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ON THE STATIONARITY OF
MARKOV-SWITCHING
GARCH PROCESSES
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Generalized autoregressive conditional heteroskedasticity (GARCH) models with
Markov-switching regimes are often used for volatility analysis of financial time
series. Such models imply less persistence in the conditional variance than the
standard GARCH model and potentially provide a significant improvement in vol-
atility forecast. Nevertheless, conditions for asymptotic wide-sense stationarity
have been derived only for some degenerated models. In this paper, we introduce
a comprehensive approach for stationarity analysis of Markov-switching GARCH
models, which manipulates a backward recursion of the model’s second-order
moment. A recursive formulation of the state-dependent conditional variances is
developed, and the corresponding conditions for stationarity are obtained. In par-
ticular, we derive necessary and sufficient conditions for the asymptotic wide-
sense stationarity of two different variants of Markov-switching GARCH processes
and obtain expressions for their asymptotic variances in the general case of m-state
Markov chains and (p,q)-order GARCH processes.

1. INTRODUCTION

Volatility analysis of financial time series is of major importance in many finan-
cial applications. The generalized autoregressive conditional heteroskedasticity
(GARCH) model, first introduced by Bollerslev (1986), has been applied quite
extensively in the field of econometrics, both by practitioners and by research-
ers. It has been shown useful for the analysis of the volatility of time-varying
processes such as those pertaining to financial markets. Incorporating GARCH
models with a hidden Markov chain, where each state of the chain (regime)
allows a different GARCH behavior and thus a different volatility structure,
extends the dynamic formulation of the model and potentially enables improved
forecasts of the volatility; e.g., see Gray (1996), Klaassen (2002), Haas, Mitt-
nik, and Paolella (2004b), Marcucci (2005), Dueker (1997), and Frommel (2004).
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Unfortunately, the volatility of a GARCH process with switching regimes
depends on the entire history of the process, including the regime path, which
makes the derivation of a volatility estimator impractical.

Cai (1994) and Hamilton and Susmel (1994) applied the idea of regime-
switching parameters to autoregressive conditional heteroskedasticity (ARCH)
specification. The conditional variance of an ARCH model depends only on
past observations, and accordingly the restriction to ARCH models avoids prob-
lems of infinite path dependency. Gray (1996), Klaassen (2002), and Haas et al.
(2004b) proposed different variants of Markov-switching GARCH models, which
also avoid the problem of dependency on the regime’s path. Gray introduced a
Markov-switching GARCH model relying on the assumption that the condi-
tional variance at any regime depends on the expectation of previous condi-
tional variances, rather than their values. Accordingly, the conditional variance
depends only on some finite set of past state-dependent expected values via
their conditional state probabilities and thus can be constructed from past obser-
vations. Klaassen proposed modifying Gray’s model by conditioning the expec-
tation of previous conditional variances on all available observations and also
on the current regime. A different concept of Markov-switching GARCH model
has recently been introduced by Haas et al. (2004b). Accordingly, a finite state-
space Markov chain is assumed to govern the ARCH parameters, whereas the
autoregressive behavior of the conditional variance is subject to the assumption
that past conditional variances are in the same regime as that of the current one.

Markov-switching GARCH processes, and also the standard GARCH pro-
cess, are nonstationary as their second-order moments change recursively over
time. However, if these processes are asymptotically wide-sense stationary then
their variances are guaranteed to be finite. A necessary and sufficient condition
for the stationarity of a (single-regime) GARCH( p,q) process has been devel-
oped by Bollerslev (1986). A condition for the stationarity of a natural path-
dependent Markov-switching GARCH(p,q) model, has been developed by
Francq, Roussignol, and Zakoian (2001), and a thorough analysis of the prob-
abilistic structure of that model, with conditions for the existence of moments
of any order, was presented by Francq and Zakoian (2005). Wong and Li (2001),
Alexander and Lazar (2004), and Haas, Mittnik, and Paolella (2004a) derived
stationarity analysis for some mixing models of conditional heteroskedasticity.
Yang (2000), Francq and Zakoian (2002), Francq and Zakoian (2001), Yao
(2001), and Timmermann (2000) derived conditions for the asymptotic station-
arity of some autoregressive (AR) and autoregressive moving average (ARMA)
models with Markov-regimes. However, for the Markov-switching GARCH
models described previously, which avoid the dependency of the conditional
variance on the chain’s history, stationarity conditions are known in the litera-
ture only for some special cases. Klaassen (2002) developed necessary (but not
necessarily sufficient) conditions for stationarity of his model in the special
case of two regimes and GARCH modeling of order (1,1). A necessary and
sufficient stationarity condition has been developed by Haas et al. (2004b) for
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their Markov-switching GARCH model, but only in the case of GARCH(1,1)
behavior in each regime.

