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bstract

A multi-point conference is an efficient and cost effective substitute for a face to face meeting. It involves three or more participants
laced in separate locations, where each participant employs a single microphone and camera. The routing and processing of the
udiovisual information is very demanding on the network. This raises a need for reducing the amount of information that flows
hrough the system. One solution is to identify the dominant speaker and partially discard information originating from non-active
articipants. We propose a novel method for dominant speaker identification using speech activity information from time intervals
f different lengths. The proposed method processes the audio signal of each participant independently and computes speech activity
cores for the immediate, medium and long time-intervals. These scores are compared and the dominant speaker is identified. In
omparison to other speaker selection methods, experimental results demonstrate reduction in the number of false speaker switches
nd improved robustness to transient audio interferences.

2012 Elsevier Ltd. All rights reserved.

eywords: Speech processing; Videoconference; Dominant speaker identification; Acoustic signal detection; Acoustic noise; Transient noise

. Introduction

Multipoint videoconferencing technology has been existent since the early 1960s. Throughout this period it had
ransformed from an expensive technology restricted for use in large organizations, to cheap and easy to use applications
vailable in almost every home. In multipoint videoconferencing, three or more dispersedly located participants connect
or a meeting over telephone or Internet-based networks. Typically the meeting is controlled by a central processing
nit, which is in charge of routing signals between participants. The incorporation of video into audioconferencing had
ignificantly raised the amount of information transmitted through the network. In addition to increased bandwidth
onsumption, it raises the amount of information that is processed by the central processing unit. An effort has been

ade to offer solutions for reducing the load on the network. Most of these solutions involve the identification of the
ost active participants through a process referred to as speaker selection. Once the active speakers are selected, the

emaining audiovisual information may be discarded, thus relieving the network.
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Many works in the field of improving the efficiency of data traffic in audio or videoconferencing rely on speaker
selection as a vital component (Shaffer and Beyda, 2004; Howard et al., 2004; Matsumoto and Ozawa, 2010). However,
little research attention has been devoted to the speaker selection task itself. The simple methods are based on indicators
of the signal level in the channel as measured by its amplitude or mean power (Kwak et al., 2002; Chang, 2001; Kyeong
Yeol et al., 1998; Firestone, 2005). In these methods, the most active speakers are selected as the speakers with the
highest signal level. Since the selection is based on an instantaneous measure, these methods are known to cause
frequent false speaker switches. A method with a more advanced switching mechanism was proposed in Smith et al.
(2002). In this method, the active parties are identified by either the signal power or the arrival of silence insertion
descriptor (SID) frames. They are then ranked by the order of becoming active speakers. A speaker can be promoted
in ranking only if its smoothed signal power exceeds a certain barge-in threshold. The ranking list keeps a continuous
record of the M most active participants.

An improvement to Smith et al. (2002) is proposed in Xu et al. (2006) by suggesting a more sophisticated method
for speech detection. In this method, the speech detection is based on a set of speech specific features and a machine
learning technique that classifies each signal frame into either voice or noise. The above-mentioned methods, although
constituting an advancement over the level based methods, still concentrate on instantaneous measures for speech
activity. No special attention is devoted to long-term properties of dominant speech in the speaker switching mechanism.
The barge-in mechanism, that is proposed as the switching mechanism, increases the vulnerability of these algorithms
to false switching due to transient interferences.

In this paper, we introduce a novel approach for dominant speaker identification based on speech activity evaluation
on time intervals of different lengths. The lengths of the time intervals we use correspond to a single time frame, a
few phonemes, and a few words up to a sentence. This mode of operation allows capturing basic speech events, such
as words and sentences. Sequences and combinations of these events may indicate the presence of dominant speech
activity (or lack of it). Another unique ability offered by the proposed method is a distinction between transient audio
occurrences that are isolated and those that are located within a speech burst.

Integration of long-term speech information had already been proven effective in voice activity detection (VAD)
applications (Sohn et al., 1999; Ramirez et al., 2004, 2005). Long term information was used in the aforementioned
methods in order to determine whether speech is present in a currently observed time-frame. We find this approach well
suited to our problem since dominant speech activity in a given time-frame would be better inferred from a preceding
time interval than from any instantaneous signal property. Hence we incorporate the approaches from these VAD works
into the proposed method. Objective evaluation of the proposed method is performed on a synthetic conference with
and without the presence of transient audio occurrences. In addition we test the proposed method on a segment of a real
five channel audioconference. Results are compared with existing speaker selection algorithms. We show reduction in
the number of false speaker switches and improved robustness to transient audio interferences.

