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Abstract—A fundamental problem in multi-modal signal pro-
cessing is to quantify relations between two different signals with
respect to a certain phenomenon. In this paper, we address this
problem from a kernel-based perspective and propose a measure
that is based on affinity kernels constructed separately in each
modality. This measure is motivated from both a kernel density
estimation point of view of predicting the signal in one modality
based on the other, as well as from a statistical model, which
implies that high values of the proposed measure are expected
when signals highly correspond to each other. Considering an
online setting, we propose an efficient algorithm for the sequential
update of the proposed measure, and demonstrate its application
to eye-fixation prediction in audio-visual recordings. The goal is
to predict locations within a video recording at which people
gaze when watching the video. As studies in psychology imply,
people tend to gaze at the location of the audio source, so that
their prediction becomes equivalent to locating the audio source
within the video. Therefore, we propose to predict eye-fixations as
regions within the video with the highest correspondence to the
audio signal, thereby demonstrating the improved performance
of the proposed method.

I. INTRODUCTION

Fusion of multi-modal signals, i.e., signals measured in
multiple sensors of different types, has recently attracted
a considerable attention in the signal processing and data
analysis communities. In this paper, we consider a particular
aspect of the fusion problem addressing the question: to
what extent signals from different modalities correspond to
each other. We regard to the correspondence as the level at
which two signals measure the same source or phenomenon.
A challenging example we consider is the correspondence
between audio and video signals, which may be useful for the
analysis of audio-visual sound scenes. For example, regions
within the video having high levels of correspondence to the
audio signal comprise the location of the audio source as we
show in this paper.

We consider the correspondence between multi-modal sig-
nals from a kernel-based geometric perspective, also termed
manifold learning. Such kernel-based approaches were origi-
nally designed for the analysis of single-modal signals [1]–[5].
They are usually based on the construction of an affinity kernel
capturing similarities (relations) between samples of the signal,
followed by an eigenvalue decomposition to obtain a low
dimensional representation. In the past decade, several studies
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investigated the extension of these methods to the multi-
modal case by exploiting different combinations of affinity
kernels constructed separately for each modality [6]–[19].
These studies, however, focus on a different problem of how
to obtain a unified representation of the multi-modal signals
rather than the correspondence between them.

A fusion approach that is based on a product of affinities
kernel was studied in [17]–[19]. Lederman and Talmon an-
alyzed the kernel product in a continuous setting, showing
that it recovers the common components from multi-modal
observations. In [19], we have studied the kernel product from
a graph theoretic point of view and proposed a method for the
selection of the kernel bandwidth. In addition, Michaeli et al.
showed in [18] the equivalence of this fusion approach to a
non-parametric variant of kernel canonical correlation analysis
(CCA).

Here we consider the correspondence between multi-modal
signals, which was not previously addressed in [6]–[17], [19].
Furthermore, we address the problem of an online setting. By
design, kernel methods are memory consuming since for a
signal comprising N samples, they require a construction of
an affinity kernel of size N×N . In addition, the computational
cost of the eigenvalue decomposition in these methods is very
high. Accordingly, kernel methods are often constructed only
from part of the available data [18], [20], and then extended
to other samples using, e.g., Nyström method [21]. In this
context, we mention the studies presented in [22]–[24], which
examined adaptation of kernel methods over time in the single-
modal case. However, these studies mainly focus on efficient
computation of eigenvectors over time, which is not addressed
here.

As an application of the correspondence between multi-
modal signals, we consider the problem of eye-fixation pre-
diction in audio-visual recordings. Eye-tracking experiments in
psychology imply that people tend to gaze at the locations of
sound sources within video recordings [25]–[32]. Accordingly,
the localization of the audio source within the video is the
main component in the prediction of eye-fixations as we show
in this paper. Izadinia et al. [33] addressed this problem by
exploiting canonical correlations between the audio signal and
regions of the video, which were segmented in advance using a
video-based approach. Min et al. [32] extended this framework
by combining audio-visual correlations with cues, which are
merely based on the video signal, for eye-fixation prediction.
Zhang et al. [34], proposed to map audio-visual data into an
embedded domain constructed using kernel CCA with multiple
kernels. Then, they used the distance between audio-visual
data in this domain as a measure of correspondence for the
task of content retrieval.
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The problem of audio-visual localization was also addressed
in [35]–[38], typically formulated as an optimization problem
for learning unified representations of the audio-visual signals.
For example, Kidron et al. [36] extended the framework of
CCA by introducing a regularization term based on the sparsity
of events in which the audio and visual signals are correlated.
Based on the solution of the associated optimization problems,
the methods presented in these studies are computationally
expensive, which restricts their applicability in an online
setting.

We further note here the studies presented in [39], [40],
which considered signals obtained in multi-channel micro-
phone arrays, in addition to the video camera. In our study,
however, we focus on measuring the correspondence between
two modalities of signals obtained in a video camera and
a single microphone. In addition, we note [41], in which
the authors proposed to train a neural network for speaker
detection, and more recent approaches for multimodal fusion
via deep learning termed deep CCA [42]. Deep learning based
methods such as [42], [43] are typically trained on large
datasets. To the best of our knowledge, large datasets are not
available for the task of eye-fixation prediction, and methods
based on deep learning were not applied to this task.