In this paper, we develop a comprehensive approach for stationarity analysis
of Markov-switching GARCH models in the general case of m-state Markov
chains and (p,q)-order GARCH processes. We specify the unconditional vari-
ance of the process using the expectation of the regime-dependent conditional
variances, and we assume no historical knowledge of the process except for the
model parameters. The expectation of the conditional variance at a given regime
is then recursively constructed from the conditional expectation of both previ-
ous conditional and unconditional variances. Consequently, we obtain a com-
plete recursion for the expected vector of state-dependent conditional variances.
The recursive vector form is constructed by means of a representative matrix
that is built from the model parameters. We show that constraining the largest
absolute eigenvalue of the representative matrix to be less than one is neces-
sary and sufficient for the convergence of the unconditional variance and, there-
fore, for the asymptotic stationarity of the process. We derive stationarity
conditions for the general formulation of the two variants of Markov-switching
GARCH models. We show that our results reduce in some degenerated cases to
the stationarity conditions developed by Bollerslev (1986), Klaassen (2002),
and Haas et al. (2004b). Furthermore, we show that the stationarity conditions
developed by Klaassen are not only necessary but also sufficient for asymp-
totic stationarity of his model.

This paper is organized as follows. In Section 2, we review the variants pro-
posed by Klaassen (2002) and Haas et al. (2004b) for Markov-switching GARCH
models and develop comprehensive necessary and sufficient conditions for
asymptotic stationarity appropriate for the general formulation of the models.
In Section 3, we derive relations between our results and previous works. Sec-
tion 4 concludes.

2. STATIONARITY OF MARKOV-SWITCHING GARCH MODELS

Let S, € {1,...,m} denote the (unobserved) regime at a discrete time ¢ and let
s, be a realization of §,, assuming that {S,} is a first-order stationary Markov
chain with transition probabilities a;; = p(S, =j|S,—; = i), a transition proba-
bilities matrix A, {A}; = a;;, and stationary probabilities 7 = [7, 7>, ..., 7],
T = p(S, =1i), where ' denotes the transpose operation. Let Z, denote the obser-
vation set up to time ¢ and let {v,} be a zero-mean unit-variance random pro-
cess with independent and identically distributed elements. Given that S, = s;,
a Markov-switching GARCH model of order (p,q) can be formulated as

& = 04,V (1)

where the conditional variance of the process cr,,zst = E{e?|S, = s5,,Z,_,} is a
function of p previous conditional variances and g previous squared observations.
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Klaassen (2002) and Haas et al. (2004b) proposed different variants of
Markov-switching GARCH models. The former is a modification of the model
proposed by Gray (1996). Each of these overcomes the problem of dependency
on the regime’s path encountered when naturally integrating the GARCH model
with switching regimes. However, conditions for these models to be asymptot-
ically wide-sense stationary, and therefore to guarantee finite second-order
moments, are known only for some special cases. Klaassen developed neces-
sary conditions for the stationarity of his model in the case of two-state Mar-
kov chain and GARCH of order (1,1). Haas et al. (2004b) gave a necessary and
sufficient stationarity condition for their model, but this condition is restricted
to a first-order GARCH model in each of the regimes (i.e., p = g = 1). We first
review these variants of Markov-switching GARCH models, which we call
MSG-I and MSG-II, respectively. Then we develop necessary and sufficient con-
ditions for their asymptotic wide-sense stationarity and derive their stationary
variances.