The paper is organized as follows. In Section 2, we formulate the problem of dominant speaker identification. In
Section 3, we present the proposed method. We present two approaches for speech activity score evaluation in Section
4, where one is based on a single observation and the other introduces temporal dependence between consecutive
time-frames using the score on a sequence of observations. Experimental results are presented in Section 5. This work
is concluded in Section 6.

2. Problem statement

A multipoint conference consists of N participants received through N distinct channels. The objective of a dominant
speaker identification algorithm is to determine at a given time which one of the N participants is the dominant speaker.
We discuss an arrangement where each participant receives a video feed from only one other participant. In the
proposed embodiment, the video stream of the dominant speaker is sent to all participants while the dominant speaker
himself receives the video stream from the previous dominant speaker. Throughout this paper we use the terms channel,
participant, user and speaker interchangeably, as referring to a conference end-point.

We define a speech burst as a speech event composed of three sequential phases: initiation, steady state and

termination. In the first phase, speech activity builds up. During the second phase speech activity is mostly high, but
it may include breaks in activity due to pauses between words. Finally, in the third phase speech activity declines and
then stops. Typically, a dominant speech activity is composed of one or more consequent speech bursts. We refer to
the point where a change in dominant speaker occurs as a speaker switch event.



c
r
a
d
d
v

•

•

•
•

•

3

d
i
o
i
e
c
S

3

f
o
t
i

I. Volfin, I. Cohen / Computer Speech and Language 27 (2013) 895–910 897

The challenges in the dominant speaker identification problem arise from equipment, surrounding and personal
haracteristics of the different users. The type of equipment used may introduce noise, such as crosstalk (speakers) or
everberations (far-talking microphone). The quality of the sensor affects the SNR of the incoming signal. The type
nd level of noise in the surrounding of the speaker influence the ability of the system to identify each speaker as
ominant. The presence of transient noises, characterized by short duration and high energy signals, may distract the
ecision regarding the dominant speaker. Finally, personal characteristic of the speaker, such as loudness or quality of
oice, may also affect the identification of the dominant speaker.

The desired behavior of a dominant speaker identification algorithm is as follows.

No false switching should occur during a dominant speech burst. Both transient noise occurrences and single words
that are said in response to or in agreement with the dominant speaker are considered transient occurrences. These
should not cause a speaker switch.
A speaker switch event cannot occur during a break in speech between two dominant speakers. It has to be triggered
by a beginning of a speech burst.
A tolerable delay in transition from one speaker to another, in a speaker switch event, is up to 1 s.
When simultaneous speech occurs on more than one channel, the dominant speaker is the one who began speaking
first.
The relative loudness of the voice of a speaker should not influence his chance to be identified as the dominant
speaker.

. Dominant speaker identification based on time intervals of variable lengths

The proposed method for dominant speaker identification consists of two stages, a local processing and a global
ecision, as depicted in Fig. 1. In the first stage (Fig. 1, blocks 1 and 2), speech activity scores are evaluated for the
mmediate, medium, and long time-intervals. The lengths of the chosen time-intervals correspond with the lengths of
ne time-frame, a few phonemes, and several words. In the second stage (Fig. 1, block 3), the dominant speaker is
dentified based on the speech activity scores obtained in the first stage. This stage is designed to detect speaker switch
vents. We assume that a speaker switch event can be inferred from a rise in the three speech activity scores on a certain
hannel, relatively to scores of the dominant channel. The rationale of speaker switch event detection is discussed in
ection 3.2. The implementation of the proposed algorithm is summarized in Fig. 2.

.1. Local processing

In this stage, the signal in each channel is processed separately. The objective of our approach is to place each signal
rame into a broader context than its instantaneous audio activity. This is accomplished by processing the currently

bserved frame by itself in addition to a medium-length preceding time interval and in addition to a long time interval
hat precedes it. Thus each time we move up to a longer time interval, the speech activity obtained in the previous step
s analyzed again in a broader context.

participant 1 Speech detection
in sub-bands

1

Score
calculation

2

participant 2 Speech detection
in sub-bands

1

Score
calculation

2

participant M Speech detection
in sub-bands

1

Score
calculation

2

Dominant
speaker
selection

3

dominant speaker
in frame l

local processing global decision

Fig. 1. A flow-chart describing the proposed method. Block 2 is described in more detail in Fig. 3.
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Fig. 2. Dominant speaker identification algorithm based on speech activity information from time intervals of different lengths.