A different variant of the problem of correspondence is
further studied in the computer graphics community, where
the goal is to match between pairs of points from two sets
corresponding to two different shapes. Interestingly, the kernel
product was recently used to address this variant of the
correspondence problem in [44], [45]; Vestner et al. [45]
formulated a linear assignment problem, in which finding the
assignments of the pairs is equivalent to rearranging rows of
the kernels of each set (“modality”) prior to their product.

In this paper, we propose a measure of correspondence
between multi-modal signals based on the trace of the kernel
product. We show how variants of this measure naturally arise
in the context of kernel density estimation, studied in [18]
and [45]. In addition, we analyze this measure from a graph
theoretic point of view using the statistical model we presented
in [19] for describing the connectivity of graphs corresponding
to the different modalities. We show that the higher the
trace of the kernel product the higher is the correspondence
between the multi-modal signals. Then, we show how to
efficiently update this measure in an online setting for new
incoming samples. Finally, we demonstrate the performance
of the proposed measure for localization of audio sources in
video and for prediction of eye fixations on a dataset recently
presented in [32]. The proposed measure not only outperforms
competing methods, but also allows to process the videos in a
sequential manner. In addition, it allows to reduce the weight
of other cues, based only on video, for the prediction of eye
fixations implying the strong relation between the audio signal
and eye fixations.

The remainder of the paper is organized a follows. In
Section II, we review the construction of the kernel product
and its use for sensor fusion. The analysis of the proposed
measure for multi-modal correspondence from kernel density
estimation perspective and from a graph point of view, and its
online computation are present in Section III. In Section IV,

we analyze the complexity of the proposed measure. Finally,
in Section V, we demonstrate applications of audio-visual
localization and eye-fixation prediction.

II. REVIEW OF THE KERNEL PRODUCT FOR
MULTI-MODAL SENSOR FUSION

Let {(vn, wn)}Nn=1 be a set of N pairs of data-points
measured by two different sensors, where vn ∈ RLv and
wn ∈ RLw are some feature representations of the nth time
frame of the first and the second modalities, respectively. In
the context of eye-fixation prediction, these are the audio and
the video features representing the nth video frame, where we
assume that the audio signal is processed in frames, which are
aligned to the video signal. The fusion process between the
two modalities is based on the construction of affinity kernels,
Kv ∈ RN×N and Kw ∈ RN×N , one for each modality. The
(n,m)th entry of Kv ∈ RN×N , denoted by Kv (n,m), is
given by:

Kv(n,m) = exp

(
−‖vn − vm‖2

εv

)
, (1)

where ‖·‖ is the L2 norm, εv is a scaling parameter, and Kw ∈
RN×N is defined similarly1. We denote by Mv ∈ RN×N a
normalized version of Kv , given by:

Mv = D−1v Kv, (2)

where Dv ∈ RN×N is a diagonal matrix whose (n, n)th
element is the sum of the nth row of Kv . The two modalities
are fused via the product between the normalized kernels,
MvMw, which is referred to as the unified kernel.

Due to the normalization, Mv and Mw are both row
stochastic matrices, and so is the unified kernel. The continu-
ous counterparts of these three kernels have an interpretation
involving diffusion processes. Specifically, the unified diffu-
sion process is applied to the two modalities in an alternating
manner, so that it is referred to as “alternating diffusion
maps” [17], [46]. When applied to a certain modality, the
unified diffusion process attenuates factors specific to other
modalities, which are often considered interferences, justifying
its use for the representation of multi-modal signals.

III. KERNEL-BASED MEASURE FOR MULTI-MODAL
CORRESPONDENCE

We propose to use the trace of the kernel product as a
measure of correspondence between multi-modal signals in an
online setting. By revisiting [18] and [45], we discuss in Sub-
section III-A variants of the proposed measure in the context
of kernel density estimation. In Subsection III-B, we present
a new interpretation of this measure using a statistical model
arising from a graph interpretation of the kernels. Finally, we
present an efficient algorithm for the online calculation of the
proposed measure in Subsection III-C.

1All entities related to the first and the second modalities are denoted in the
paper by the subscripts or superscripts v and w, respectively. If not explicitly
stated, the entities of the second modality are defined throughout the paper
similarly to the first modality.
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A. From the Perspective of Kernel Density Estimation

The study presented in [45] addressed the problem of
matching between pairs in the sets {vn}Nn=1 and {wn}Nn=1,
assuming that the true match between a subset of Ñ pairs
is available in advance and that the other points are given
in a random order. This problem arises in computer graphics
applications, where one is interested in matching between two
shapes, each discretized by N points, such that the shapes
correspond to the sets {vn}Nn=1 and {wn}Nn=1. The authors
proposed to match between the pair (v, w) in the continuous
setting by finding a mapping w = g(v) such that g(v) is
estimated by:

ĝ(v) = argmax
w

f(v, w),

where f is the joint density of the pair. Namely, the mapping
is obtained by the MAP estimator of one view by the other.
The joint density is estimated via the kernel density estimation
framework:

f(v, w) ∝
Ñ∑
n=1

exp

(
−‖v − vn‖

2

εv

)
exp

(
−‖w − wn‖

2

εw

)
.