2.1. MSG-I Model

Gray (1996) proposed modeling the conditional variance of a Markov-switching
GARCH model as dependent on the expectation of its past values over the entire
set of states, rather than dependent on past states and the corresponding condi-
tional variances. Accordingly, the state-dependent conditional variance follows:

q P
O-I,zs, = fs, + 2 ai,s,srz—i + 2 Bj,:,E(Srz—j|Iz—j—l)
i=1 j=1

m

= f\r + E al \, + 2 Bj K 2 p(Sl —j St*j |It*j71)0-t27j,x,,/’ (2)

§—;=1
and the following constraints:
gs, > O’ 1 s O B_/',s, = 07
i=1,...,q, j=1...,p, s, =1,...,m A

are sufficient for the positivity of the conditional variance.

Gray’s model integrates out the unobserved regime path so that the condi-
tional variance can be constructed from previous observations only. As a con-
sequence, there is no path dependency problem although GARCH effects are
still allowed. Empirical analysis of modeling financial time series demonstrates
that this Markov-switching GARCH model implies less persistence in the con-
ditional variance than the standard GARCH model, and in addition, its one-step-
ahead volatility forecast significantly outperforms the single-regime GARCH
model (see, e.g., Gray, 1996; Marcucci, 2005; Frommel, 2004).

Klaassen (2002) proposed modifying Gray’s model by replacing p(S,—; =
S| Zi—j—1) in (2) by p(S,—; = s,-;|Z,—1,S; = 5,) while evaluating 0%, . Conse-
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quently, all available observations are used, in addition to the given regime in
which the conditional variance is calculated. The conditional variance accord-
ing to Klaassen’s model (denoted here as MSG-I) is given by

q
2 2
O-t,s, - f.x', + 2 ai,x,stfi
i=1

)2 m
+ 2 IBj,s, Z p(Stfj = Srfj |szl7Sr = Sr)a-tz—j,s,,j’ (4)
j=1

s—;=1

and the same constraints in (3) are sufficient for the positivity of the condi-
tional variance.

Both models integrate out the unobserved regimes for evaluating the condi-
tional variance. However, Klaassen’s model employs all the available informa-
tion, whereas Gray’s model employs only part of it because it does not utilize
all the available observations and the assumed regime in which the conditional
variance is being calculated. Specifically, if process regimes are highly persis-
tent, then both the current state s, and the previous innovation g,_; give much
information about previous states, and thus the conditional probability of s,_;
given all the observations up to time ¢ — 1 and the next state is substantially
different from the probability of s,_;, which is conditioned only on observa-
tions up to time ¢ — 2. In contrast to Gray, Klaassen does manipulate this infor-
mation in his model while evaluating the expectation of previous conditional
variances. Furthermore, the formulation (4) better exploits the available infor-
mation, and its structure yields straightforward expressions for the multi-step-
ahead volatility forecasts; see Klaassen (2002) and Marcucci (2005).

The unconditional variance of the MSG-I process, defined in (1) and (4), can
be calculated as follows:

E[Stz] = EI,,],S,[E(812|II‘*1’st)]

= ES, [EI,,I (a-t,zs, ‘ St )] = 2 7Ts, EI,fl (0-1‘,25, | St)‘ (5)

s,=1

For notation simplification, we shall use E(-|s,) and p(-|s,) to represent
E(-]S, =s,) and p(-|S, = s,), respectively, where s, represents the regime real-
ization at time f. Furthermore, we shall use E,(-) to denote the expectation
over the information up to time 7, i.e., E7 (-). The expectation of the regime-
dependent conditional variance follows:

q
E,_, [O-t,zs,|sl] = fs, + 2 a; . E [83—1"5:]
i=1

P m

+ Zﬁj,s, 2 Er—l[p(sz—j|It—1vst)0-r2—j,s,,j|sz]’ (6)

j=1 s=1
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where the expectation over &2, can be obtained by

Ez—l[szz—i|sr] 2 tz—ip(zr—l|Snsz—i)l’(sz—i|sr)dzt—1

s =1 <Y1y

m

Z p(sr—i|sz)Et—l[Stz—i‘sz—i’st]- (7)

s—i=1

Note that given the current active state, the expected absolute value is indepen-
dent of any future states. Therefore,

El‘—l [Srz—i|st—ivst]

=E_, [Srz—i|sz—i]
f f - lp(sf t|It i—19 81— 1)17(2: i— l‘st l)dst zdIr i—1

Ez—i—l [E(szz—i|It—i—l’Sr—i)‘st—i]
=E_ ;| [O'rz—i,x,,,|st—i]- )]

