1,8), (c) normalized
scatter of the correlation matrix (ε2), (d) normalized scatter of the covariance matrix (ε3), (e) ratio between the second and first
eigenvalues (ε4), (f) normalized dominant eigenvalue (ε5).
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FIG. 8. Combining LSE volumes using analysis cubes of [2 2 7], [4 4 15], and [6 6 31]. Horizontal slices at t = 480 ms through
(a) arithmetic mean of the LSE values, (b) geometric mean of the LSE values, (c) maximum LSE in highly discontinuous regions
and minimum LSE elsewhere, (d) maximum LSE in regions where both its value and its spatial average are higher than a certain
threshold, and zero elsewhere.
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FIG. 9. Combining LSE volumes using analysis cubes of [2 2 7], [4 4 15], and [6 6 31]. Vertical cross-sections at x= 2.5 km through
(a) arithmetic mean of the LSE values, (b) geometric mean of the LSE values, (c) maximum LSE in highly discontinuous regions
and minimum LSE elsewhere.
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FIG. 10. Eigenstructure-based coherence images. Horizontal slices at t = 480 ms using analysis cubes of (a) [4 4 15] and (b) [6 6 31].
Vertical cross-sections at x= 2.5 km using analysis cubes of (c) [4 4 15] samples and (d) [6 6 31] samples.


