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Abstract—Circular differential microphone arrays (CDMAs)
facilitate compact superdirective beamformers whose beampat-
terns are nearly frequency invariant. In contrast to linear differ-
ential microphone arrays where the optimal steering direction is
at the endfire, CDMAs provide perfect steering for all azimuthal
directions. Herein, we extend the traditional symmetric model
of DMAs and establish an analytical asymmetric model for
N th-order CDMAs. This model exploits the circular geometry
to eliminate the inherent limitation of symmetric beampatterns
associated with a linear geometry and allows also asymmetric
beampatterns. This new model is then used to develop asymmet-
ric versions of two optimal commonly used beampatterns namely
the hypercardioid and the supercardioid. Experimental results
demonstrate the advantages of the asymmetric model compared
to the traditional symmetric one, when additional directional
constraints are imposed. The proposed model yields superior
performance in terms of white noise gain, directivity factor, and
front-to-back ratio, as well as more flexible design of nulls for
the interfering signals.

Index terms— Circular differential microphone arrays,
asymmetric beampatterns, broadband beamforming, hypercar-
dioid, supercardioid.

I. INTRODUCTION

Differential microphone arrays (DMAs) refer to arrays that
combine closely spaced sensors to respond to the spatial
derivatives of the acoustic pressure field. These small-size ar-
rays yield nearly frequency-invariant beampatterns. Moreover,
DMAs include the well-known superdirective beamformer [1],
[2] as a particular case. Therefore, DMAs have attracted much
research interest in recent years.

DMAs first appeared in the literature in the 1930’s, designed
to respond to the spatial derivatives of an acoustic pressure
field [3], and later were implemented using omnidirectional
pressure microphones [4]. These early fixed implementations
had a prominent limitation that once they were designed and
produced, their properties cannot be changed. The modern
concept of DMAs employs pressure microphones, and digital
signal processing techniques are used to obtain desired direc-
tional responses [5]–[9]. Based on the modern concept, several
works on DMAs appeared during the last two decades. Buck
[10], and Derkx and Janse [11] analyzed the performance of
the first-order design under array imperfections, and presented
solutions for sensors calibration. First- and second- order
adaptive DMAs based on fullband as well as on subband
algorithms were introduced and examined by Teutsch and Elko
[12]. De Sena et al. [13] proposed a general approach to the
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design of directivity patterns of higher-order DMAs. In [14] a
more general approach is proposed for the design of DMAs,
which ignores the traditional differential structure of DMAs
and develops broadband frequency-domain DMAs up to any
order from a signal processing perspective. Robust frequency-
domain DMAs have been presented by Zhao et al. [15], and
Pan et al. [16]. More recent work on DMAs can be found in
[17]–[20].

Most of the work on DMAs deals with a linear array
geometry. The geometry of microphone arrays plays an im-
portant role in the formulation, solution, and performance
of the algorithms. The selection of the geometry, however,
depends heavily on the application requirements. For example,
in devices like smartphones, tablet PCs, and smart televisions,
a linear geometry is preferable as this type of arrays can be
easily integrated into the devices. But linear arrays may not
have the same response at different directions as shown in [21].
In applications like teleconferencing and 3D sound recording
where the signal of interest may come from any direction, it is
necessary for the microphone array to have similar, if not the
same response from one direction to another. In such cases,
circular arrays are advantageous.

Design schemes of circular arrays can be classified into
two main categories. The first category relies on narrow-
band methods for the design of frequency-varying beampat-
terns [22]–[28]. The second category incorporates methods
that produce frequency-invariant beampatterns [29]–[32]. A
general approach for the design of frequency-invariant broad-
band beamformers is to solve an optimization problem which
enforces several constraints in the frequency domain, such as
frequency-invariant beampattern either in all angular directions
or only in specific directions like the mainbeam direction.
Other constraints may be imposed to ensure an adequate
performance level such as maximum white noise gain (WNG).
Recently, Benesty et al. [33] presented a study of the most
basic concepts and fundamental techniques used in the design
and implementation of different orders of circular differential
microphone arrays (CDMAs). In [34], we introduced a time-
domain design for first-order CDMAs.

Existing works on DMAs, for linear or circular geometry,
consider only the case of symmetric beampatterns, which is
an inherent property of the linear geometry and confines the
design process by some aspects. For linear arrays, a symmetric
beampattern means that the beampattern is symmetric with
respect to the axis of the array. Such a symmetry is not re-
quired in different array geometries like the circular geometry,
thus, removing this requirement may lead to a substantial
performance improvement. We term such beampatterns as
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asymmetric beampatterns.
In this paper, we derive an analytical model for asymmetric

CDMAs which includes also the traditional symmetric model
as a particular case. We begin with an extension of the well-
known analytical expression for the directivity pattern of the
traditional DMAs, to a generalized expression which supports
also the asymmetric case. Next, we derive asymmetric versions
for two popular directivity patterns usually applied in the con-
text of microphone arrays, namely the hypercardioid and the
supercardioid which are designed to maximize the directivity
factor (DF) and the front-to-back ratio (FBR), respectively
[6]. Originally, both directivity patterns were developed for
the symmetric framework as unconstrained versions, i.e., no
directional constraints were imposed except the distortionless
constraint in the desired source direction. Herein, we derive
constrained versions where additional directional attenuation
constraints are imposed. For that case, the asymmetric design
achieves better performance with respect to the traditional one,
since it enables more flexible design. As expected, the solu-
tions for the asymmetric design are reduced to the solutions
presented in [6] where no additional directional attenuation
constraints are imposed.

We should note that an asymmetric design of CDMAs
was already presented in [33, ch.6] but only for the case
of a superdirective beamformer with a single distortionless
constraint in the desired source direction. Herein, we present
a more general framework for asymmetric design of CDMAs,
which is based on the analytical proposed model of the
asymmetric beampattern, and enables to derive analytical
expressions for both the asymmetric hypercardioid and the
supercardioid directivity patterns as well as other general
directivity patterns. Yet, for the particular case of optimizing
the DF under the distortionless constraint, both solutions are
consolidated.

The frequency-invariant beampattern produced by the pro-
posed analytical asymmetric model is then used as the input
desired beampattern for a general practical design of N th-
order CDMAs, which enables perfect steering to any azimuthal
direction. We show that the solution design proposed in
[33], which is based on symmetry, is a particular case of
the proposed practical design. In the simulations section, we
demonstrate the main advantages of the asymmetric model
and compare it to the symmetric one. It is shown that the
asymmetric model achieves better performance in terms of
WNG, DF, and FBR due to a more flexible design, which takes
into account the requirements regarding the null directions.
Furthermore, additional degrees of freedom are available for
a given number of null directions which can be utilized to
choose CDMAs of reduced orders with respect to the minimal
order in the symmetric model, and improve robustness to array
imperfections.