The motivation for this mode of processing is the nature of the signals we expect to receive through the channels.
The expected types of signals during a multipoint conference are:

(1) silence or stationary noise at different power levels.
(2) transient audio occurrences such as knocks, coughing, and sneezing.
(3) fluent and continuous speech consisting of words and sentences.

Each of these signal types would yield a typical combination of score values. This would allow us to discriminate
between the different types of signals. Specifically, in the global decision stage it would enable the discrimination of
dominant speech activities on a certain channel from non-dominant activity on other channels.

In the proposed approach, we relate to each time interval as composed of smaller sub-units. The speech activity in
each time interval is determined according to the number of active sub-units by attributing a speech activity score to
this number. The score is obtained from the likelihood ratio between hypothesis of speech presence and hypothesis of
speech absence. The score evaluation method is fully described in Section 4. The speech activity evaluation process
consists of three sequential steps, referred to as immediate, medium and long. The input into each step is a sequence of
the number of active sub-units acquired in the previous step.

For the step of immediate speech activity evaluation we use a frequency representation of the frame to test for speech
activity in sub-bands. We operate on the frequency range that corresponds to the range of voiced speech. Let this range
be denoted by k ∈ [k1, k2] and the total number of sub-bands in this range by N1. As the frequency representation
we use the SNR value in each sub-band. The SNR is obtained from the OMLSA algorithm (Cohen, 2002), Matlab
implementation is available at Cohen (2012). Let it be denoted by ξ

l
= {ξ(k, l)|k ∈ [k1, k2]}, where l is a discrete time

index. Next we find the number of active sub-bands in the frame. A sub-band is considered active if its SNR is higher
than a threshold ξth. The threshold value was obtained from a speech training set. The number of active sub-bands in
a time-frame l is denoted by a1(l). Specifically,

k2∑

a1(l) =

k=k1

sign[max(ξ(k, l) − ξth, 0)] (1)

where sign(x) is the Signum function.
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Fig. 3. Speech-activity-score evaluation process.

The thresholding approach serves several purposes in the discussed problem. It allows measuring the amount of
peech activity while suppressing isolated high-energy noise spikes. One advantage is avoiding the masking effect that
s caused when using the absolute value of isolated high-energy spikes. Another advantage is an equalization effect
etween loud and quiet activity of comparable quality speech segments. For example, in the immediate time processing,
igh amplitude noise in a few isolated frequency bins would not be identified as speech. Whereas a measure that relies
n the absolute value of the SNR would cause such activity to be identified as speech activity. We proceed with the
hresholding approach in the next steps of speech activity detection motivated by these advantages.

The number of active sub-bands is provided as an input into the score calculation block, see Fig. 1, block 2. In this
lock, two additional thresholding steps are carried out for time intervals of medium and long lengths. The input into
he speech activity evaluation step for the medium length time interval is a sequence of the number of active sub-bands
n the last N2 frames. We denote it by αl = {a1(l − m)|m ∈ [0, N2 − 1]}. Next, αl is thresholded by αth and the number
f active frames in the medium length time interval that precedes the time-frame l is obtained. The number of active
rames is denoted by a2(l), where 0 ≤ a2(l) ≤ N2. Specifically,

a2(l) =
N2−1∑
m=0

sign[max(a1(l − m) − αth, 0)] (2)

he number a2(l) indicates the amount of independent instantaneous activities in a group of N2 sequential frames. Let
s assume that a certain frame p exhibited a high number of active sub-bands, a1(p). The amount of activity in its
eighbors would determine if the frame p contains an isolated noise spike or that it is part of a longer audio activity.
he amount of activity in the medium time-interval is indicated by a2(p).

