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Introduction

Identification of systems is a fundamental problem in many
practical applications, including acoustic echo cancellation,
beamforming and dereverberation.

x(n) +

ξ(n)

d(n)
y(n)φ(·)

y(n) = {φx} (n) + ξ(n) = d(n) + ξ(n)
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Introduction (cont.)

System identification problem:

Given {x(n), y(n)}, construct a model and select its parameters
so that the model output ŷ(n) best estimates the signal y(n).

x(n) +

ξ(n)

d(n)
y(n)φ(·)

Model

⇓
ŷ(n)

estimation
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Time-domain identification

Assume the model output depends linearly on its coefficients:

ŷ(n) = xT (n)θ

Batch- and adaptive-estimation approaches are employed:

θ̂LS =
(

XHX
)

−1
XHy

θ̂MSE =
[

E
{

x(n)xT (n)
}]

−1
E {x(n)y(n)}

θ̂LMS(n + 1) = θ̂LMS(n) + µe(n)x(n)

When dimθ is large, time-domain approaches suffer from
extremely high computational complexity and slow convergence.
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Acoustic echo cancellation

x(n)
+

−

ξ(n)

d(n)

y(n)

Echo-Path
Estimate

ŷ(n)

Echo Path
far-end

near-end

far-end

to
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Subband identification

Alternatively, subband (multirate) techniques are used for
improved system identification.

Computational efficiency and improved convergence rate is
achieved due to processing in distinct subbands.

x(n)

S
T

F
T

+

+ IS
T

F
T

−

−

·

·

·

·

·

·

·

·

·

·

·

·

xp,0

xp,N−1
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Short-Time Fourier Transform (STFT)

The STFT representation of a signal x(n) is given by

xp,k =
∑

m

x(m)ψ̃∗(m − pL)e−j 2π
N

k(m−pL)

Ψ̃(m − pL) x(m)

The inverse STFT (ISTFT) is given by

x(n) =
∑

p

N−1
∑

k=0

xp,kψ(n − pL)e j 2π
N

k(n−pL)
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Research objectives

How can the system φ(·) be represented and estimated in
the STFT domain?

The following two cases will be considered:

φ(·) is a linear system.

φ(·) is a nonlinear system.

Yekutiel (Kuti) Avargel Technion - Israel Institute on Technology



Introduction
Linear Systems in the STFT Domain

Nonlinear Systems in the STFT Domain
Summary

Introduction
Crossband Filters Identification
MTF Approximation
Adaptive Control Algorithm

Linear Systems in the STFT
Domain
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Linear system identification

In the linear (time-invariant) case d(n) = h(n) ∗ x(n), where
h(n) is the system impulse response.

To perfectly represent h(n) in the STFT domain crossband
filters between subbands are generally required:

dp,k =

N−1
∑

k′=0

M−1
∑

p′=0

xp−p′,k′hp′,k,k′

where hp′,k,k′ is the crossband filter from frequency-bin k ′ to
frequency-bin k.
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Crossband filters

Crossband filters illustration:
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hp,k,k
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Crossband filters (cont.)

The crossband filter hp,k,k′ depends on both h(n) and the
STFT analysis/ synthesis parameters:

hp,k,k′ =
{

h(n) ∗ φk,k′ (n)
}
∣

∣

n=pL

where

Φk,k′ (θ) = Ψ̃

(

θ −
2π

N
k

)

Ψ

(

θ −
2π

N
k ′

)

and Ψ̃ (θ) and Ψ (θ) are the DTFT of the analysis and
synthesis windows, respectively [Avargel & Cohen, 07’].

For fixed k and k ′, the filter hp,k,k′ is noncausal in general,
with

⌈

N
L

⌉

− 1 noncausal coefficients.
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Crossband filters (cont.)

Practically, relatively few crossband filters need to be considered.

A mesh plot of the crossband filters
|hp,1,k′ | for a synthetic impulse response.

L denotes the decimation factor.

For system identification in the STFT domain:

An estimator for the crossband filters is required.
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Motivation

Utilizing crossband filters between the subbands is inferior to
either fullband adaptive algorithms or subband approaches
that does not include crossband filters [Gilloire et al. 92’].

Most applications disregard the crossband filters in the
subband identification process.