Furthermore, the conditional expectation over the conditional variance in (6),
weighted by the current state probability, can be obtained by

Et—l [p(sr—j |It—l’st)0-tz—j,s,,j|st]

= f o‘iL s,_,p(srfj |It* 155 )p(szl | sz) dIt*l
7,

—1

= f O-tzfj,s,,jp (Irfl | St*j? St)P(St—j | St) dIrfl

|S)EI —j— l[o-—]:,j|stfj]‘ (9)

Consequently, the expectation of the conditional variance at a given regime
s; can be recursively constructed, according to the model definitions, from both
expectation of previous conditional variances and expected squared values given
the current regime s;. Let » = max{p,q} and define a; ; = 0 for all i > ¢ and
Bis = 2 0 for all i > p. Then, by substituting (7)—(9) into (6) we obtain

t l[o-t S,|Sl]_§\,+2(al \,+Bt s,) 2 p(st I‘S)Et i— ][o-t 0,8 ‘St 1]

si=1

(10)
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and applying Bayes’ rule we have

St—i

7Ts,,,‘ .
Plsils) = —= plsls) = —= {4}, . an

K S
The expected state-dependent conditional variance (10) is recursively gener-
ated from a weighted sum of its previous expected values through their condi-
tioned probabilities and the model parameters. Let = [E1,...,&,], let KO
be an m-by-m matrix with elements

{IC([)}.\',E é (ai,x—i_ﬁi,,\‘) ;{Al}i,x7 S’S;Z 1"'-’m’ (12)

and leth, = [E, (0}|S,=1),...,E,_(02,]S, = m)]’ be an m-by-1 vector of
the expected state-dependent conditional variances. Then, we have

h,=¢+ D KPh,_,. (13)
i=1
Define the rm-by-1 vectors h, = [h/, h!_,,...,h!_ ., ] and &€ = [£,0,...,0]’
and let
[ k@ KO
I, 0, 0,
f\I]wI é Om I"l (14)
L O o0 1, 0, ]

be an mr-by-mr matrix where I, represents the identity matrix of size m-by-m
and 0,, is an m-by-m matrix of zeros. Then a recursive vector form of the
expected conditional variance (13) can be written as

h,=+W¥h,_,, =0, (15)

with some initial conditions l~1,1.

Let p(-) denote the spectral radius of a matrix, i.e., its largest eigenvalue in
modulus, and let A; be an m-by-m square matrix built from the mr-by-mr matrix
(I — ¥,)~" such that {A;}; ={(I — ¥,)"'};, i,j = 1,...,m. Then we have the
following theorem.

THEOREM 1. An MSG-I process as defined by (1) and (4) is asymptotically
wide-sense stationary with variance lim,_,, E(g?) = @'A€, if and only if
p(¥) < 1.



492 ARl ABRAMSON AND ISRAEL COHEN

Proof. The recursive equation (15) can be written as

t—1

h, =Wwh,+ 3 ¥E =0 (16)
i=0

According to the matrix convergence theorem (e.g., Lancaster and Tismenetsky,
1985, pp. 327-329), a necessary and sufficient condition for the convergence
of (16) for t — oo is p(¥;) < 1. Under this condition, ¥, converges to zero as
t goes to infinity and X/_) ¥/ converges to (I — ¥;)~', where the matrix
(I — ;) is then guaranteed to be invertible. Therefore, if p(¥;) < 1, equation
(16) yields

limh, = (I—¥,)'&. 17)

1—o0

By definition, the first m elements of h, constitute the vector h,, the first m
elements of & constitute the vector &, and the remaining elements of £ are zeros.
Consequently,

lim h, = A, £, (18)

t—0o0
and using (5) we have

lim E(e2) = m'A, £. (19)

1—o0

Otherwise, if p(W;) = 1, the expected variance goes to infinity with the growth
of the time index. u

2.2. MSG-II Model

Another variant of Markov-switching GARCH model has recently been pro-
posed by Haas et al. (2004b). This model assumes that a Markov chain controls
the ARCH parameters at each regime (i.e., &, and «; ;), whereas the autoregres-
sive behavior in each regime is subject to the assumption that past conditional
variances are in the same regime as that of the current conditional variance.