Finally, a sequence of speech activity indicators for medium time-intervals is provided as an input into the step of
valuating speech activity in a long time interval. This sequence is denoted by β

l
= {a2(l − mN2)|m ∈ [0, N3 − 1]},

here N3 is the number of medium-length blocks constituting the long time-interval. The number of active medium-
ength blocks, denoted by a3(l), is obtained by thresholding β

l
by βth and counting the number of non-zero elements.

pecifically,

a3(l) =
N3−1∑
m=0

sign[max(a2(l − mN2) − βth, 0)]. (3)

n active block of medium length indicates a short transient occurrence. According to the rationale in the previous
teps, a low a3(l) value indicates that the transient is isolated, while a high a3(l) value indicates a part of a speech burst.

After obtaining a1(l), a2(l) and a3(l), we have a good representation of the speech activity history in time-frame l.
e also achieved here a backward inference by each of these values on the shorter time-intervals. A speech activity

core is now attributed to the speech activity indicators, a1(l), a2(l) and a3(l). The score evaluation process is illustrated
n Fig. 3, and detailed in Section 4. We denote the set of scores in frame l by �immediate, �medium and �

long. The scores
l l l

rom the distinct channels are provided into the dominant speaker selection block (Fig. 1), where this information is
ranslated into a dominant speaker identification.
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Fig. 4. The dominant speaker identification algorithm.

3.2. Global decision

The objective of this stage is to identify the channel associated with the dominant speaker. This stage is activated
in time steps of a certain interval, which is referred to as the decision-interval. It is designed to utilize the scores that
are obtained in the local processing stage for dominant speaker identification. The approach we take in this stage is
detecting speaker switch events, rather than selecting a dominant speaker in every decision-interval. Once a dominant
speaker is identified, he remains dominant until the speech activity on one of the other channels justifies a speaker
switch. In the following, we refer to the non-dominant channels as competing (for dominance).

The expected score behavior of the dominant speaker and a channel that justifies a speaker switch are described
as follows. The type of channels (dominant or competing) referred to by the score is indicated in brackets. During
the dominance period of the dominant speaker, the score �long(dominant) is expected to be high. The scores for the
immediate and medium time-intervals, �medium(dominant) and �immediate(dominant), are allowed to be low for periods
that correspond to breaks between words. As for the speech activity on the competing channels that justifies a speaker
switch, all three scores are expected to be high. The speech activity in the long time-interval, �long (competing) has to
be high to demonstrate prolonged speech activity. In addition, both �medium (competing) and �immediate (competing)
are expected to be high to indicate an onset of speech.

The speaker selection algorithm is illustrated in Fig. 4. We propose the following realization for detecting speaker
switch events in accordance with aforementioned expected behavior of scores. For each decision-interval three vectors,
c1, c2 and c3, are calculated. These vectors contain the information about the ratio between speech activity in the
competing channels and speech activity in the dominant channel for the long, medium and immediate time-intervals,
respectively. The number of elements in each vector is the number of conference participants. In the next step, a set of
channels demonstrating speech activity that might justify a speaker switch is found by comparing the relative speech
activities c1, c2 and c3, with a set of respective thresholds, C1, C2 and C3. The set of indices representing these channels
is stored in j. In case j contains a reference to more than one channel, a dominant channel, denoted by j*, is selected
based on the highest speech activity score for the medium time-interval.

4. Speech-activity-score evaluation

In this section, we formulate the speech-activity-score evaluation method. As discussed in Section 3, the speech

activity score for a certain time-interval is determined by the number of active sub-units in a representative vector.
We consider the log-likelihood ratio of the number of active sub-units as the respective speech activity score. In order
to determine the likelihood ratio of the number of active sub-units, we assume a certain model under hypotheses of
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peech presence and absence, denoted by H1 and H0, respectively. We propose two approaches for the score calculation
ethod: the first approach uses the information from a single observation, and the second approach makes use of a

equence of observations in the likelihood-ratio formulation process. We also discuss the difference between the two
pproaches and the difference in performance.

.1. Modeling the number of active sub-units

Let the representative vector for the immediate, medium or long time intervals be denoted by νl = [ν(l), ν(l −
), . . . , ν(l − NR + 1)]. The length of this vector is denoted by the parameter NR. The elements of the representative
ector for the immediate time interval are ξ(k, l), where k1 ≤ k ≤ k2. For the medium and long time intervals the elements
re a1(l) and a2(l), respectively. Accordingly, the lengths of the representative vectors are N1, N2 and N3.