An open question still remains:

Why does the inclusion of crossband filters worsen the performance
of subband system identification algorithms?
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System identification using crossband filters

Let ŷp,k be the resulting estimate of yp,k using only 2K + 1
crossband filters around the frequency-band k:

yp,k =
∑N−1

k′=0

∑M−1

p′=0
xp−p′,k′ h̄p′,k,k′ + ξp,kSystem

ŷp,k =
∑k+K

k′=k−K

∑M−1

p′=0
xp−p′,k′hp′,k,k′Model
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Crossband filters periodicity

hp,0,N−1

hp,0,1

hp,0,0
xp,0

xp,1

xp,3

xp,N−2

xp,N−1

d̂p,0+

(k = 0; K = 1)
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Batch estimation of crossband filters

Let yk =
[

y0,k y1,k · · · yP−1,k

]T
denote a

time-trajectory of ypk at frequency-bin k.

Let θk be the model parameter vector at frequency-bin k,
consisting of 2K + 1 crossband filters.

Let ∆k be a concatenation of the input Toeplitz matrices:

∆k =
[

X(k−K)modN X(k−K+1)modN · · · · · · X(k+K)modN

]

The output signal estimate in a vector form:

ŷk (θk) = ∆kθk
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Least-squares (LS) estimate

LS optimization problem:

θ̂k = arg min
θk

‖yk − ∆kθk‖
2

LS estimate:

θ̂k =
(

∆H
k ∆k

)

−1
∆H

k yk
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MSE analysis

The (normalized) mse is defined by

ǫk(K ) =

E

{

∥

∥

∥
dk − ŷk

(

θ̂k

)
∥

∥

∥

2
}

E
{

‖dk‖
2
}

Assumption 1: xp,k and ξp,k are zero-mean white Gaussian
complex-valued signals with variance σ2

x and σ2
ξ .

Assumption 2: xp,k and ξp,k are statistically independent.
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MSE analysis (cont.)

The mse can be rewritten as:

ǫk(K ) = 1 + ǫ1 − ǫ2

ǫ1 =
1

E
{

‖dk‖
2
}E

{

ξH
k ∆k

(

∆H
k ∆k

)

−1
∆H

k ξk

}

ǫ2 =
1

E
{

‖dk‖
2
}E

{

dH
k ∆k

(

∆H
k ∆k

)

−1
∆H

k dk

}

Under the whiteness and independence assumptions, we get

ǫ1 =
σ2

ξM (2K + 1)

σ2
xP ‖hk‖

2
.
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MSE analysis (cont.)

The mse can be rewritten as:
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1

E
{

‖dk‖
2
}E

{

ξH
k ∆k

(

∆H
k ∆k

)

−1
∆H

k ξk

}

ǫ2 =
1

E
{

‖dk‖
2
}E

{

dH
k ∆k

(

∆H
k ∆k

)

−1
∆H

k dk

}
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2
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MSE analysis (cont.)

Assumption 3: xp,k is variance-ergodic:

1

P

P−1
∑

p=0

xp,kx∗

p+s,k′ ≈ E
{

xp,kx
∗

p+s,k′

}

.

Consequently,
(

∆H
k ∆k

)

m,ℓ
≈ Pσ2

xδ(ℓ− m) .

and ǫ2 reduces to

ǫ2 =
1

σ4
xP

2 ‖hk‖
2
hH

k E
{

∆H
k ∆̃k∆̃

H
k ∆k

}

hk
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MSE analysis (cont.)

Let η = σ2
x/σ

2
ξ denote the SNR. Then, we obtain

MMSE in the k-th frequency bin:

ǫk(K ) =
αk(K )

η
+ βk(K )

[Avargel & Cohen, IEEE Trans. Audio, Speech, Language Process., 07’]

αk(K ) ,
M

P
∥

∥h̄k

∥

∥

2
(2K + 1)

βk(K ) , 1 −
M (2K + 1)

P
−

1
∥

∥h̄k

∥

∥

2

2K
∑

m=0

∥

∥h̄k,(k−K+m)modN

∥

∥

2
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MSE analysis (cont.)

Let η = σ2
x/σ
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αk(K ) ,
M

P
∥

∥h̄k

∥

∥

2
(2K + 1)

βk(K ) , 1 −
M (2K + 1)

P
−

1
∥

∥h̄k

∥

∥
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MSE analysis (cont.)

The resulting mmse satisfies

ǫk(K + 1) > ǫk(K ) for η → 0 (low SNR)

ǫk(K + 1) ≤ ǫk(K ) for η → ∞ (high SNR)

Let ηk (K + 1 → K ) denote the SNR-intersection point of the
curves ǫk(K ) and ǫk(K + 1).