Specifically, the vector of conditional variances o = [02,05,...,02,]" is
given by
q P )
gl=€+ D> el + D, B(J)a'f,j, (20)
i=1 =1
A . A .
where @; = [a;1,...,a;,],i=1,...,q,and B; = [Bj1,..-, Bjwl i =1,...,p,

are vectors of state-dependent GARCH parameters and B/ £ diag{B;} is a
diagonal matrix with elements B; on its diagonal. The same constraints that are



ON THE STATIONARITY OF MARKOV-SWITCHING GARCH PROCESSES 493

sufficient to ensure a positive conditional variance in the MSG-I model (3) are
also applied here to guarantee the positivity of the conditional variance.

Note that the conditional variance at a specific regime depends on previous
conditional variances of the same regime through the diagonal matrices B/,
Consequently, this model allows derivation of the conditional variance at a given
time from past observations only. Furthermore, Haas et al. (2004b) showed that
the MSG-II model is analytically more tractable than the MSG-I model and its
conditional variance can be straightforwardly constructed because the condi-
tional variance at a specific time does not depend on previous state probabili-
ties but only on previous observations and previous conditional variances.

Let a@; be an m-by-1 vector of zeros for i > ¢ and let BY) = 0,, for j > p. Let
Q% denote an m>-by-m? block matrix of basic dimension m-by-m

(i) (i) (i)

Q Qy ..o Q)

(i) (i) (i)

A ‘Q‘IZ QZ2 b QmZ
WCE ", 21)

(i) (i (i)

Qllm QZlm o Qn;m

with each block given by

Qg‘?ép(Slfi:S|St:§)(aie;+B(i>)a S9§:17~--am, (22)

where e, is an m-by-1 vector of all zeros, except its sth element, which is one.
We define an rm?*-by-rm? matrix by

fo® @ Q7]
I, 0,2 0,2
0.2 I 2
e ) (23)
- 0m2 Om2 Im2 Om2 a

2 2

Let A, be an m?-by-m? matrix that is built from the rm?-by-rm? matrix
(I — W,)7" such that {A,}; = {(I — ¥,)" '}, i,j = 1,...,m>. Let @ =
[7,€),m,€,,...,m,¢e. ]; then we get the following theorem for the stationar-
ity condition of an MSG-II process.

THEOREM 2. An MSG-II process as defined by (1) and (20) is asymptoti-
cally wide-sense stationary with variance lim,_, , E(e?) = &'A, €, if and only
if p(¥) < 1.

The proof of Theorem 2 is given in Appendix A.
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2.3. Comparison of Stationarity Conditions

It has been pointed out by Haas et al. (2004b) that stationarity of the MSG-II
model with p = g = 1 requires that the regression parameters 8, , < 1 for
all s. It follows from (20) that for general order (p,q), it is necessary that
2L, Bis < 1. However, the reaction parameters «; , may become rather large
with correspondence to the regime probabilities. For the MSG-I model, the reac-
tion parameters «; ; and also the regression parameters 3; ; may be larger than
one, provided that the corresponding regime probabilities are sufficiently small.
Furthermore, in the representative matrix W in (14) the reaction parameters and
the regression parameters are weighted by the same weights p(S,_; = s|S, = ).
Consequently, for a given state s, the values of «; ; and B; ; in the MSG-I model
have the same contribution to the model stationarity,? but for the MSG-II model,
each of them affects the heteroskedasticity evolution differently. Figure 1 illus-
trates the stationarity regions for the MSG-I model (solid line) and the MSG-II
model (dashed-dotted line), in the case of two-state Markov chains and GARCH
of order (1,1). In Figure la, the regime transition probabilities are a;; = 0.6
and a, , = 0.7, and the reaction parameters are «;; = 0.4 and «; , = 0.5. The
stationarity region is the interior intersection of each curve and the two axes. In
Figure 1b, a, , = 0.2, a, , = 0.3 are considered with reaction parameters o, ; =
0.8 and @, , = 0.2. For the MSG-I model, stationarity is allowed with regres-
sion parameters larger than one, whereas for the MSG-II model, 8, and B, »
must both be smaller than one for stationarity. In both cases, 7, > 7; how-
ever, in Figure la the stationarity region of the MSG-II model is contained in
the stationarity region of the MSG-I model whereas in Figure 1b, in which case
ay > ay,, for By € [0.2,0.55] stationarity is achieved with a larger B, , for
the MSG-II model than for the MSG-I model.