The authors considered a discretization leading to the follow-
ing optimization problem:

argmax
P

Tr
{
KvK

T
wP
}
, (3)

where Kv,Kw ∈ RN×Ñ are defined similarity to (1) and
P ∈ RN×N is an assignment matrix, whose (n,m)th entry
equals one if points vn and wm match and zero otherwise.

In our case, the two sets are aligned, i.e., vn and wn match
to each other since they are samples taken at the same time
n. We hence expect the optimal solution P be the identity
matrix and the highest correspondence value is the trace of the
kernel product. Namely, the kernel product calculated over the
aligned set yields the highest correspondence value compared
to a kernel product constructed based on any other permutation
between the data-points.

Michaeli et al. studied in [18] the kernel density estimation
of f (v, w) / (f (v) f (w)), where f (v) and f (w) are the
densities of the data in the two modalities. They interpreted
this density as the MMSE estimator of the data in one modality
based on the other. They showed that the corresponding
discretized operator is the kernel product:

M = MvM
T
w, (4)

so that it can replace the kernel KvK
T
w in (3) for the

assignment problem. In addition, they showed that the singular
value decomposition of M maximizes the linear correlation
between the views in a specifically designed kernel space such
that the method may be considered as a variant of kernel CCA.
Let σ1, σ2, ..., σN be the singular values of M, and let σ ∈ RN
be a vector, whose ith element is σi. According to [18], the
correlation is given by the sum of the singular values, which

is the l1 norm of σ, namely ‖σ‖1 =

N∑
n=1

|σn|. Note that the

eigenvalues of MMT are the squares of the singular values
of M, i.e., σ2

i . Conceivably, using [18] but with the different

l2 norm results in ‖σ‖22 =

N∑
n=1

|σn|2, which is nothing but the

trace of MMT .
We note that we found in our experiments that the different

variants of the measure of correspondence perform similarly.
Here, we propose to use the trace of the kernel product M
as a measure of correspondence between multi-modal signals,
since it allows us to design an efficient algorithm for an online
update of its trace.

We further note in this context the Hilbert-Schmidt inde-
pendence criterion (HSIC) as a related measure of correspon-
dence. The HSIC is a statistical criterion which measures
independence between the modalities based on the Hilbert-
Schmidt norm [47]. Similarly to the proposed measure and
assuming that the data is centered, the HSIC is estimated
by the trace of the product KvKw. This measure, however,
does not have the interpretation of a diffusion process and has
inferior performance as we show in Section V.

B. Statistical Interpretation

In this subsection, a statistical interpretation of the measure
Tr{M} from a graph theory point of view is presented. The
affinity kernel Kv in (1) defines a graph, whose vertices
correspond to the N data-points, and the weights of the edges
are given by Kv(n,m) = exp

(
−‖vn−vm‖2

εv

)
(1). Points n

and m are considered connected if ‖vn − vm‖2 < εv such
that high affinities are obtained between them, and they are
disconnected when ‖vn − vm‖2 > εv , so that the affinity
between them is negligible. While these considerations were
used in [19], [48] for the selection of the kernel bandwidth εv ,
we utilize them for the analysis of the proposed measure.

We encode the connectivity between points n and m using
a simplified statistical model, which we presented in [19]. Let
Ivn,m denote an indicator which equals one if the pair of points
(n,m) is connected and zero otherwise. Assuming that each
pair is connected with probability pv independently from all
other pairs, we have that:

Ivn,m =

{
1, w.p. pv
0, otherwise

}
, (5)

so that the indicators
{
Ivn,m

}
are independent and identically

distributed.
We proceed to the normalized version of the kernel re-

calling that its (n,m)th entry is given by M (n,m) =
K (n,m) /D (n, n), where D (n, n) is the sum of the nth row.
According to the statistical model, each point is connected on
average to 1+pv (N − 1) points for large values of N , where
we assume that each point is connected to itself. Accordingly,
we define a measure for the connectivity of the normalized
kernel,

{
Jvn,m

}
, similarly to (5):

Jvn,m =
1

1 + pv (N − 1)
In,m.

We assume that the correspondence is related to the correla-
tion between the indicators in the two modalities. The higher
the correspondence between points n and m, the higher is
the correlation between their measures Jvn,m and Jwn,m. We
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consider two extreme cases, in which the two modalities are
uncorrelated or fully correlated, and calculate the expected
value of the trace of the kernel product in these cases:

E (Tr{M} ) = E
(
Tr
{
MvM

T
w

})
= E

(
N∑
n=1

N∑
m=1

Mv (n,m)Mw (n,m)

)
.

When the two modalities are uncorrelated, we have:

E (Tr{M} ) = N2E (Mv (n,m))E (Mw (n,m))

= N2E
(
Jvn,m

)
E
(
Jwn,m

)
= N2 pv

1 + pv (N − 1)

pw
1 + pw (N − 1)

.

On the other hand, when the correlation between the views is
maximal, we have:

E (Tr{M} ) = N2E
(
M2
v (n,m)

)
= N2E

(
Jvn,m

)2
= N2 pv

(1+pv(N−1))2
,

where we assumed that pv = pw. As a result, there is a factor
of pv ∈ (0, 1) between the two extremes implying that the
trace of the kernel product is expected to receive higher values
when the data in the two views correspond to each other.