The paper is organized as follows. In Section II, we for-
mulate the signal model. In Section III, we concisely present
the traditional symmetric model of N th-order CDMAs. In
Section IV, we derive asymmetric beampatterns for CDMAs
and also develop the equivalent asymmetric hypercardioid and
supercardioid. In Section V, we present an N th-order CDMA
practical design for a given number of sensors. Section VI
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Fig. 1: Illustration of a uniform circular microphone array in
the Cartesian coordinate system.

demonstrates some design examples.

II. SIGNAL MODEL

We consider an acoustic source signal, X(ω), with ω being
the angular frequency, that propagates in an anechoic acoustic
environment at the speed of sound, i.e., c ≈ 340 m/s,
and impinges on a uniform circular array (UCA) of radius
r, consisting of M omnidirectional microphones, where the
distance between two successive sensors is equal to

δ = 2r sin
( π
M

)
≈ 2πr

M
. (1)

The direction of the source signal to the array is denoted by
the azimuth angle θs. We assume that the center of the UCA
coincides with the origin of the Cartesian coordinate system
and serves also as the reference. Azimuth angles are measured
anti-clockwise from the x axis, i.e., at θ = 0◦, and sensor 1 of
the array is placed on the x axis, i.e., at θ = 0◦, as illustrated
in Fig. 1.

Assuming the far-field propagation, the time delay between
the mth microphone and the center of the array is

tm(θs) =
r

c
cos(θs − ψm), m = 1, 2, ...,M, (2)

where

ψm =
2π(m− 1)

M
(3)

is the angular position of the mth array element. The mth
microphone signal is given by

Ym(ω) = ej$ cos(θs−ψm)X(ω) + Vm(ω), m = 1, ...,M, (4)

where $ = ωr
c , j =

√
−1 is the imaginary unit, and Vm(ω)

is the additive noise at the mth microphone. In a vector form,
(4) becomes

y(ω) = [Y1(ω) Y2(ω) · · · YM (ω)]
T

= d (ω, θs)X(ω) + v(ω), (5)
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where the superscript T denotes the transpose operator,
d (ω, θs) is the steering vector at θ = θs, i.e.,

d (ω, θs) =
[
ejωt1(θs) · · · ejωtM (θs)

]T
=
[
ej$ cos(θs−ψ1) · · · ej$ cos(θs−ψM )

]T
, (6)

the vector v(ω) is defined similarly to y(ω), and the acoustic
wavelength is λ = c/f . According to the model of the DMAs,
it is assumed that the element spacing, δ, is much smaller than
the wavelength of the incoming signal, i.e,

δ � λ, (7)

or, equivalently,

$ �M, (8)

in order to approximate the differential of the pressure signal.

III. TRADITIONAL SYMMETRIC NTH-ORDER CDMAS

Traditional N th-order CDMAs were designed to have a
symmetric directivity pattern. The directivity pattern describes
the sensitivity of the beamformer to a plane wave impinging
on the UCA from the direction specified by the pair (θ, φ)
where θ is the azimuth and φ is the elevation. In this paper,
we confine ourselves to the 2D case of φ = π/2, i.e., the plane
where the UCA is laid. The 3D case is a subject to a future
research. For the 2D case, the frequency-invariant beampattern
of an N th-order DMA is given, for any steering angle θs, as [6]

BN (θ − θs) =
N∑
n=0

aN,n cos
n(θ − θs), (9)

where {aN,n}Nn=0 are real coefficients. The beampattern
BN (θ − θs) is an even function as it is a power series of
the cosine function.

Modern N th-order DMAs have a time-domain hierarchical
delay-and-subtract structure and originally proposed for the
linear geometry [6]. In general, the response of an N th-order
DMA is proportional to a linear combination of signals derived
from spatial derivatives from order 0 to (including) order N
and corresponds to the N th level in the hierarchical structure.

Traditional designs of DMAs focused mainly on the linear
geometry which inherently dictates a symmetric beampattern,
thus (9) was sufficient for the description of frequency-
invariant beampatterns associated with DMAs. Herein, we
introduce an asymmetric model for the directivity pattern of
N th-order CDMAs, which exploits the circular structure and
incorporates both symmetric and asymmetric beampatterns.

IV. ASYMMETRIC BEAMPATTERN FOR CDMAS

In this section, we extend the traditional analytical symmet-
ric beampattern (9) and derive an asymmetric beampattern for
CDMAs, where asymmetry means that the beampattern is not
confined to be symmetric with respect to the steering angle θs,
i.e., in the general case BN (θ−θs) 6= BN (−θ+θs). Later, we
will see that such a generalized model leads to a more flexible
design of CDMAs.

A. Asymmetric Beampattern of N th-Order CDMAs

We start with the simple first-order asymmetric case and
then we generalize it for any desired order, N . First-order
CDMAs can be designed with at least three microphones (the
case of only two microphones is consolidated with the linear
case which was extensively investigated in [14]). The geometry
of first-order CDMAs is an equilateral triangle of radius r and
the sensor spacing is δ = 2r sin(π/3) =

√
3r. The positions

of the three microphones are

ψ1 = 0, ψ2 =
2π

3
, ψ3 =

4π

3
. (10)

Assuming a 2D propagation model (i.e., φ = π/2), the
acoustic propagation field received at each sensor can be
expressed as

p (k, r, θ, ψm) = P0e
−j$ cos(θ−ψm), m = 1, 2, 3, (11)

where P0 is the plane-wave amplitude, and k = ω
c is the wave

number. We may add a complex gain cme−jωτm at each sensor,
sum all the sensors’ outputs, and get the output pressure:

po (k, r, θ) = P0

3∑
m=1

cme
−jωτme−j$ cos(θ−ψm), (12)

where cm is a real number, and τm is a temporal delay added
to the signal acquired by the mth microphone. Without loss
of generality, we assume that P0 = 1, c1 = 1, and τ1 = 0.
Using the approximation that e−x ≈ 1− x, (12) becomes

po (k, r, θ) ≈ 1 + c2 + c3

− jω
3∑

m=1

cm

[
τm +

r

c
cos (θ − ψm)

]
, (13)

where this approximation holds for small values of ωτm and $
in accordance with the DMAs’ model assumptions (7) and (8).
In order to cancel DC components which have no influence on
the shape of the directional response of the array, we impose
c1 + c2 + c3 = 0, leading to c2 + c3 = −1, and define

α1 =

∑3
m=1 cmτm∑3

m=1 cm
(
τm + r

c cosψm
) , (14)

1− α1 =

∑3
m=1 cm

r
c cosψm∑3

m=1 cm
(
τm + r

c cosψm
) , (15)

β1 =

∑3
m=1 cm

r
c sinψm∑3

m=1 cm
(
τm + r

c cosψm
) . (16)

Now we can write the normalized response of the first-order
asymmetric CDMA as

B1 (θ) =
po (k, r, θ)

po (k, r, 0)
= α1 + (1− α1) cos θ + β1 sin θ. (17)

It can be easily noticed that the last expression is a gener-
alization of the well-known first-order DMA response [6].
Thus, the proposed design includes also the symmetric design
as a particular case. It should be noted that although the
normalized response is frequency invariant, the output pressure
(13) includes also a first-order high-pass frequency response,
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which can be compensated by a first-order low-pass filter
[5], [6]. We later see in Section V that by implementing
asymmetric CDMAs using a more general design approach
in the frequency domain, this high-pass response is inherently
compensated.