ηk (K → K − 1) ≤ ηk (K + 1 → K )

ηk (K + 1 → K ) ∝
1

P

(P is the length of xp,k in frequency-bin k)
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MSE analysis (cont.)

The resulting mmse satisfies

ǫk(K + 1) > ǫk(K ) for η → 0 (low SNR)

ǫk(K + 1) ≤ ǫk(K ) for η → ∞ (high SNR)

Let ηk (K + 1 → K ) denote the SNR-intersection point of the
curves ǫk(K ) and ǫk(K + 1).

ηk (K → K − 1) ≤ ηk (K + 1 → K )

ηk (K + 1 → K ) ∝
1

P

(P is the length of xp,k in frequency-bin k)

SNR

M
S

E

 

 

η
k
(K+1→K)

ε
k
(K)

ε
k
(K+1)

Yekutiel (Kuti) Avargel Technion - Israel Institute on Technology



Introduction
Linear Systems in the STFT Domain

Nonlinear Systems in the STFT Domain
Summary

Introduction
Crossband Filters Identification
MTF Approximation
Adaptive Control Algorithm

Discussion

True System

NM

parameters

Model

(2K + 1)M
parameters

Increasing the number of crossband filters not necessarily
implies a lower steady-state mse in subbands.

As the SNR increases or as more data becomes available,
additional crossband filters can be estimated and a lower
MMSE can be achieved.
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Discussion (cont.)

The expressions derived here are related to the problem of
model order selection (Bias/Variance tradeoff) [Akaike, 74’],

[Rissanen, 78’].

In this case, the model order is determined by the number of
estimated crossband filters.

Selecting the optimal model complexity for a given data set is
a fundamental problem in many system identification
applications.

As the SNR increases or as more data is employable, the
optimal model complexity increases, and correspondingly
additional cross-terms can be estimated to achieve lower mse.
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Discussion (cont.)

The input data length is restricted to enable tracking
capability during time variations in the impulse response.

During fast variations - less crossband filters are useful.
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Discussion (cont.)

The input data length is restricted to enable tracking
capability during time variations in the impulse response.

During fast variations - less crossband filters are useful.

Slow variations:

h
(n

)

hp,k,k−1

hp,k,k

hp,k,k+1

xp,k−1

xp,k

xp,k+1

+ d̂p,k

hp,k,k−2
xp,k−2

hp,k,k+2xp,k+2

p − Iteration number

M
S

E

K = 0
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Discussion (cont.)

The input data length is restricted to enable tracking
capability during time variations in the impulse response.

During fast variations - less crossband filters are useful.

Slow variations:

h
(n
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xp,k−2
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M
S

E
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K = 1
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Discussion (cont.)

The input data length is restricted to enable tracking
capability during time variations in the impulse response.

During fast variations - less crossband filters are useful.
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Discussion (cont.)

The input data length is restricted to enable tracking
capability during time variations in the impulse response.

During fast variations - less crossband filters are useful.
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Discussion (cont.)

The input data length is restricted to enable tracking
capability during time variations in the impulse response.

During fast variations - less crossband filters are useful.
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Discussion (cont.)

The input data length is restricted to enable tracking
capability during time variations in the impulse response.

During fast variations - less crossband filters are useful.

Fast variations:

h
(n

)

hp,k,k−1

hp,k,k

hp,k,k+1

xp,k−1

xp,k

xp,k+1

+ d̂p,k
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xp,k−2

hp,k,k+2xp,k+2

p − Iteration number

M
S

E

K = 0
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Discussion (cont.)

The input data length is restricted to enable tracking
capability during time variations in the impulse response.

During fast variations - less crossband filters are useful.

Fast variations:

h
(n

)

hp,k,k−1

hp,k,k

hp,k,k+1

xp,k−1

xp,k
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+ d̂p,k
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hp,k,k+2xp,k+2

p − Iteration number

M
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Computational complexity

Let Nh and Nx be the lengths of the system impulse response
h(n) and the input signal x(n), respectively.

Complexity of proposed subband approach

OK
SB = O

(

NxN
2
h

N (2K + 1)2

L3

)

Complexity of fullband approach

OFB = O
(

NxN
2
h

)

For N = 256, L = 0.5N, Nh = 1500 and K = 4 computational
cost is reduced by a factor of 100.
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Experimental results

White Gaussian signals (k = 1):
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Experimental results (cont.)

Acoustic echo cancellation application:

x(n) is a speech signal and the local disturbance ξ(n)
consists of a zero-mean white Gaussian local noise.