The vector νl is thresholded by the threshold value νth, resulting in a binary vector νl,binary. Then the elements of
he vector νl,binary are summed

v(l) =
NR∑

m=1

νbinary(m). (4)

he value v(l) represents the number of active sub-units out of the total number of entries NR in the original vector νl.
e propose to model this number as follows:

1) Given H1 : speech is present
We regard every active sub-unit as a success in a Bernoulli trial, where P(x) = px(1 − p)(1−x) with x ∈ {0, 1}

and p is the probability of success, which remains the same for all vector entries. The vector length is NR, thus
we compute the probability of v(l) successes out of NR experiments. Hence, we assume this number follows a
Binomial distribution

P(v(l)|H1)∼Bin(NR, p) =
(

NR

v

)
pv(l)(1 − p)NR−v(l). (5)

2) Given H0: speech is absent
When speech is absent, we expect a lower probability for a higher number of active sub-units. Hence we assume

an Exponential distribution

P(v(l)|H0)∼ exp(λ) = λe−λv(l). (6)

.2. Score evaluation

Given an observation vector Xl in time-frame l and two possible classes of its origin, H0 and H1, the likelihood of
he observation to belong to each class i ∈ {0, 1} is given by p(Xl|Hi). Accordingly, the likelihood ratio is given by
Fukunaga, 1990)

Λl = p(Xl|H1)

p(Xl|H0)
(7)

e define the speech activity score as the log-likelihood ratio of the observation vector. It is obtained from (7) by

�l = ln

(
p(Xl|H1)

p(Xl|H0)

)
. (8)
n the following sections, two approaches for score evaluation are proposed. In the first approach, Xl is the number of
ctive sub-units in the current representative vector. In the second approach, Xl is a vector consisting of a sequence of
he number of active sub-units on a sequence of the respective representative vectors. The scores are hereafter referred
o as Binomial and Binomial-sequential respectively.
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4.2.1. Single observation approach
In this approach the score is based on the number of active sub-units v(l) in the representative vector νl. Substituting

the model assumptions from (5) and (6) into (7), we have the likelihood ratio for a single observation

Λ
single
l =

(
NR

v

)
pv(l)(1 − p)NR−v(l)

λe−λv(l) (9)

According to (8), the speech activity score based on a single observation is:

�
single
l = ln

(
p(Xl = v(l)|H1)

p(Xl = v(l)|H0)

)
= ln

⎛
⎜⎜⎜⎜⎝

(
NR

v

)
pv(l)(1 − p)NR−v(l)

λe−λv(l)

⎞
⎟⎟⎟⎟⎠

= ln

(
NR

v(l)

)
+ v(l) ln p + (NR − v(l)) ln(1 − p) − ln λ + λv(l). (10)

4.2.2. Multiple observation approach
We follow the approach proposed in Sohn et al. (1999) for a VAD application. In this method, an HMM is used to

recursively update the likelihood ratio of frame l using all previous frames.
We base the score in this approach on a sequence of N sequential values of active sub-units vN

l = [v(l − N +
1), v(l − N + 2), . . . , v(l)] taken from N preceding and including the observed time-frame, l. The hidden Markov
model here consists of two states:

ζl =
{

H1,(l), speech is present in frame l,

H0,(l), speech is absent in frame l,

with the state dynamics described by aij = p(ζl = j|ζl−1 = i). For speech signals, it is more likely that a frame of speech
would be followed by a frame of speech rather than by a frame of silence. This notion is fulfilled by setting a00,
a11 > a01, a10.

The likelihood-ratio in this approach is

Λ
sequential
l = p(Xl = vN

l |H1)

p(Xl = vN
l |H0)

= p(vN
l , H1)

p(vN
l , H0)

· P(H0)

P(H1)
(11)

where P(H0) and P(H1) are steady state probabilities that are determined by P(H0) = a10/(a10 + a01) and
P(H1) = a01/(a10 + a01).

Introducing the notations αl(1) � p(vN
l , H1) and αl(0) � p(vN

l , H0), αl(j) for j ∈ {0, 1} is recursively computed
using the forward procedure (Shimkin, 2009):

αk(j) =
{

P[Xk = v(k)|Hj,(k)] · [αk−1(0)a0j + αk−1(1)a1j], l − N + 1 < k ≤ l

P[Xk = v(k)|Hj,(k)]p(Hj,(k)), k = l − N + 1.