Note that since we imposed c2 + c3 = −1, (12) can be
rewritten as

po (k, r, θ) = x
[
e−j$ cos(θ−ψ1) − e−jωτ2−j$ cos(θ−ψ2)

]
+ (1− x)

[
e−j$ cos(θ−ψ1) − e−jωτ3−j$ cos(θ−ψ3)

]
,

(18)

where x = −c2. Therefore, (18) can be interpreted as a
weighted sum of the differential of the pressure measured
between sensor 1 and sensor 2 and the differential of the
pressure measured between sensor 1 and sensor 3. In other
words, the first-order output of CDMAs is a linear combination
of two first-order linear DMAs outputs.

The fact that DMAs have a hierarchical multistage structure
[6] implies that the response of N th-order DMAs can be
described as a cascade of first-order responses, i.e., the total
response of N th-order CDMAs is a product of N responses
of first-order DMAs. For example, every two outputs of first-
order DMAs on the first stage are the inputs to another
first-order DMA in the next stage. When a beamformer is
implemented in a multistage way, its beampattern equals the
product of the beampatterns of all the different stages [18].
Therefore, the second-order asymmetric CDMA’s beampattern
can be written as a product of two first-order terms, i.e.,

B2 (θ) =
2∏
i=1

[αi + (1− αi) cos θ + βi sin θ] , (19)

from which we can easily derive the general form of the
second-order asymmetric CDMA:

B2 (θ) = υ0 + υ1 cos θ + υ2 cos
2 θ + υ3 sin θ cos θ + υ4 sin θ,

(20)

where {υi}4i=0 are real coefficients which depend on
{αi, βi}2i=1. Repeating on similar steps, the following general
expressions for the third and fourth orders can be derived,
respectively,

B3 (θ) = ε0 + ε1 cos θ + ε2 cos
2 θ + ε3 cos

3 θ

+ ε4 sin θ cos θ + ε5 sin θ + ε6 sin
3 θ (21)

and

B4 (θ) = η0 + η1 cos θ + η2 cos
2 θ + η3 cos

3 θ + η4 cos
4 θ

+ η5 sin θ cos θ + η6 sin
3 θ cos θ + η7 sin θ + η8 sin

3 θ.
(22)

Based on the last results, we can obtain the N th-order asym-
metric CDMA beampattern with the mainlobe steered to θs:

BN (θ − θs) =
N∑
n=0

ξn cos
n(θ − θs)

+

bN−1
2 c∑

n=0

µn sin
2n+1(θ − θs)

+

bN2 c∑
n=1

ζn cos(θ − θs) sin2n−1(θ − θs), (23)

which is a trigonometric polynomial of power N with 2N
roots. Note that (23) is a general expression for the beam-
pattern which can be reduced to the traditional symmetric
beampattern (9) by setting the coefficients {ζn, µn}n to zero.

In order to prove that (23) is indeed the general theoretical
expression for all possible beampatterns of CDMAs of order
N , we may refer to the Fourier theorem stating that each
function f(θ) ∈ F, where F is the space of continuous
functions in [−π, π], can be represented by the infinite series:

f (θ) =

∞∑
n=0

[an cos(nθ) + bn sin(nθ)] , (24)

where

an =
1

π

∫ π

−π
f (θ) cos (nθ) dθ, n = 0, 1, 2, ... (25)

bn =
1

π

∫ π

−π
f (θ) sin (nθ) dθ, n = 0, 1, 2, ... (26)

Let fN (θ) ∈ FN ⊂ F, where FN is a subspace of all the
continuous functions in [−π, π], which can be represented by
the following finite series:

fN (θ) =

N∑
n=0

[an cos(nθ) + bn sin(nθ)] . (27)

In the Appendix, we show that every function fN (θ) ∈ FN
can also be represented by (23). Actually, we show that the
space of functions specified by (27) is equivalent to the space
of functions specified by (23) for each N . This equivalence
ensures that for an N th-order beampattern, only the basis
functions {cos(nθ), sin(nθ)}Nn=0 are required. Since it is true
for each N and particularly when N →∞, it is obvious that
(23) is the general expression for any N th-order asymmetric
beampattern. Therefore, we can express (23) more compactly
as

BN (θ − θs) =
N∑
n=0

an cos [n(θ − θs)] +
N∑
n=1

bn sin [n(θ − θs)] .

(28)

Note that (28) is a trigonometric polynomial with 2N + 1
coefficients, which implies that at least 2N +1 sensors are re-
quired in order to implement N th-order asymmetric CDMAs,
as will be discussed in Section V. In contrast, the traditional
symmetric beampattern (9) is a trigonometric polynomial with
N + 1 coefficients, which implies that only N + 1 sensors
are required for implementing symmetric N th-order DMAs.
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While this is true for the linear geometry, for the circular
geometry, still at least 2N sensors are required as presented
in [33].

In the next subsections, we develop the equivalent hyper-
cardioid and the equivalent supercardioid optimal patterns for
the case of asymmetric CDMAs. For convenience, we use (28)
instead of (23).

B. Optimal Asymmetric Hypercardioid

The most common directivity patterns in the context of
microphone arrays are the dipole, cardioid, hypercardioid,
and supercardioid, which were obtained via optimization with
respect to various criteria. For example, the hypercardioid was
designed to maximize the DF of the array which is the gain in
signal-to-noise ratio (SNR) for the case of diffuse noise. These
patterns, originally developed for the linear geometry, are
traditionally symmetric with respect to the steering angle, θs.