C. Online Computation of the Multi-modal Measure of Cor-
respondence

We propose an algorithm for an efficient update of the trace
of the kernel product, Tr {M}, in a frame by frame manner.
Given a new incoming frame, whose time index is denoted
by N + 1, our goal is to efficiently calculate the trace of
the kernel product corresponding to frames 2, 3, ..., N + 1
without recalculating the kernels of each modality and the
product between them. Based on properties of the trace and the
symmetry of the kernels Kv and Kw, the following derivation
shows that only the affinities between the new incoming frame
and the other N − 1 points are required to compute the trace.

Let D ∈ RN×N and K ∈ RN×N denote the products
D−1v D−1w and KvKw, respectively. Our main observation,
presented in Proposition 1, implies that the trace of the kernel
product can be expressed by the the diagonal elements of these
two matrices, which in turn may be sequentially updated.

Proposition 1. The trace of the kernel product is given by:

Tr {M} =
N∑
n=1

D(n, n)K(n, n) (6)

Proof: We recall that the trace of the kernel product M
is given by:

Tr {M} = Tr
{
MvM

T
w

}
= Tr

{
D−1v Kv

(
D−1w Kw

)T}
= Tr

{
D−1v KvK

T
wD
−T
w

}
.

Since both Kw and Dw are symmetric, we have:

Tr {M} = Tr
{
D−1v KvKwD

−1
w

}
.

In addition, the trace is invariant to cyclic shift and Dv, Dw

are diagonal, so that we have:

Tr {M} = Tr
{
D−1v D−1w KvKw

}
.

By substituting D and K, we rewrite the last expression using
the Hadamard (point-wise) product:

Tr {M} =
N∑
n=1

N∑
m=1

D(n,m)K(n,m).

Finally, since D is diagonal, we obtain (6).
Next we show how to sequentially update (6) using merely

the affinities to the new frame N + 1, Kv(n,N + 1) and
Kw(n,N + 1) for all n ∈ {2, 3, ..., N}. Let M̃ be the kernel
product calculated from frames 2, 3, ..., N +1, whose trace is
given by:

Tr
{
M̃
}
=

N∑
n=1

D̃(n, n)K̃(n, n), (7)

where D̃ and K̃ are the updated versions of D and K,
respectively. By the law of matrix product, the term K̃ (n, n)
is given by:

K̃(n, n) =
N+1∑
m=2

Kv(n,m)Kw(n,m), (8)

so that it is sequentially updated by:

K̃(n, n) = K(n, n)−Kv(n, 1)Kw(n, 1) (9)

+Kv(n,N + 1)Kw(n,N + 1).

The term D̃ (n, n) is given by:

D̃ (n, n) =
1

D̃v (n, n) D̃w (n, n)
, (10)

where:

D̃v (n, n) ,
N+1∑
m=2

Kv (n,m) . (11)

Accordingly, D̃ (n, n) is calculated via a sequential update of
D̃v (n, n) and D̃w (n, n):

D̃v(n, n) = Dv(n, n)−Kv(n, 1) +Kv(n,N + 1). (12)

We summarize the proposed algorithm for the efficient update
of the kernel product in Algorithm 1.

IV. COMPLEXITY ANALYSIS AND RUN-TIME SIMULATION

We analyze the computational complexity of updating the
trace of the kernel product according to Algorithm 1. Equation
(7) requires N (scalar) multiplications, i.e., one multiplication
D̃(n, n)K̃(n, n) for each n, which are then followed by
the sum over N , i.e., N scalar summations. The calcula-
tion of D̃(n, n) for n = 1, 2, ..., N requires according to
(10) 2N operations, or more specifically, N multiplications
D̃v(n, n)D̃w(n, n) and N divisions. In turn, D̃v(n, n) and
D̃w(n, n) are given according to (12) by three summations
each, which gives a total of 6N summations. Finally, com-
puting K̃(n, n) in (9) for n = 1, 2, ..., N requires 2N scalar
multiplication and 3N summations. In summary, the update of
the trace of the kernel product has the complexity of O (N),
and specifically, it requires 10N summations and 5N multipli-
cations. We further note that in practice, we calculate (7), (9),
(10) and (12) simultaneously for n ∈ (1, 2, ..., N) by writing
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Algorithm 1 Sequential update of the proposed measure for
multi-modal correspondence

Initialization:
Input: a set of N pairs of data-points {(vn, wn)}Nn=1

Output: K and D
1: Calculate the affinity kernels Kv and Kw according to (1)
2: Calculate the normalization matrices Dv , Dw

3: Calculate K = KvKw, D = D−1v D−1w

Update:
Input: a new incoming pair (vN+1, wN+1), K and D

Output: Tr
{
M̃
}

4: Calculate the affinities to the new pair according to (1):
Kv(n,N + 1) and Kw(n,N + 1), n ∈ (2, 3, ..., N)

5: Update K̃(n, n) according to (9)
6: Update D̃v(n, n), D̃w(n, n) according to (11)
7: Update D̃(n, n) according to (12)
8: Update Tr

{
M̃
}

according to (6)

Note: Steps 4-7 may be vectorized for simultaneous cal-
culations of n ∈ (1, 2, ..., N)

them in a vectorized form, such that the only dependence on
N is the update of the affinity kernels Kv(n,N + 1) and
Kw(n,N + 1).