3. RELATION TO OTHER WORKS

Klaassen (2002) developed conditions that are necessary, but not necessarily
sufficient, for asymptotic stationarity of a two-state MSG-I model of order (1,1).
Consider the 2-by-2 matrix C with elements

c; =ai(a,; + B, ,)m /7, i,j=1,2. (24)
Klaassen showed that the stationary variance of the process is given by
o?=a'(I-C) '€ (25)
and that the conditions

€156 <1 and detI—C)>0 (26)

are necessary to ensure that the stationary variance is finite and positive.
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FIGURE 1. Stationarity regions for two-state Markov-chains with GARCH of order (1,1)
corresponding to MSG-I (solid line) and MSG-II (dashed-dotted line). The regime

transition probabilities and the reaction parameters are (a) a;,; = 0.6, as, = 0.7 and
ap = 04, a2 = 05, (b) ap = 02, azo» = 0.3 and ap = 08, Ay = 0.2.
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For the special case of our analysis for GARCH orders of (1,1) and the MSG-I
model with two states, the representative matrix W; reduces to matrix C, and
the stationary variance reduces to the expression given in (25). Metzler (1950)
showed that for a nonnegative matrix C (i.e., ¢; = 0), p(C) < 1 if and only if
all of the principal minors of (I — C) are positive. Furthermore, together with
the Hawkins—Simon condition (Hawkins and Simon, 1949), p(C) is less than
one if and only if (/ — C)~! has no negative elements. Therefore, for the non-
negative matrix C, the condition ¢, ¢y, < 1 implies det(/ — C) > 0, and it is
equivalent to p(C) < 1. Accordingly, the conditions of Klaassen are not only
necessary but also sufficient for asymptotic stationarity.

A necessary and sufficient condition for asymptotic stationarity of an MSG-II
model of order (1,1) has been developed by Haas et al. (2004b). Accordingly,
the largest eigenvalue in modulus of an m>?-by-m? block matrix D is con-
strained to be less than one, where

D, D, .. D,
D, Dy, ... D,,

D = . . ) 27)
Dlm D2m Dmm

is built from matrices D;; of size m-by-m that are obtained by
D; = a,-j(B(') +ae). (28)

The stationarity analysis of Haas et al. (2004b) for an MSG-II process employs
a forward recursive calculation of the expected conditional variance, assuming
some initial conditions. As a result, the probabilities of state transitions, a;, are
used for evaluating the expectation of the one-step-ahead conditional variance.
Our analysis manipulates a backward recursion of the conditional variance expec-
tation, and thus it uses the stationary probabilities of the Markov chain, along
with the transition probabilities, to generate previous conditional state proba-
bilities p(s,_;|s,). Therefore, when we degenerate the MSG-II model to order
p = g =1 (which is the case analyzed by Haas et al., 2004b) the block matrices
D in (27) and ¥y in (23) are not identical, and specifically, for that order of
model we have ¥, = Q" and

- Ip.. (29)

Although our representative matrix ¥;; and that developed by Haas et al. (2004b)
do not share the same elements, we show in Appendix B that their eigen-
values are identical and therefore both conditions are equivalent for that order
of MSG-II.
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A special case of any of the MSG models is a degenerated case of having a
single regime of order (p,q) (the models reduce to a standard GARCH(p, q)
model). In that case, the representative matrices are equal, W, = W,. Francq
et al. (2001) developed a stationarity condition for the natural case of Markov-
switching GARCH model, in which case the conditional variance depends on
the active regime path. For the special case of a single-regime model they got
the transition matrix of a standard GARCH( p,q) model, which is equal to that
which is derived, e.g., by substituting X = «;; + 8, and I, = 1 in (14).
They showed that having the spectral radius of that matrix less than one is equiv-
alent to Bollerslev’s condition for the asymptotic wide-sense stationarity of a
GARCH(p,q) model, 27_,(a;; + B;1) < 1 (Bollerslev, 1986).