Denote the recursively computed term

αl(1) p(v(l)|H1) αl−1(0)a01 + αl−1(1)a11 single a01 + Ll−1a11

Ll =

αl(0)
=

p(v(l)|H0)
·
αl−1(0)a00 + αl−1(1)a10

= Λl a00 + Ll−1a10
. (12)

It is important to note for future discussion that the term Ll is large when speech is present, and small in the absence
of speech.
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Substituting (12) into (11), we have

Λ
sequential
l = Ll · P(H0)

P(H1)
= Λ

single
l · a01 + Ll−1a11

a00 + Ll−1a10
· P(H0)

P(H1)
(13)

here a10 and a01 are determined a priori. Finally, we have the speech activity score formulation for the approach
ased on a sequence of observations

�
sequential
l = �

single
l + ln

(
a01 + Ll−1a11

a00 + Ll−1a10

)
+ ln

(
P(H0)

P(H1)

)
. (14)

The intuitive advantage of the sequential approach may be observed in the structure of the sequential score (14). The
equential score (14) differs from the single score �

single
l by the addition of the terms ln((a01 + Ll−1a11)/(a00 + Ll−1a10))

nd ln(P(H0)/P(H1)). The term ln(P(H0)/P(H1)) is a constant bias term added to the score in all cases. The term
n((a01 + Ll−1a11)/(a00 + Ll−1a10)), on the other hand, influences the score differently in the presence or absence of
peech. With the constant values a00, a11 > a01, a10 set a priori:

1) In the presence of speech, Ll−1 is large so the term ln((a01+ Ll−1a11)/(a00 + Ll−1a10)) → ln(a11/a10) > 0, hence
�

sequential
l > �

single
l .

2) When speech is absent, Ll−1 is small and the term ln((a01+ Ll−1a11)/(a00 + Ll−1a10)) → ln(a01/a00) < 0. So that in
this case, �

sequential
l < �

single
l .

ence, the Binomial-sequential score achieves better separability between speech presence and absence in com-
arison to the Binomial score. On the other hand, an integration of more observations from the past introduces a
elay into the speaker switching process. This happens because the new information regarding the speaker switch
s masked by the old information of dominance. Both these differences are exhibited in the experimental results
n Section 5.

. Experimental results

In this section, we compare the performance of the proposed method to other dominant speaker identifica-
ion methods. Since a standard evaluation framework for the task of dominant speaker identification does not
xist, we propose several experiments and objective error measures to test the basic requirements for this type of
ystem.

Throughout this section, we denote the proposed method when used with the single-observation approach for
he score evaluation as the Binomial method and when used with the sequential-observation approach as the Bin-
eq method. In case the distinct name of the method is not specified, the performances of the two methods were
imilar.

According to the speech activity score evaluation method described in Section 3, speech activity in each time interval
s determined by the number of its active sub-units. Hence, the most influential parameters are the length of each time
nterval and its corresponding threshold. The number of sub-units was chosen in correspondence with the speech
tructure it represents. The immediate time interval is represented by the sub-bands that correspond to voiced speech.
he medium time interval consists of the number of immediate time sub-units that is equivalent to several tenths of a
econd. The long time interval consists of a number of medium time sub-units that sum up to approximately 1 s. The
hresholds in this method were set so they facilitate the separation between speech and noise. The value of the threshold
epresents the trade-off between the false detection of noise as speech and the false rejection of speech sub-units. In the
mmediate time interval, the SNR threshold separates between speech sub-bands (high SNR) and noise (low SNR). In
he medium and long time intervals, the threshold provides the distinction between dense and sparse speech activities

n the corresponding time intervals.

The likelihood model parameters for the immediate time are based on a training set taken from the TIMIT database
Garofolo, 1993). The remaining parameters were manually tuned on both simulated and real conference data. The
arameter set that was used in the experiments is provided in Fig. 5.
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Fs = 16 KHz window length = 64 samples overlap = 50%

k1 = 2 , k2 = 12 N2 = 33 N3 = 16

ξth = 3 αth = 5 βth = 32

pimmediate = 0.5 pmedium = 0.5 plong = 0.5

λimmediate = 0.78 λmedium = 24 λlong = 47

P (H0) = P (H1) = 0.5

a10 = 0.1 a11 = 0.9 a01 = 0.2 a00 = 0.8

C1 = 3 C2 = 2 C1 = 0
Fig. 5. Algorithm parameters that were used in all experiments.