The proposed analytical model for the asymmetric beam-
pattern of CDMAs (28) can be used to produce several
beampatterns which can be controlled by the adjustment of
its coefficients. In this section, we derive the equivalent asym-
metric hypercardioid, i.e., the beampattern that maximizes the
DF, which is defined as (see for example [35, ch.2])

D =
B2 (θs, φs)

1
4π

∫ 2π

0

∫ π
0
B2 (θ, φ) sinφdφdθ

, (29)

where B (θ, φ) is a 3D beampattern and (θs, φs) specifies the
steering direction. In our study, we are concentrating on the
2D scenario for which the beampattern is a function of only
the azimuthal angle, θ, i.e.,

BN (θ − θs) = B (θ − θs, φ = π/2) , (30)

and (29) is actually the DF for the cylindrical noise field
model. A cylindrical noise field model is often assumed for
scenarios where the reflections from the floor or the ceiling of
the room are negligible. Without loss of generality, we assume
that θs = 0◦. It is obvious that

D−1 =
1

2π

∫ 2π

0

B2N (θ) dθ. (31)

From Fourier Theorem it is known that the basis functions
{cos(nθ), sin(nθ)}∞n=0 that appear in (28) form a complete
orthonormal system, therefore it is straightforward to show
that ∫ 2π

0

B2N (θ) dθ = cTΓhc, (32)

where

c = [a0, a1, ..., aN , b1, ..., bN ]
T (33)

is a vector of length 2N +1 containing the coefficients of the
asymmetric beampattern (28), and the matrix Γh is diagonal
of size (2N +1)× (2N +1), where its diagonal elements are

[Γh]n,n =

{∫ 2π

0
cos2 (nθ) dθ, n = 0, 1, ..., N∫ 2π

0
sin2 [(n−N)θ] dθ, n = N + 1, ..., 2N.

(34)

Calculation of (34) yields the following compact expression:

Γh = πdiag
([

2,1T2N
]T)

, (35)

where diag(x) is a diagonal matrix with the elements of the
vector x on its diagonal, and 12N is a 2N × 1 column vector
with all elements equal to one.

According to (31), maximizing the DF is equivalent to
minimizing (32). Yet, minimizing (32) without any constraints
will obviously lead to the trivial solution c = 0. Therefore, at
least one directional constraint should be imposed, either for
the symmetric design or the asymmetric design, namely the
distortionless constraint:

BN (θs = 0◦) = 1, (36)

which leads to

N∑
n=0

an = 1. (37)

One can see that (37) constrains the coefficients {an}Nn=0 to
each other, but still the coefficients {an}Nn=0 and {bn}Nn=1

are independent by the diagonality of Γh. Thus, the circular
geometry provides additional degrees of freedom in the design
of optimal patterns such as the hypercardioid, which can be
exploited to achieve higher performance when it is desirable
to impose additional directional constraints. In that case, we
can add up to L ≤ 2N attenuation constraints of the form:

BN (θ = θl) = gl, l = 1, 2, ..., L, (38)

where 0 ≤ gl ≤ 1. We formulate these constraints as

Hcc = g, (39)

where Hc is the constraint matrix of size (L+1)× (2N +1).
The vector g of length L+1 contains the coefficients gl, l =
1, 2, ..., L, and a single unity entry satisfying (36).

The optimization problem for the asymmetric hypercardioid
beampattern can be formulated as

min
c

cTΓhc subject to Hcc = g. (40)

Using the method of Lagrange multipliers, we get the follow-
ing closed-form expression:

copt = Γ−1h HT
c

[
HcΓ

−1
h HT

c

]−1
g. (41)

This solution yields the optimal asymmetric hypercardioid
CDMA for a cylindrical noise field. Note that even though we
can add up to 2N constraints, it is obvious that a lower number
of attenuation constraints leads to more flexibility and higher
DF. Specifically, if we add exactly 2N attenuation constraints,
(40) has no meaning and (39) should be solved directly.
Moreover, if no additional constraints except (36) are imposed,
(41) reduces to the solution of the symmetric unconstrained
hypercardioid in [6]. In Section VI-A, two design examples
of a second-order asymmetric hypercardioid are presented and
compared to the symmetric design.
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C. Optimal Asymmetric Supercardioid

In this section, we develop the asymmetric version of the su-
percardioid for CDMAs. The supercardioid pattern maximizes
the FBR of an array [6], which is defined as the ratio between
the directional gain of the microphone to signals propagating
to the front of the microphone relative to signals propagating
to the rear. For a cylindrical noise field, the FBR is defined as

F =

∫ π/2
−π/2 B

2
N (θ) dθ∫ 3π/2

π/2
B2N (θ) dθ

, (42)

where we assume, without loss of generality, that the steering
angle is θs = 0◦. Similarly to the hypercardioid, it can be
shown that ∫ π/2

−π/2
B2N (θ) dθ = cTΓfc (43)

and ∫ 3π/2

π/2

B2N (θ) dθ = cTΓbc, (44)

where the vector c is defined in (33), and the matrices Γf and
Γb are diagonal, with

[Γf ]n,n =

{∫ π/2
−π/2 cos

2 (nθ) dθ, n = 0, 1, ..., N∫ π/2
−π/2 sin

2 [(n−N)θ] dθ, n = N + 1, ..., 2N

(45)

and

[Γb]n,n =

{∫ 3π/2

π/2
cos2 (nθ) dθ, n = 0, 1, ..., N∫ 3π/2

π/2
sin2 [(n−N)θ] dθ, n = N + 1, ..., 2N.

(46)

Similarly to Γh, both Γf and Γb can be expressed in a compact
form as

Γf = Γb =
π

2
diag

([
2,1T2N

]T)
. (47)

Like in the previous case of the hypercardioid, we can add
the linear directional constraints specified by (39) in order to
achieve some benefits from the asymmetric framework. Now
we can formulate the optimization problem which provides the
asymmetric supercardioid beampattern:

max
c

cTΓfc

cTΓbc
subject to Hcc = g. (48)

Rather than solving (48), we solve the equivalent problem:

max
ĉ

ĉT Γ̂f ĉ

ĉT Γ̂bĉ
subject to Ĥcĉ = 0, (49)

where

ĉ =

[
c
−1

]
, Ĥc =

[
Hc g

]
, Γ̂f =

[
Γf 0
0T 0

]
, Γ̂b =

[
Γb 0
0T 0

]
.

(50)
Let D be a null-space matrix of Ĥc (i.e., ĤcD = 0) of size

(2N+2)×(2N+1−L) and rank of 2N+1−L, which contains
2N + 1 − L basis vectors in its columns, and let ĉ = Dc̃.
Note that the matrices DT Γ̂fD and DT Γ̂bD are full-rank even
though Γ̂f and Γ̂b are not full rank since the product matrices

DT Γ̂fD and DT Γ̂bD are of size (2N+1−L)×(2N+1−L)
with a rank of (2N + 1 − L), i.e, full-rank matrices. Thus,
we transform (49) to the following unconstrained optimization
problem [36], [37]:

max
c̃

c̃TDT Γ̂fDc̃

c̃TDT Γ̂bDc̃
. (51)

The solution to (51) is the generalized eigenvector of
DT Γ̂fD and DT Γ̂bD that corresponds to the maximal gen-
eralized eigenvalue, i.e.,

DT Γ̂fDc̃opt = λmaxD
T Γ̂bDc̃opt. (52)

Finally, we reconstruct c from c̃opt.
Similarly to the previous case of the hypercardioid, if no

additional constraints except (36) are imposed, (52) reduces
to the solution of the symmetric unconstrained supercardioid
in [6].