Performances are evaluated using the echo-return loss
enhancement (ERLE):

ERLE(K ) = 10 log
E
{

d2(n)
}

E
{

(d(n) − ŷK (n))2
}

where ŷK (n) is the inverse STFT of the estimated echo signal

using 2K + 1 crossband filters.
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Experimental results (cont.)

Acoustic echo cancellation application:
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The multiplicative transfer function (MTF)
approximation

A widely-used approach to avoid the crossband filters is to
approximate the transfer function as multiplicative in the
STFT domain.

A relatively large analysis-window length (N) is assumed.

Assumption: ψ̃(n − m) h(m) ≈ ψ̃(n) h(m)

Approximation: dp,k ≈ hk xp,k (hk ,
P

m h(m)e
−j 2π

N
mk)
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The MTF approximation (cont.)

The MTF approximation becomes more accurate as the
analysis window length (N) increases.

Ψ̃(n− pL) x(n)

h(n)
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The MTF approximation (cont.)

However, in many applications, h(n) is relatively long.

Can we correspondingly increase the analysis window length?

Ψ̃(n− pL) x(n)

h(n)
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The MTF approximation (cont.)

However, in many applications, h(n) is relatively long.

Can we correspondingly increase the analysis window length?

Ψ̃(n− pL)
x(n)

h(n)
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Motivation

x(n) has finite length =⇒ a fewer number of observations in
each frequency bin become available with increasing N.

Trade-off:

↑ N =⇒ More accurate approximation
↓ N =⇒ Smaller variance of the system estimate

[Avargel & Cohen, IEEE Signal Process. Lett., 07’]

The mse does not necessarily improve by increasing the length
of the analysis window.

There may exist an optimal window length that achieves the
mmse.
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Batch estimation of the MTF

The MTF approximation can be written in a vector form as

ŷk (hk) = xk hk

LS estimate:

ĥk = arg min
hk

‖yk − xk hk‖
2 =

xH
k yk

xH
k xk

The (normalized) mse is defined by

ǫ =

∑N−1
k=0 E

{

∥

∥

∥
dk − ŷk

(

ĥk

)∥

∥

∥

2
}

∑N−1
k=0 E

{

‖dk‖
2
}
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MSE analysis

Let η = σ2
x/σ

2
ξ denote the SNR.

The mmse obtainable by the MTF approximation:

ǫ = ǫN + ǫP

where ǫN = 1 − a and ǫP = 1
P

(b/η − c)

[a ,b and c depend on h(n) and ψ̃(n)]

[Avargel & Cohen, IEEE Signal Process. Letters, 07’]

ǫN is attributable to using a finite-support analysis window
=⇒ ǫN(N → ∞) = 0.

ǫP is a consequence of restricting the length of the input
signal =⇒ ǫP(P → ∞) = 0.
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Discussion

Theoretical MSE curves for a 0 dB SNR:
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ǫN is a monotonically decreasing function of N, while ǫP is a
monotonically increasing function.

Yekutiel (Kuti) Avargel Technion - Israel Institute on Technology



Introduction
Linear Systems in the STFT Domain

Nonlinear Systems in the STFT Domain
Summary

Introduction
Crossband Filters Identification
MTF Approximation
Adaptive Control Algorithm

Optimal window length

The total mse ǫ may reach its minimum value for a certain optimal
window length N∗.

N∗ = arg min
N
ǫ

We show that...

As the SNR or the input signal length increases, a longer analysis
window should be used to make the MTF approximation valid and
the variance of the MTF estimate reasonably low.
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Experimental results

(a) Nx is 3 seconds
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Experimental results (cont.)

(b) SNR is −10 dB
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Adaptive Identification: Cross-MTF

A new model is proposed to improve the MTF approach.

The cross-MTF approximation:

ŷp,k =

k+K
∑

k′=k−K

hk,k′xp,k′

[Avargel & Cohen, IEEE Trans. Audio Speech Lang. Process., 08’]

Estimation of additional cross-terms results in a slower
convergence, but improves the steady-state mse.

We propose a new algorithm that adaptively controls the number
of cross-terms to achieve the mmse at each iteration.
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Experimental results (adaptive control)

White Gaussian signals
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Experimental results

Acoustic echo cancellation application:
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Nonlinear Systems in the STFT
Domain
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Nonlinear system identification

So far, linear models have been considered:

In many real-world applications, the considered systems exhibit
certain nonlinearities that cannot be sufficiently estimated by
conventional linear models.