4. CONCLUSIONS

Conditions for asymptotic wide-sense stationarity of random processes with time-
variant distributions are useful for ensuring the existence of a finite asymptotic
volatility of the process. We developed a comprehensive approach for station-
arity analysis of Markov-switching GARCH processes where finite state-space
Markov chains control the switching between regimes and GARCH models of
order (p,q) are active in each regime. Necessary and sufficient conditions for
the asymptotic stationarity are obtained by constraining the spectral radius of
representative matrices, which are built from the model parameters. These matri-
ces also enable derivation of compact expressions for the stationary variance of
the processes.

NOTES

1. Note that for a matrix with nonnegative elements, there exists a real eigenvalue that is equal
to the spectral radius (Horn and Johnson, 1985, p. 288).

2. This also holds for the natural extension of GARCH(p,q) to Markov switching, which has
been analyzed by Francq et al. (2001).
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APPENDIX A

Proof of Theorem 2. In this Appendix we prove Theorem 2, which gives necessary
and sufficient conditions for the asymptotic wide-sense stationarity of the MSG-II model
and also its stationary variance.

Following (20) and (5), the expectation of the MSG-II conditional variance under a
chain state, s, follows:

q P
Et,l(O',’zS|St) = fs + Z a,"SE,,l(s,Z,As,) + 2 Bj,,vEtfl(o-rzfj,s‘StL (A1)
=1

i=1

where using (7) and (8)

E,_ (g’ ]s,) = E p(stfi|st)Et7ifl(a-127[,:,,‘|St7i) (A.2)

St—i=1
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and

Et—l(o'rz—j,s‘St) = ES,,j[Etfl(o-tz—j,x|St7j?St)]

= > plsjls)E (02 Is,—)). (A3)

Si—j=1

The main difference between an MSG-II model and an MSG-I model is that the condi-
tional variance depends on previous conditional variances of the same regime, regard-
less of the past regime path. By contrast, for the MSG-I model, the conditional variance
is a linear combination of past state-dependent conditional variances, where for each
one the state is conditioned to be the active one. Consequently, the computation of the
unconditional variance for an MSG-II model requires the terms E,_j_l(a,z,j’s\s,_ ;) for
all s = 1,...,m, whereas in the case of the MSG-I model, only E,,_,-,l(o',z,j,sw_|s,,_,-)
is relevant to calculate the expectation of the unconditional variance. Accordingly,
an m?-by-1 vector is necessary to represent E,,l(a',,zs|s,) elements, and an rm?>-by-rm?
matrix is employed for the recursive formulation.
By substituting (A.3) and (A.2) into (A.1) we have

m

E,,I(O'I,ZSLS‘,) = §s + 2 E p(s,,,v\s,)

i=1s,_;=1

X [ai,sEz—i—l(a'zai,s,,, [s—;) + Bi,sErfi*l(o-tzfi,s ls,—)]. (A4

Let g(s,s;) & E)‘*l(a-t,zx‘st) and let g, £ [g/(1,1),8(2,1),...,8(m1),g(1,2),...,
g:(m,m)]" be a vector of expected, state-dependent, conditional variances. Then, a
recursive formulation of the conditional variance is given by

g =E+v,8_,, =0, (A.5)

where §, = g, g 1,...,8_,.1]". The completion of this proof follows the proof of
Theorem 1. u

APPENDIX B

Egquivalence with Haas Condition. In this Appendix we show that the eigenvalues
of matrices D in (27) and ¥;; = Q) in (23) are equal for the case of an m-state MSG-II
model of order (1,1).

Let D denote an m?-by-m? matrix that is given by

BY + a, ¢ 0, 0,,
52 0,, BY + ae) B.1)
0, )
0, 0, BV +ae,
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and let ® denote the Kronecker product. Then D = D(A’ ® I,). Let 1,, denote an
m-by-1 vector of ones and let P = diag(7 @ 1,,). By substituting (28) into (29), we
have

;i ,
Q' = —a;(BY + aye) (B.2)
J
and
oW =p-1(A"®]I1,)DP. (B.3)

Therefore, Q) and (A’ ® I,,) D are similar matrices, and the spectrum of Q1 eig{Q "},
satisfies

eig{Q} = eig{(A’ ® 1,,)D} = eig{D(A' ® I,,)} = eig{D}. (B.4)