In the first experiment, the dominant speaker identification algorithms are evaluated in a simple task of switching
to the dominant speaker in the presence of stationary noise. For this purpose, a synthetic multipoint conference was
simulated by concatenating speech segments taken from the TIMIT database. Three speakers were randomly chosen
from the database and several speech bursts were concatenated on a distinct channel for each speaker. The speech
bursts in each channel were spread along the conference length, such that each speech burst requires a switch in the
dominant speaker. For the purpose of qualitative evaluation we assume there is no speech overlap between participants,
i.e., “barging-in” is not allowed. White noise in the range of −2 to 5 dB SNR was added to all signals. The algorithms
were applied to the signals and the dominant speaker was identified once in every time-period, denoted by a decision
interval. Quantitative analysis was performed on the synthetic test set to examine whether an identification method
fulfills the expectations as stated in Section 2.

The analysis includes the following measures:

• False speaker switches – number of false switches to a non-dominant speaker.
• Front end clipping (FEC) – error in detecting the beginning of a speech burst. The signal on each channel consists

of several isolated speech bursts. The FEC error for each speech burst is obtained. Then the mean FEC error for the
whole conference is computed as the mean value of individual FEC errors of all speech bursts in all channels. The
FEC error in the discussed realization is a delay in the switching of the video to the new dominant speaker, while
the audio signal from all speakers is available at all times. Thus we assume that a tolerable delay in switching to the
dominant speaker in terms of mean FEC is 1 s. All tested methods fulfilled this requirement.

• Mid sentence clipping (MSC) – clipping occurring in the middle of a speech burst. This is the most disturbing type
of error since it causes a switch of speaker in the middle of a dominant speech burst. It is computed as the ratio
between the undetected mid section of a speech burst [samples] (UMSB) to the length of the speech burst [samples]
(LOSB) in percent.

MSC = 100 · UMSB
LOSB

The illustration of the MSC error is depicted in Fig. 6.

Fig. 6. Illustration of the MSC error. This error represents the undetected portion from the middle of a speech burst.
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he performances of the two proposed methods were compared to the following methods:

Three methods that identify the dominant speaker by applying a VAD to each channel and identifying the speaker
with the highest VAD score as dominant. The VAD methods used for the comparison are denoted by Ramirez, Sohn,
and GARCH, and are described in Ramirez et al. (2005), Sohn et al. (1999) and Mousazadeh and Cohen (2011),
respectively.
A method that identifies the dominant speaker as the one with highest signal power. It is referred to as the POWER
method throughout the comparison.
A method that identifies the dominant speaker as the one with the highest SNR. It is referred to as the SNR method
throughout the comparison.

ince the comparison is made once in every decision interval, the instantaneous values of the VAD score, SNR and
OWER, are not necessarily representative values of the decision interval. Hence the maximal values of the VAD score,
NR and POWER in the decision interval were used for the comparison. The results of this experiment are displayed

n Fig. 7, where the false switching and MSC errors are plotted as a function of the decision interval. In Fig. 7(a),
OWER, SNR and VAD based methods show frequent false speaker switching. For the proposed method, both the false
witching and the MSC errors are zero.

In the second experiment, we test the robustness of the algorithms to transient noise. Transient noise occurrences of
oor knocks and sneezing were added to the signals in the synthetic conference of the first experiment. The quantitative
nfluence of the transient occurrences is presented in Fig. 8 and can be compared to the results in Fig. 7. There is a
ise both in the number of false switches and a respective rise of the MSC error for all methods. The proposed method
s affected by the transient occurrences when a very short decision-interval (0.05–0.2 s) is used (Fig. 8(a)). The false
witching that occurs with the proposed method is of shorter duration in comparison to the other methods. This can be
bserved in the relative rise of the MSC errors in Fig. 8(b) in comparison to Fig. 7(b) for decision interval in the range
.05–0.2 s.

The difference between the two proposed methods, as discussed in Section 4.2.2, is shown in Fig. 8, where false
witching occurs for decision-intervals of 0.05–0.2 s. The Bin-Seq method has a slight advantage over the Binomial
ethod in the number of false speaker switches, as displayed in Fig. 8(a). This is expected because the Bin-Seq score

s based on a sequence of observations. Thus when more information from the past is integrated into the decision, it
akes more time for the dominance of a speaker to dissipate or to build up. In case of a transient, its duration is too
hort for building up speech activity that would indicate dominance. The same sequential processing causes a delay in
witching back to the actual dominant speaker, as exhibited in Fig. 8(b) by the higher value of the MSC error.