As a comparison, we consider the complexity of the
calculation of the trace of M assuming that the matrices
D̃v, D̃w, K̃v, K̃w are efficiently updated. These matrices may
be updated by removing their first row and columns and adding
the new row and column, corresponding to the incoming
frame. In this case, the updated kernel M̃ is given by the
multiplication between these four matrices, the complexity of
which is O

(
N3
)

using naive matrix multiplication methods,
and even when efficient algorithms are used, the complexity
remains above O

(
N2
)
. We relate to this alternative approach

as “single modal update” since it was studied in [23] in the
single-modal setting.

To demonstrate the run-time efficiency of Algorithm 1, we
compare it to the alternative approach for the calculation of
the proposed measure for multi-modal correspondence using
synthetic data. In addition, we compare the proposed algorithm
to a naive algorithm, in which, given a new incoming frame,
the trace is computed from scratch. In the first experiment,
we study the effect of the number of features in the dataset
{(vn, wn)}Nn=1, i.e., Lv, Lw, on the run-time. We run 100
simulations, sweeping in each simulation the number of fea-
tures from 10 to 300. For all simulations, we set N = 100
and consider the update of the trace of the kernel product for
1000 new incoming frames.

The average run-time for the different number of features
is presented in Fig. 1 (top). It can be seen that the run-time
of the naive algorithm linearly increases with the number of
features making it not practical for online applications. The
bottleneck of the naive algorithm lies in the calculation of
the affinity kernel Kv and Kw, which are recomputed for
each new incoming frame. In contrast, the proposed algorithm

and the “single modal update” approach are barely affected
by the increase in the number of features. This is because in
these methods, only the affinities Kv(n,N + 1), Kw(n,N +
1), n ∈ (2, 3, ..., N) are calculated for the incoming frame
N + 1 instead of the whole affinity matrices.

In the second experiment, we further explore the difference
between the proposed algorithm and the “single modal update”
approach by comparing their run-time versus the number
of pairs, N , in the dataset. In addition, we compare the
proposed approach to Singular Value Decomposition (SVD) to
demonstrate the run-time improvement obtained by avoiding
from singular/eigen-decomposition, which is a common step in
the construction of kernel-based methods. We use a truncated
(fast) version of SVD taken from “Scikit-learn”, a python
package for machine learning [49]. In addition, we compare
the run-time of the proposed approach to an implementation
of kernel CCA taken from [50].

We set the number of features in this experiment to
Lv = Lw = 200 and present the results in Fig. 1 (bottom).
Although the “single modal update” method outperforms both
SVD and KCCA, its run-time increases with N since it is
based on the multiplication of the matrices D̃v, D̃w, K̃v, K̃w,
whose sizes are N ×N . In contrast, the number of pairs has
almost no effect on the proposed algorithm and it performs
significantly faster. We note in this context that there exist
efficient versions of kernel CCA such as the one presented in
[51]. These methods, however, focus on reducing the memory
consumption during the processing of large datasets rather
than on online processing as in this paper, and they merely
approximate kernel CCA using pre-trained models.

V. EXPERIMENTAL RESULTS

A. Audio Localization in Video

We demonstrate the proposed measure of multi-modal cor-
respondence for the problem of audio localization in videos.
In the first experiment, we use four video recordings of U.S.
presidential debates, taken from YouTube2. In each recording,
only one of the speakers is active and the goal is to localize
the speaker (the sound source).

Each video recording has the length of 90 sec and the reso-
lution of 720× 1280 pixels, and it is processed in 29 fps. We
divide the video into a grid of rectangular cells each of 40×40
pixels and consider each cell as a separate video stream.
Accordingly, the problem of localization is transformed to
finding streams with high levels of correspondence to the audio
signal. Each video cell is represented by motion vectors, which
are widely used for the representation of visual speech signals
[52]–[54]. We use a block size of 10× 10 pixels, and form a
feature vector of size Lw = 32 by concatenating the horizontal
and the vertical velocities of each block.

2link to the videos presented in Figs. 2 (a) and (b):
https://www.youtube.com/watch?v=d4Tinv8DMBM, time intervals:
6
′
: 30

′′ − 8
′
: 00

′′
and 8

′
: 30

′′ − 10
′
: 00

′′

link to the videos presented in Figs. 2 (c) and (d):
https://www.youtube.com/watch?v=hx1mjT73xYE, time intervals:
3
′
: 15− 4

′
: 45

′′
and 4

′
: 55

′′ − 6
′
: 25

′′
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Fig. 1: Run-time of the algorithms for 1000 new incoming
frames averaged over 100 simulations. (top) run-time versus
the number of features L = Lv = Lw, the batch size is set to
N = 100. (bottom) run-time versus batch size in frames N ,
the number of features is set to Lv = Lw = 200.