In Section VI-B, two design examples of a third-order
asymmetric supercardioid are presented and compared to the
symmetric design.

The theoretical framework of the asymmetric CDMAs
which has been developed in this section, may provide much
more flexible design of broadband beamformers based on
CDMAs with improved performance level. In the next section,
we present a general framework for a practical implementation
of N th-order asymmetric CDMAs, whose inputs are the
analytical optimal asymmetric beampatterns derived in this
section.

V. PRACTICAL DESIGN FOR ASYMMETRIC CDMAS

In this section, we present a general framework for a
practical implementation of asymmetric CDMAs. One way
to implement CDMAs is by the conventional time-domain
approach [6]. This approach is limited by some aspects like
the flexibility to forming different patterns and the ability to
handle white noise amplification. Instead, we may employ here
a more general approach in the frequency domain as described
in details in [14], [33]. The major advantages of the frequency-
domain design with respect to the traditional time-domain
design are the following. 1) It is easier to design different
patterns by using only the null and attenuation information. 2)
The high-pass response of the time-domain implementation is
inherently compensated by the design in the frequency domain.
3) It enables to apply a minimum-norm approach that can
maximize the WNG with a given number of sensors, i.e., the
frequency-domain framework is suitable for any number of
sensors, while the traditional approach is suitable only for the
case of M = N+1. 4) It is well-known that frequency-domain
processing of broadband signals has several advantages with
respect to time-domain broadband processing by means of
lower computational complexity and high convergence rate
[38], and in some applications, beamforming will serve as a
pre-processing stage followed by a second adaptive processing
stage implemented more efficiently in the frequency-domain
(e.g., de-reverberation, speech enhancement). Due to all these
reasons, we propose to implement asymmetric CDMAs by the
following approach.
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The solutions for the optimal asymmetric hypercardioid
and supercardioid, derived in the previous section, yield the
vector c which is used to build the corresponding theoretical
beampattern (28), which is a trigonometric polynomial with
2N zeros. Recall that during the design of the asymmetric
hypercardioid and the asymmetric supercardioid we impose
in (38) up to L ≤ 2N directional attenuation constraints
denoted by {θl}Ll=1. We use these L directions to the following
processing, and calculate 2N −L additional null directions of
the beampattern, by numerical standard methods of finding
roots. At the end of this process we have the column vector:

θ = [θ1, ..., θ2N ]
T (53)

of length 2N , where these directions are with respect to a
steering angle of θs = 0◦. The next step is to implement the
beamformer with the attenuation directions specified by the
vector θ. Note that the rotation to any different steering angle
is straightforward.

The following design generalizes the derivation of CDMAs
proposed in [33]. The main contribution of [33] is a symmetric
design of CDMAs for the angle θ = 0◦ which can be steered
directly to each of the other sensor angles, ψm, m = 2, ...,M ,
without any change in the properties of the beamformer.
Herein, we present a general asymmetric design which enables
to steer to all azimuthal directions without any change in the
beampattern, WNG, DF, or FBR. This solution coincides with
the solution in [33] for the case of symmetric design and
steering to one of the sensors directions, ψm, m = 1, 2, ...,M ,
therefore the solution proposed in [33] is considered as a
particular case.
N th-order asymmetric CDMAs can be designed with at

least 2N + 1 microphones for the general case where the
steering angle can be each of the azimuthal directions [33].
This is because in the general N th-order design we enforce
2N attenuation constraints and one distortionless constraint.
For the case of symmetric design with steering to ψm, m =
1, 2, ...,M , only 2N microphones are sufficient because the
symmetry constraint enables to reduce the total number of the
attenuation constraints.

In order to design the asymmetric CDMAs, we have to apply
the distortionless constraint in the desired signal direction, θs,
i.e.,

dH (ω, θs)h(ω) = 1, (54)

where

h(ω) = [H1(ω) H2(ω) · · · HM (ω)]
T (55)

is a vector containing the complex weights of the beamformer,
and d (ω, θ) is the steering vector (6). Then, we have 2N
additional directional constraints of the form

dH (ω, θs + θi)h(ω) = νi, i = 1, ..., 2N, (56)

where νi, i = 1, 2, . . . , 2N , are the attenuation parameters,
with 0 ≤ νi ≤ 1, and θi ∈ θ, i = 1, 2, . . . , 2N , with
θ1 6= θ2 6= · · · 6= θ2N , are the corresponding directions
where the attenuations are desired (νl = gl,∀l = 1, ..., L,
and νl = 0,∀l = L + 1, ..., 2N ). Combining these 2N + 1

constraints together, we get the following linear system to
solve

DN,M (ω, θs,θ)h(ω) = ν, (57)

where

DN,M (ω, θs,θ) =


dH (ω, θs)

dH (ω, θs + θ1)
...

dH (ω, θs + θ2N )

 (58)

is a (2N + 1)×M matrix and the vector ν is

ν =
[
1 ν1 ν2 · · · ν2N

]T
. (59)

Practically, it is desired to add a constraint on the squared norm
of the solution vector h(ω), which is inversely proportional to
the WNG and minimizes the objective function

J(h(ω)) = ‖ν −DN,M (ω, θs,θ)h(ω)‖22 + η ‖h(ω)‖22 , (60)

where || · ||2 is `2-norm. The small positive parameter η is
usually set according to the desired WNG, where the WNG
is given by [33]

W [h(ω)] =

∣∣hH (ω)d (ω, θs)
∣∣2

hH (ω)h (ω)
, (61)

which is a measure indicating the array gain in the presence
of uncorrelated white noise. It also indicates the sensitivity of
the array to model mismatch errors [35].

Assuming M ≥ 2N +1, and using the method of Lagrange
multipliers we can obtain the regularized pseudo-inverse solu-
tion:

h(ω) = P†DN,M
(ω, θs,θ)ν, (62)

where

P†X =
[
XHX + ηI

]−1
XH (63)

is the pseudo-inverse of a matrix X, and I is the identity matrix
with the same dimensions as the matrix XHX.

Although (62) depends on frequency and its structure is
different from the traditional time-domain DMAs [6], it indeed
leads to an equivalent implementation of differential beam-
forming with frequency-invariant beampatterns as presented in
[14] for the linear symmetric case, and in [33] for the circular
case. Specifically, the authors of [14] show analytically that
for each ω satisfying the DMAs model assumption (7), the
beampattern obtained by the frequency domain design is very
similar to the theoretical one obtained by the time-domain
design. Moreover, the simulations presented in the next section
support this claim. Therefore, as both the frequency- and time-
domain designs are equivalent, the proposed frequency-domain
design yields a frequency-invariant differential beamformer.