In Fig. 9 we present a qualitative comparison in the presence of transient noise. The proposed method is compared to
he POWER and two VAD based identification methods, Ramirez and GARCH. The decision interval in this comparison
s 0.3 s. In general, it is noticeable that the algorithms we are comparing to are more responsive to a dominant speaker
witch. This is due to the instantaneous nature of their scores. This responsiveness causes false switching to occur
hen there is a significant rise in energy on another channel, disregarding the cause for this rise. For the proposed
ethod, the use of long-term information facilitates distinction between speech and transient audio occurrences.
The third experiment is a qualitative experiment where we compare the algorithms on a segment of a real 5 channel

ultipoint conference depicted in Fig. 10. On this segment, only channels 2 and 4 contain speech. Channel 1 contains
high level of stationary noise and some crosstalk from the other channels. Channels 3 and 5 contain only crosstalk

rom other channels. The y axis in Fig. 10 was scaled to the amplitude of the signals in the channel. Taking the maximal
ignal amplitude in channel 2 as a reference 1, the maximal signal amplitudes in channels 1, 3, 4 and 5 are 0.4, 0.5, 0.5
nd 0.1, respectively. In this experiment, the proposed method was compared to the POWER, RAMIREZ and SOHN
ethods.
The proposed method switches correctly from channel 2 to channel 4. It ignores a high energy transient that occurs

uring the dominant speech burst in channel 4. From channel 4, the proposed algorithm switches back to channel 2 and

tays on this channel. It remains on the dominant speaker in spite of an utterance of the words “yes yes” on channel 4
etween 15th and 16th seconds. It also ignores a noise transient on channel 3 on the 17th second of the conference. Thus
he proposed method behaves according to the requirements stated in Section 2. The POWER, RAMIREZ and SOHN

ethods, on the other hand, switch frequently to channel 1 that contains stationary noise, during the first dominant
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Fig. 7. Evaluation of the algorithms in the task of switching to the dominant speaker in the presence of stationary noise. The test data of this experiment consists of speech bursts concatenated
such that each burst causes a speaker switch. The proposed methods are denoted by Binomial and Bin-Seq: (a) number of false speaker switches; (b) mid sentence clipping.
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Fig. 8. Synthetic experiment with a presence of transient noise: (a) false speaker switches; (b) mid sentence clipping.
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Fig. 9. Results of dominant speaker identification, for a decision-interval of 0.3 s: (a) dominant speaker identification by the proposed method; (b) dominant speaker identified by POWER method;
(c) dominant speaker selected by the method based on Ramirez VAD; (d) dominant speaker selected by the method based on GARCH VAD; the decision of the algorithm is marked by the higher
solid bold line and the hand marked decision is marked by the low dashed line.
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Fig. 10. Experimental results on a real 5 channel multi-point conference for a decision interval of 0.4 s; (a) dominant speaker is selected by the proposed method; (b) dominant speaker is selected
by the POWER method; (c) dominant speaker is selected by the RAMIREZ method; (d) dominant speaker is selected by the SOHN method. The decision of the algorithm is marked by the high
solid line and the hand marked decision is marked by the low dashed line.
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speech burst in channel 2. They also switch to the noisy channels during the dominant speech burst in channel 4 and
throughout the second dominance period in channel 2.

6. Conclusion

We have presented a novel dominant speaker identification method for multipoint videoconferencing. The proposed
method is based on evaluation of speech activity on time intervals of different lengths. The speech activity scores
for the immediate, medium and long time-intervals are evaluated separately for each channel. Then, the scores are
compared and the dominant speaker in a given time-frame is identified based on the comparison. We proposed two
approaches for the score evaluation method. A single observation based approach, for which the scores enable a faster
reaction of the identification algorithm to speaker switches. In the second approach, the score is based on a sequence
of observations. This makes the algorithm more robust to transient audio occurrences, but is slower in responding to
changes. The information from time intervals of different lengths enables the proposed method to distinguish between
speech and non-speech transient audio occurrences. Experimental results have demonstrated the improved robustness
of the proposed method to transient audio interferences and frequent speaker switching in comparison to other speaker
selection methods.
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