The audio signal is sampled at 44100 kHz and is processed
with time frames of ∼ 66 ms with 50% overlap such that
the audio and the video signals are aligned. We use 13 Mel-
frequency cepstral coefficients (MFCCs) for the representation
of each audio frame, i.e., the dimension of the audio signal is
Lv = 13. The MFCCs are widely used for the representation
of audio signals since they represent the spectrum of the signal
in a compact form [55], and we have previously exploited them
in [19].

We measure the correspondence between the audio signal
and each one of the video streams using the proposed measure
in (6) based on the product of kernels. We set the kernel
bandwidths εv and εw according to [48] such that εv is given
by:

εv = Cmax
m

[
min
n

(
‖vn − vm‖2

)]
.

From a graph point of view, each point in the graph is

connected when C = 1, and C is empirically set to the range
of 2 − 3 to guarantee connectivity of the graph. In [19], we
analyzed the selection of the kernel bandwidth in the multi-
modal case and showed that the graph which corresponds to
the product of kernels remains connected even if C is chosen
significantly smaller. Here for simplicity we set C = 2 and
note that we found in our experiments that this value can be
decreased without degrading the results.

We present in Fig. 2 (right column) the average levels of
correspondence in the form of a heat map. It can be seen in
the figures that streams located in the face region of the active
speaker have high temperatures implying on large correspon-
dence values to the audio signal. These findings coincide with
previous studies linking between speech production and facial
behavior [56]–[58]. Interestingly, the heat maps of Hillary
Clinton and Donald Trump in Figs. 2 (a) and (b) indicate
certain correspondence levels between the audio signal and the
inactive speaker. However, this correspondence is significantly
lower than the correspondence to the active speaker and it may
be attributed to slight head movements, e.g., nodding with the
head when listening to the active speaker. We also present in
Fig. 2 (center column) heat maps obtained by averaging over
the motion vectors in the videos over time. It can be seen that
the level of movement obtained in the bottom left corners of
Figs. 2 (a) and (b) is significantly higher compared to the face
region of the active speaker. The movements of the hands are
not related to the audio signal and they are considered strong
interferences. From the perspective of alternating diffusion
[17], [46], the proposed measure attenuates sensor specific
factors, i.e., the movement of hands, allowing to successfully
measure correspondence between the modalities.

B. Eye-fixation Prediction

We proceed to the second experiment, where we apply
the proposed measure for multi-modal correspondence to the
problem of eye-fixation prediction. We use a dataset of 45
videos of lengths 5 − 10 s, recently presented in [32]. The
videos consist of different natural scenes such as people
speaking or playing different types of musical instruments.
The true eye fixations are collected using Tobii T120 Eye
Tracker, which has a 17−inch screen with the resolution of
1280 × 1024 pixels. The apparatus collects eye-fixations of
16 subjects watching each one of the videos. Accordingly,
the eye-fixation data comprises binary images corresponding
to the video frames such that a pixel in the image has the
value of 1 if one of the subjects gazed at its location in the
corresponding video frame and zero otherwise. The goal of
the experiment is to predict the locations of the eye-fixations
based solely on the audio and the video recordings. For more
details regarding the dataset, we refer the reader to [32].

We compare the performance of the proposed measure of
multi-modal correspondence to the method presented in [32].
The method is based on the representation of the audio and the
video signals using MFCCs and motion vectors, respectively,
similarly to the first experiment. Specifically, 10 MFCCs and
10 delta-MFCCs are used for the representation of the audio
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(a)

(b)

(c)

(d)

Fig. 2: Audio localization in video. Each video has the length of 90 sec, resolution of 720 × 1280 and frame rate of 29 fps.
Left column:original image; center column: a heat map obtained by averaging on the motion vectors; right column: a heat map
obtained by the proposed measure of correspondence. (a,c) Left speaker is active. (b,d) Right speaker is active.
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signal. The video signal is first divided into super-voxels using
a graph-based streaming segmentation method [59]. Then,
each super-voxel is represented by the variance of its motion
and acceleration, where the latter is the difference between
the motion of the current frame with respect to the next
frame and the motion between the current and the previous
frames. The audio-visual correspondence is finally obtained
by applying CCA such that the predicted regions are those
related to the super-voxels with the maximal correlation to
audio. Since in addition to the audio source, eye-fixations are
also related to salient spatial and temporal events, the authors
incorporate also cues which are based merely on the video
signals. They generate, for each frame, a prediction map,
based on the magnitude of the motion vectors. In addition,
they compare between different state-of-the-art spatial saliency
maps computed separately for each frame. Here, we choose
the method presented in [60], which is based on computing a
spectral residual of an image, since it was found to perform
well in [32]. Finally, the three maps, related to the audio-
visual correspondence and the spatial and the temporal cues
are fused with equal weights using a simple sum. For more
implementation details we refer the reader to [32].

Similarly to [32], we use three common measures to eval-
uate the prediction of eye fixations. First is the shuffled area
under the curve (sAUC), in which receiver operating charac-
teristic (ROC) curves are generated by sweeping a threshold
between the minimal and maximal values of the saliency map.
Since there are only a small number of true eye fixations in
each frame, false locations are randomly shuffled from the
(true) fixations in all other frames, such that there is an equal
number of true and false pixels. Second is (linear) correlation
coefficient (CC) obtained by calculating a two dimensional
correlation between the estimated and the true fixation maps,
where the latter is convolved with a Gaussian kernel. Last
is the normalized scanpath saliency (NSS) score presented in
[61]. NSS is the mean value of the predicted map at the true
fixations, for which the predicted map is normalized to have
a zero mean and a unit variance.