Notice that for a design of beampatterns with multi-
ple nulls in the same directions like dipole and cardioid,
DN,M (ω, θs,θ) becomes singular. In order to overcome this
singularity, we can add constraints on the derivatives of the
steering vector in directions of the multiple nulls. Derivative
constraints are known in the literature and have recently also
been applied to DMAs [39].
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VI. SIMULATIONS

In this section, we demonstrate some of the benefits of the
asymmetric design with respect to the traditional symmetric
one. We start with two examples demonstrating how to design
optimal second-order asymmetric hypercardioid according to
Section IV-B, and optimal third-order asymmetric supercar-
dioid according to Section IV-C. Then, we proceed to present
two more examples of a practical design of CDMAs according
to Section V. The first practical design example is for the
simple case of a first-order asymmetric design, and the second
example is for higher order.

A. An Optimal Second-Order Asymmetric Hypercardioid

Figure 2 shows beampatterns of two design examples for
the second-order asymmetric hypercardioid, obtained by the
calculation of (41). In the first example (a), we choose two
null directions at θ1 = 60◦ and θ2 = 110◦. Three beampatterns
are compared. The first is the asymmetric beampattern (blue
solid line), the second is the corresponding symmetric version
beampattern (black dashed line), i.e., the beampattern obtained
by enforcing the above two null directions plus the symmetry
constraint. The third beampattern is the second-order uncon-
strained symmetric hypercardioid (red circles line) which is
obtained by maximization of the DF without any constraints on
the null directions [6]. The symmetric design achieves slightly
narrower mainbeam but much higher sidelobes with respect
to the asymmetric design and the unconstrained symmetric
design. In the second example (b), we choose two null
directions at θ1 = 120◦, and θ2 = 295◦. Table I shows the
DF (31) obtained by each of the designs for both examples.
One can see that while in the asymmetric design, the DF
approaches the optimal value, the symmetric design achieves
much lower DF with respect to the theoretical upper bound
associated with the unconstrained symmetric design. In both
examples we choose θs = 0◦, yet, the modification to any
direction is straightforward.

TABLE I: Directivity Factor Achieved by Each of the Designs
of a Second-Order Hypercardioid.

D[dB] (a) (b)

Asymmetric 6.22 6.70
Symmetric 2.63 5.50
Unconstrained symmetric 6.98 6.98

B. An Optimal Third-Order Asymmetric Supercardioid

Figure 3 shows beampatterns of two design examples for
the third-order asymmetric supercardioid, obtained by the
calculation of (52). In the first example (a), we choose three
null directions at θ1 = 80◦, θ2 = 120◦, and θ3 = 155◦.
Three beampatterns are compared. The first is the asymmetric
beampattern (blue solid line), the second is the corresponding
symmetric version beampattern (black dashed line), i.e., the
beampattern obtained by enforcing the above three null di-
rections plus the symmetry constraint. The third beampattern
is the third-order unconstrained symmetric supercardioid (red
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Fig. 2: Beampatterns for the second-order asymmetric hyper-
cardioid CDMAs (blue solid line) and its symmetric version
(black dashed line). The red circles line is the second-order
unconstrained symmetric hypercardioid [6]. (a) θ1 = 60◦,
θ2 = 110◦. (b) θ1 = 120◦, θ2 = 295◦.

circles line) which is obtained by maximization of the FBR
without any constraints on the null directions [6]. The sym-
metric design achieves slightly narrower mainbeam but much
higher sidelobes with respect to the asymmetric design and the
unconstrained symmetric design. In the second example (b),
we choose three null directions at θ1 = 75◦, θ2 = 105◦, and
θ3 = 240◦. Table II shows the FBR (42) obtained by each of
the designs in each example. One can see that while in the
asymmetric design, the FBR approaches the optimal value,
the symmetric design achieves much lower FBR with respect
to the unconstrained symmetric design. These examples show
that the proposed asymmetric design achieves superior results
with respect to the symmetric design, as more flexibility
is allowed in the null directions. We now demonstrate two
examples of a practical design of asymmetric CDMAs, based
on what we have presented in Section V.

TABLE II: Front-to-Back-Ratio Achieved by Each of the
Designs of a Third-Order Supercardioid.

F [dB] (a) (b)

Asymmetric 35.0 33.8
Symmetric 29.7 19.8
Unconstrained symmetric 40.6 40.6

C. Asymmetric Implementation of First-Order CDMAs

Herein, we present a design example of a first-order asym-
metric hypercardioid and compare it to the symmetric design.
We choose the radius of the array to be r = 0.75 cm and
M = 3 which leads to a sensor spacing of δ ≈ 1.3 cm. For this
choice of parameters, we get a small value of $ ≈ 0.15�M
justifying the approximation on (13). Let us assume that the
steering angle is θs = 0◦ and we would like to null signals
arriving from θ1 = 95◦. Substituting these constraints into
(39), and solving (41), we get the optimal coefficients vector,
c (33), used to calculate the analytical first-order asymmetric
beampattern (28):

B1 (θ) = 0.261 + 0.738 cos θ − 0.1977 sin θ, (64)
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Fig. 3: Beampatterns for the third-order asymmetric super-
cardioid CDMAs (blue solid line) and its symmetric version
(black dashed line). The red circles line is the third-order
unconstrained symmetric supercardioid [6]. (a) θ1 = 80◦,
θ2 = 120◦, θ3 = 155◦. (b) θ1 = 75◦, θ2 = 105◦, θ3 = 220◦.

which is a first-order trigonometric polynomial with two roots.
The second root is θ2 = 235◦. Figure 4 shows the analytical
beampattern of the first-order asymmetric design (blue solid
line), the symmetric version (black dashed line), i.e., the beam-
pattern for the case that θ1 = 95◦ and θ2 = 265◦, and also the
first-order unconstrained symmetric hypercardioid (red circles
line), which was obtained in [6] for a null at θ1 = 120◦. The
asymmetric design leads to the desired beampattern which is
similar to the unconstrained hypercardioid but with a slight
bias in the azimuth in order to satisfy both the distortionless
and the null constraints. In contrast to the asymmetric design,
the symmetric design achieves a beampattern with a much
wider and higher sidelobe.
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Fig. 4: A first-order asymmetric hypercardioid beampattern
(blue solid line) obtained by (28) and a symmetric beampattern
(black dashed line) obtained by imposing symmetry, for the
case of M = 3 sensors, and desired null at θ1 = 95◦. The red
circles line is the first-order unconstrained hypercardioid [6].

The null directions calculated from (28) are then used to
design the first-order asymmetric CDMA filter vector h(ω)
according to (62), where we used the regularization parameter

η = 10−8. We calculate the designed beampattern defined as

B [h(ω), θ] = hH(ω)d(ω, θ)

=

M∑
m=1

H∗m(ω)ej$ cos(θ−ψm), (65)

where d(ω, θ) is the steering vector (6). While (65) is
the designed beampattern, (28) is the theoretical asymmetric
beampattern.

Figure 5 shows B [h(ω), θ] for the first-order asymmetric
hypercardioid (a)-(b), the symmetric hypercardioid (c)-(d),
and the first-order unconstrained hypercardioid (e)-(f), for
different frequencies and steering angles. The black dashed
line is the designed beampattern (65), while the blue circles
line is the analytical beampattern (28). One can see that the
beampatterns in both cases are frequency-invariant and also
rotation-invariant in the azimuthal axis. These properties make
the circular geometry very suitable to processing broadband
signals which can come from any azimuthal direction.

Note that when the steering angle coincides with one of the
other sensors’ directions (i.e., ψ2, ψ3), the filter coefficients
vector, h(ω) (62) is a permutation of the vector designed for
the case of θs = ψ1 = 0◦. This observation implies that the
proposed solution is general, which includes also the previous
solution [33] as a particular case, as this property is satisfied
also by the solution derived in [33].

Figure 6 shows the WNG and DF as a function of fre-
quency for the practical design of a first-order asymmetric
hypercardioid (blue solid line), the symmetric hypercardioid
(black dashed line), and the first-order unconstrained symmet-
ric hypercardioid (red circles line). The DF for the case of a
cylindrically diffuse noise is calculated similarly to (31) as

D [h(ω)] =
2π∫ 2π

0
|B [h(ω), θ] |2dθ

. (66)

The performance of the asymmetric design is very close
to that of the unconstrained symmetric hypercardioid, while
the non-optimal symmetric design achieves lower DF. The
WNG of all three considered methods has similar behavior
and is quite poor in low frequencies which is a drawback of
DMAs. In the next subsection, we show how a higher-order
asymmetric design can be exploited to achieve better WNG,
and discuss about other ways to improve it even further.

The results presented in this section demonstrate the benefit
of the asymmetric design, which can be exploited for the
circular geometry. For this simple first-order example, it is
obvious that higher DF can be obtained with respect to the
standard symmetric design for a given required null direction.

D. Second-Order CDMAs With More Than Two Imposed Nulls

In this section, we present a design example for the second-
order hypercardioid and exemplify another advantage of the
asymmetric framework. Traditionally, in the N th-order DMAs
symmetric design up to N distinct nulls could be imposed.
Herein, we show that the proposed asymmetric design may
enable more than N imposed nulls for order N . This is an
important property of the asymmetric design as it enables to
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Fig. 5: Beampatterns of the first-order asymmetric hyper-
cardioid using CDMAs with M = 3 sensors for different
steering angles and frequencies: (a) θs = 0◦, f = 600 Hz, (b)
θs = 155◦, f = 2400 Hz. Beampatterns of the corresponding
first-order symmetric design: (c) θs = 0◦, f = 1000 Hz,
(d) θs = 285◦, f = 3200 Hz . Beampatterns of the first-
order unconstrained symmetric hypercardioid: (e) θs = 0◦,
f = 900 Hz, (f) θs = 195◦, f = 2100 Hz . The black dashed
line is the designed beampattern (65), while the blue circles
line is the analytical beampattern (28).

design reduced-order CDMAs for a given number of nulls and
achieve a much larger WNG with respect to the symmetric
design. Note that one of the effective ways to improve the
WNG is by increasing the number of microphones [15],
which is limited in some practical applications. Therefore,
the following example is of a great relevance for real-world
applications.

Let us assume that we are limited only to M = 5
microphones and we are interested to impose three nulls at
θ1 = 60◦, θ2 = 190◦, and θ3 = 275◦. We choose the
radius of the array to be r = 0.75 cm which leads to a
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Fig. 6: DF (a) and WNG (b) vs. frequency for the first-
order asymmetric hypercardioid (blue solid line), the optimal
unconstrained symmetric hypercardioid (red circles line), and
the symmetric design (black dashed line) with M = 3 sensors.

sensor spacing of δ ≈ 0.88 cm. While for the asymmetric
design, five microphones are sufficient, for the traditional
symmetric design, we need at least third-order CDMA and
seven microphones, therefore, for the symmetric design, we
use M = 7 sensors and keep the value of r = 0.75 cm which
leads to δ ≈ 0.65 cm. We compare between the second-order
asymmetric design and the third-order symmetric design.

First, we need to find an expression for the analytical
beampattern for asymmetric hypercardioid with the above
directions by using (41). From (41), we get the optimal
coefficients vector, c (33), and substitute it into the analytical
asymmetric beampattern (28). We get the following second-
order asymmetric beampattern:

B2 (θ) = 0.16 + 0.482 cos θ

+ 0.358 cos(2θ)− 0.13 sin θ − 0.126 sin(2θ), (67)

which is a second-order trigonometric polynomial with four
roots. The fourth root is θ2 = 156◦. Figure 7 shows the
analytical beampattern of the second-order asymmetric design
(blue solid line), the corresponding third-order symmetric
design (black dashed line) which enforces nulls in the above
directions, and the second-order unconstrained symmetric hy-
percardioid (red circles line), which was obtained for nulls at
θ1 = 72◦, and θ2 = 144◦, and their corresponding symmetric
directions. The symmetric design has narrower mainbeam as
it is a third-order design while the asymmetric design is a
second-order design.
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Fig. 7: An asymmetric second-order hypercardioid beampat-
tern (blue solid line) obtained by (28) for the case of three
imposed nulls and M = 5 microphones. Also presented
the corresponding third-order symmetric beampattern (black
dashed line) for the case of M = 7 sensors, and desired nulls
at θ1 = 60◦, θ2 = 190◦, and θ3 = 275◦. The red circles line
is the second-order unconstrained hypercardioid [6].

We can now use these outputs in order to design the
practical second-order asymmetric CDMA using (62), with
the same regularization parameter η = 10−8. Figure 8 shows
the beampattern of the second-order asymmetric hypercardioid
(a)-(b), the third-order symmetric hypercardioid (c)-(d), and
the second-order unconstrained symmetric hypercardioid, for
different frequencies and steering angles. The black dashed
line is the designed beampattern (65), while the blue circles
line is the analytical beampattern (28).