To apply the proposed measure for multi-modal correspon-
dence for eye-fixation prediction, we use the same visual
features as in [32]. We create an audio-visual correspondence
map by calculating the correspondence between the audio
features and the features of each one of the super-voxels,
assigning the correspondence values to their corresponding
pixels. Similarly to [32], we apply spatio-temporal smoothing
to the audio-visual correspondence map and incorporate the
other two maps, based on spatial and the temporal cues,
respectively.

In Fig. 3, we present the performance of the proposed
measure of correspondence for different values of the batch
size N . The proposed measure is based on relations between
geometric structures of the two modalities as they are encoded
by the affinity kernels so that the number of frames has to be
large enough to capture these structures. Conversely, the use
of a too large number of frames may blur the estimate of
eye-fixations since they change over time. The silver-lining
of the trade-off is obtained in Fig. 3 for N = 25, a value
which we use for comparison to the other methods. Figure 3

10 15 20 25 30 35 40 45 50
1.78

1.79

1.8

1.81

1.82

1.83

1.84

1.85

Fig. 3: The performance of the proposed measure of corre-
spondence for eye-fixations prediction in terms of NSS versus
N , the batch size in frames (blue solid line). Best performance
obtained for N = 25 (red circle).

further implies that N has a small effect on the performance
of the proposed measure, which, for a wide value range of N ,
outperforms the competing methods, whose performances are
reported in Table I.

In Fig. 4, we present eye-fixation predictions obtained by
the proposed algorithm in the form of heat maps. In addition to
[32], we also compare the proposed method to kernel CCA.
Figure 4 (a) comprises an example of a video frame of a
person playing a piano such that the true eye fixations are
centered at the region of the hands and the center of the body
of the pianist. The maps, predicted by the proposed measure
of multi-modal correspondence, as well as by kernel CCA,
successfully indicate a high level of correspondence between
the movement of the hands and the music. In contrast, the
map, predicted by the method in [32], wrongly predicts the
walking women in the background. Similarly, both [32] and
kernel CCA wrongly predict as salient the movements in the
background in Figs. 4 (b-d) and the arms movements of the
player in Fig. 4 (e), which are not directly related to the
production of sound. These movements may be considered as
interferences, and they are properly attenuated by the proposed
measure.

We further compare the proposed approach to other com-
peting methods and present the results in Table I. We consider
kernel CCA, the empirical HSIC and the method presented in
[34] as alternative approaches for measuring correspondence
between the audio and video modalities. The method in [34]
is based on the use of kernel CCA with multiple kernels and
suggests to measure correspondence according to the average
distance between audio and video in the space of the kernels.
We also compare the proposed method to [33], which is similar
to [32] but only employs the audio-visual correspondence for
eye-fixation prediction and does not use video-only based
ques. Finally, we consider a variant of the method in [32]
based only on the video signal such that only the spatial
and temporal cues are used for the prediction of eye-fixation.
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TABLE I: Comparison of the eye-fixation prediction scores.

Algorithm sAUC CC NSS
Video only 0.7292 0.3612 1.4295

KCCA 0.7628 0.4362 1.7904
Empirical HSIC 0.7530 0.4197 1.7229

Zhang et al. 2016 0.7235 0.3725 1.4667
Izadinia et al. 2013 0.6915 0.3519 1.5165

Min et al. 2016 0.7556 0.4182 1.6941
Proposed 0.7660 0.4432 1.8309

The latter approach provides inferior performance, particularly
when compared to the proposed method and the method in
[32] indicating the significance of the audio signal for eye-
fixation prediction. The proposed method provides improved
performance compared to the competing approaches.

C. Discussion

Talmon and Wu provide in [46] a theoretical analysis
based on manifold learning studying the kernel product in the
continuous limit assuming the existence of N → ∞ data-
points and kernel bandwidths approaching zero εv, εw → 0.
They introduced a distance based on the kernel product, which
in this limit, is equivalent to a distance obtained using a single
modal manifold learning approach applied to the manifold
of hidden factors that are common to the two modalities.
This result, which implies that the kernel product implicitly
represents data according to common hidden factors, is empir-
ically supported by Fig. 4 such that, for example, background
movements are almost completely attenuated in the videos.

Kernel CCA is more sensitive to interferences as demon-
strated in Fig. 4, where we observe interferences that were
wrongly detected by kernel CCA as corresponding to the
audio. A possible explanation is that Kernel CCA involves
the inversion of the kernel matrices, which poses practical
limitations on its calculation and often requires the use of
a regularization term. Indeed, we found in our experiments
that kernel CCA did not converge properly when configured
with the same kernel bandwidth as the kernel bandwidth used
for the kernel product. Moreover, we have empirically found
that using relatively large regularization parameter values did
not alleviate the convergence problem. Accordingly, we set
the bandwidth to 200 and the regularization parameter to
the default value 1e−5, which led in our experiments to the
maximal performance. In this context, we note that improved
performance of the kernel product compared to kernel CCA
was previously reported by Michaeli et al. in [18] for X-Ray
microbeam speech data.