Figure 9 shows the WNG and the DF as a function of fre-
quency for the second-order asymmetric hypercardioid (blue
solid line), the third-order symmetric design (black dashed
line), and the second-order unconstrained symmetric hypercar-
dioid (red circles line). Two more designs are presented for
comparison. The first is the third-order symmetric design for
the case of M = 15 and δ = 0.65 cm, leading to r = 1.57 cm
(magenta diamonds line), and a larger array. The second (green
triangles line) is for the case of M = 20 microphones and the
radius is r = 0.75 cm, meaning that the array is more dense
but of the same size like the original one. As expected, while
the third-order symmetric design achieves higher directivity
by less than 1dB with respect to the other second-order
designs, the second-order design achieves superior WNG of
up to 15dB with respect to the third-order design. Moreover,
comparing the performances of the asymmetric design and the
second-order unconstrained design, the loss in performance is
negligible even though three nulls were imposed instead of
two. Regarding the third-order symmetric design with larger
M , we can see that increasing only the number of sensors
(green triangles line) provides a small improvement, but still
far from the performance of the second-order designs. The
other case of a larger array (magenta diamonds line), yields
better performance, but at the price of a larger physical
array which can be problematic in some scenarios where
strong limitations on the available space exist. Therefore, we
conclude that the proposed asymmetric design can be used to
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Fig. 8: Beampatterns of the second-order asymmetric hyper-
cardioid CDMAs with M = 5 sensors and three imposed
nulls for different steering angles and frequencies: (a) θs = 0◦,
f = 800 Hz, (b) θs = 215◦, f = 1800 Hz. Beampatterns of
the corresponding third-order symmetric design with M = 7
sensors: (c) θs = 0◦, f = 200 Hz, (d) θs = 315◦,
f = 1900 Hz. Beampatterns of the second-order unconstrained
symmetric hypercardioid: (e) θs = 0◦, f = 1300 Hz, (f)
θs = 100◦, f = 3500 Hz. The black dashed line is the
designed beampattern (65), while the blue circles line is the
analytical beampattern (28).

resolve the trade-off between high directivity and robustness
associated with the design of CDMAs.

Note that even the improved results of the asymmetric
design presented in Fig. 9 are inadequate for real scenarios, as
the WNG at low frequencies is much lower. Further improve-
ment of the WNG involves methods which are based either
on increasing the number of sensors [14] or more advanced
regularization methods [35], [40], where the regularization
parameter depends on frequency. We did not include such
improvements, which can be applied either for the asymmetric
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Fig. 9: DF (a) and WNG (b) vs. frequency for the second-order
asymmetric hypercardioid (blue solid line), the second-order
unconstrained symmetric hypercardioid (red circles line) with
M = 5 sensors, and the third-order symmetric design (black
dashed line) with M = 7 sensors. Also presented the third-
order symmetric design (magenta diamonds line) with M = 15
sensors and larger array (element spacing, δ = 0.65 cm), and
the third-order symmetric design (green triangles line) with
M = 20 sensors and the same size of original array (r =
0.75 cm).

Fig. 10: A top view of the beampattern versus frequency
and θ for the asymmetric second-order hypercardioid CDMA
implemented in Section VI-D.

design or the traditional symmetric one, in the scope of
this paper since we have concentrated on the improvement

obtained by the utilization of the asymmetric model rather
than the symmetric one.

Finally, Fig. 10 shows from a top view the beampattern
versus frequency and θ for the asymmetric second-order hy-
percardioid CDMA designed in this subsection. As expected,
the frequency-invariance property can be clearly seen. One
can identify the main lobe and the two dominant sidelobes in
accordance with Fig. 8 (a)-(b), which presents up to azimuthal
rotation, two slices of Fig. 10 corresponding to frequencies
f1 = 800Hz and f2 = 1800Hz.

The examples presented in this section illustrate the benefits
of the proposed asymmetric model to achieve better perfor-
mance and control of the null directions during the design
process of CDMAs.

VII. CONCLUSIONS

We have presented an analytical model for asymmetric
CDMAs, which includes the traditional symmetric model as
a particular case. This model includes the derivation of the
analytical N th-order asymmetric beampattern, and asymmetric
versions of two commonly-used optimal beampatterns, namely
the hypercardioid and the supercardioid. A simple general
N th-order asymmetric practical design in the frequency-
domain for any number of microphones is also presented. Sim-
ulation results demonstrate some of the benefits achieved by
the asymmetric model with respect to the traditional symmetric
model for DMAs. Specifically, the asymmetric model allows
more degrees of freedom which can be exploited to achieve
better performance in terms of WNG, DF, and FBR. Moreover,
for a given number of desired null directions, the asymmetric
model may allow reduced order of CDMAs with respect to the
symmetric model leading to an improved robustness to array
imperfections. Therefore, this concept is of a great importance
for some real-world CDMAs based beamforming applications
since it allows smaller and more robust designs with respect
to the regular symmetric design.

APPENDIX
PROOF OF THE EQUIVALENCE BETWEEN (23) AND (28)

In order to prove the equivalence, we may use the formula:

sin(Nθ) =

N∑
k=0

(
N

k

)
cosk θ sinN−k θ sin

[
(N − k)π

2

]
,

(68)

which can be obtained from Euler Formula and the Binomial
theorem. We consider the following four cases:

Case 1: N and k are both even. Thus, N − k = 2l is also
even and l is an integer number. In that case, the coefficient
of each term in (68) is

sin

[
(N − k)π

2

]
= sin

[
(2l)π

2

]
≡ 0. (69)

Case 2: N and k are both odd. Thus, N − k = 2l is even.
In that case we also get that each term in (68) is equal to zero.
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Case 3: N is even and k is odd. Thus, N − k is also odd.
In that case:

cosk θ sinN−k θ = cos θ cosk−1 θ sinN−k θ

= cos θ
(
cos2 θ

) k−1
2 sin θ

(
sin2 θ

)N−k−1
2

= cos θ
(
1− sin2 θ

) k−1
2 sin θ

(
sin2 θ

)N−k−1
2

= cos θ sin θPN−2
2

(
sin2 θ

)
= cos θ sin θ

(
p0 + p1 sin

2 θ+

p2 sin
4 θ + ...+ pN−2

2
sinN−2

)
= cos θ

(
p0 sin θ + p1 sin

3 θ+

p2 sin
5 θ + ...+ pN−2

2
sinN−1 θ

)
, (70)

where Pα (x) is a polynomial in x of degree α.
Case 4: N is odd and k is even. Thus, N − k is also odd.

In that case:

cosk θ sinN−k θ =
(
1− sin2 θ

) k
2 sinN−k θ

= P k
2

(
sin2 θ

)
sin θPN−k−1

2

(
sin2 θ

)
= sin θPN−1

2

(
sin2 θ

)
= p0 sin θ + p1 sin

3 θ+

p2 sin
5 θ + ...+ pN−2

2
sinN θ. (71)

From (70) and (71), one can see that all the terms required
to express sin (Nθ) are exactly the terms at the second and
third summations of (23).

Regarding the terms cos(Nθ). It is well known that

cos(Nθ) = TN (cos θ), (72)

where TN (·) is the N th Chebyshev polynomial of the first
kind [41], which has the recurrence relation:

TN+1(cos θ) = 2 cos θ × TN (cos θ)− TN−1(cos θ), (73)

with

T0(cos θ) = 1, T1(cos θ) = cos θ. (74)

Thus, cos(Nθ) can be expressed as a sum of powers of
cos θ, which is exactly the terms at the first summation of
(23). Therefore, we can conclude that (23) and (28) are both
equivalent for all N .
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