Interestingly, we found that an improved performance of
the proposed method is obtained by reducing the weight of
the spatial and temporal cues, which are based merely on the
video signal. Specifically, the results of the proposed method
reported in Table I are obtained by assigning the weights
1, 0.4, 0.4 to the audio-visual correspondence map, the spatial
map, and the temporal map, respectively. In contrast, reducing
these weights in the method in [32] degraded the performance.

Namely, accurate estimation of the correspondence between
the audio and the video signals has even a more significant
role for eye-fixation prediction than that reported in [32].

We note in this context that the audio signal contributes
to the prediction of eye fixations only when the audio source
indeed appears in the video, as we consider in this paper.
However, when the audio source is absent from the video,
the audiovisual correspondence measure becomes irrelevant
and its incorporation may degrade the results. Moreover, the
audio source may be present in the video only in part of the
time; in such cases, the weights in fusion process between the
video-only and the audiovisual measures should be adapted
over time. Specifically, one may estimate the existence of
an audio source within the video according to the levels of
correspondence between the two modalities; then, incorporate
the audio-visual correspondence for eye-fixation prediction
only if it is above a certain threshold indicating activity of
the audio source.

Another important aspect is the influence of the spatial size
of the audio source on the locations at which people tend to
gaze. Assuming that larger audio sources are more salient,
a further improvement in the prediction of eye fixation may
be based on weighting the audio-visual correspondence map
according to an estimate of the size of the source such that
higher weights are assigned to larger audio sources. To further
address these aspects of the eye-fixation prediction problem,
proper datasets need to be constructed.

In addition, we recall that we use N = 25 frames for the
construction of the proposed measure of correspondence. The
optimal batch size N is set according to a trade-off between the
ability to properly capture complex relations between the data-
points, i.e., the geometry of the data, and the variability of the
signals over time. The derivation in (7), (9) and (11) indicates
the contribution of each incoming frame to the measure of
correspondence. Setting an adaptive batch size, such that, for
example, it can be increased in an online manner by avoiding
the subtraction of the last frame in (9) is left for a future
research. For example, one may track the variability of the
motion vectors over time, and increase the batch size in video
regions which are relatively stationary. This may facilitate
better learning of the audio-visual geometry improving the
accuracy of the correspondence measure.

In this context, for a batch size of N = 25, the proposed
measure is faster than kernel CCA by almost an order of mag-
nitude as is demonstrated in Fig. 1. This may be significant in
online applications such as audio-visual scene analysis, where
one would like to detect and separate between several audio-
visual sources [62]. Efficient estimation of the correspondence
is particularly important since the localization of the audio-
visual sources is only a part of a larger online system for
source separation.

The speedup of the proposed measure for a batch of
N = 25 frames, is, however, less significant with respect to
the method “single modal update” as can be seen in Fig. 1.
With this in mind, we remark that both the proposed measure
of correspondence and the corresponding statistical analysis do
not make particular assumptions on the type of the modalities.
Therefore, we plan to explore the applicability of the proposed
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(a) (b) (c) (d) (e)

Fig. 4: Examples of the obtained saliency maps. Each sub-figure corresponds to a different audio-visual recording. From top
to bottom: original image, true gaze data (convolved with a Gaussian kernel), a heat map obtained by Min et al. 2016 [32], a
heat map obtained by kernel CCA, a heat map obtained by the proposed measure of correspondence.

measure to other modalities in a future research. The optimal
number of frames may significantly vary according to both the
modalities and the application at hand. Specifically, it depends
on the frame rate at which the signals are processed and their
variability over time. Consider for example the task of speech
enhancement using both a regular and a bone conducting
microphone. Multi-modal correspondence may be exploited
for the estimation of the spectrum of speech in the presence
of transient interferences, which are short term non-speech
sounds such as keyboard taps [63]. The frame rate in such a
task may be up to 1000 fps as we considered in the single
modal setting in [64]. Therefore, we expect the size of the
batch to be significantly higher than the one we use here for
audio-visual recordings, for which the typical frame rate is
25− 30 fps.

VI. CONCLUSIONS

We have addressed the problem of measuring correspon-
dence between multi-modal signals in an online setting by
proposing a measure based on the trace of the kernel product.
We showed how this measure arises in the context of kernel
density estimation of data in one modality from the other.
In addition, we proposed a statistical model based on the
connectivity between data-points showing that the proposed

measure is expected to provide high values when signals have
a high correspondence in the different modalities. Finally, we
proposed an efficient algorithm for online calculation of the
proposed measure and demonstrated its improved performance
for audio localization in video and for eye-fixation prediction.
Future research directions include adaptation over time of
the window length used for constructing the measure for
each time frame. Namely, the number of frames (the batch
size) used for the computation of the kernel may be adapted
over time according to dynamical properties of the signal
and acoustic conditions. Moreover, the proposed algorithm
for online processing allows measuring the contribution to the
correspondence measure of each one of the samples (frames).
This gives rise to improvement of the proposed measure, e.g.,
by considering only samples with the highest correspondence
levels or by applying time decaying weighting to focus on
more recent frames.
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