In acoustic echo cancellation applications, nonlinearities are
introduced by the loudspeakers and their amplifiers.
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Nonlinear acoustic echo cancellation
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Volterra filters

A popular and widely-used nonlinear system representation is
the Volterra filter.

The Volterra series was developed in 1887 by Vito Volterra.

A Volterra series denotes a nonlinear time-invariant operation,
which can be regarded as a Taylor series expansion with
memory.
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Volterra filters (cont.)

qth-order Volterra filter:

d(n) =

q
∑

ℓ=1

dℓ(n)

dℓ(n) =

Nℓ−1
∑

m1=0

· · ·

Nℓ−1
∑

m
ℓ
=0

hℓ(m1, . . .mℓ
)

ℓ
∏

i=1

x(n − mi)

where dℓ(n) denotes the ℓth-order homogeneous Volterra filter, and
hℓ(m1, . . .mℓ

) is the ℓth-order Volterra kernel.

Nℓ represents the memory length of each kernel.
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Existing Approaches

Nonlinear system identification using Volterra filters aims at
estimating the Volterra kernels based on input output data:

Noisy observations: y(n) = d(n) + ξ(n).

Volterra-filter estimation methods are divided into two groups:

Time-domain approaches - aims at estimating the Volterra
kernels.

Frequency-domain approaches - aims at estimating the
Volterra transfer functions.
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Time domain approaches

Linear dependency: The Volterra filter output is given by

d(n) = hTx(n)

where h consists of the Volterra kernels, and x(n) is the
corresponding input vector.

Linear batch methods and adaptive filtering algorithms are
traditionally used.

Batch estimation [Ljung, 78’], [Nowak, 98’], [Glentis, 99’]

ĥMSE=
[

E
{

xT (n)x(n)
}]

−1
E {x(n)y(n)}

ĥLS=
(

XTX
)

−1
Xy
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Time domain approaches (cont.)

Adaptive estimation [Kou & Powers, 85’], [Glentis, 99’], [Guerin, 03’]

LMS: ĥ(n + 1) = ĥ(n) + µx(n)
[

y(n) − ĥ(n)T x(n)
]

Drawbacks:
The Volterra model suffer from severe ill-conditioning =⇒
difficult to estimate from short/noisy data.
Extremely high computational cost for nonlinear systems
with large memory length. Number of parameters:

Q
∑

ℓ=1

(

Nℓ + ℓ− 1
ℓ

)

Slow convergence of adaptive Volterra filters due to the large
number of parameters and the correlated input vector.

Yekutiel (Kuti) Avargel Technion - Israel Institute on Technology



Introduction
Linear Systems in the STFT Domain

Nonlinear Systems in the STFT Domain
Summary

Introduction
Existing Approaches
Representation in the STFT Domain
Nonlinear Undermodeling Error

STFT representation of nonlinear systems

Main goal:

To introduce a new nonlinear model in the STFT domain for
improved nonlinear system identification.

Why should nonlinear systems be modeled in the STFT
domain?

Computational cost may be reduced due to the decimation factor
of the STFT =⇒ nonlinear system with large memory length can
be estimated.

An STFT-based nonlinear model may be combined with efficient
algorithms already implemented in the STFT domain,
e.g., crossband filters for the linear kernel representation.
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Volterra representation in the STFT domain

Without loss of generality, the quadratic case is considered.

A second-order Volterra filter:

d(n) =

N1−1
∑

m=0

h1(m)x(n − m)

+

N2−1
∑

m=0

N2−1
∑

ℓ=0

h2(m, ℓ)x(n − m)x(n − ℓ)

, d1(n) + d2(n)

h1(m) and h2(m, ℓ) are the linear and quadratic Volterra

kernels, respectively.
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Volterra representation in the STFT domain (cont.)

Applying the STFT to d2(n) we obtain

d2;p,k =

N−1
∑

k′,k′′=0

∑

p′,p′′

xp−p′,k′xp−p′′,k′′cp′,p′′,k,k′,k′′

[Avargel & Cohen, submitted to IEEE Trans. Signal Process.]

For a given frequency-bin index k, the temporal signal d2;p,k

consists of all possible combinations of input frequencies taken
two at a time.

The contribution of each frequency couple
{k ′, k ′′| k ′, k ′′ ∈ {0, . . . ,N − 1}} to the output signal at
frequency bin k is given as a Volterra-like expansion with
cp′,p′′,k,k′,k′′ being its quadratic kernel.
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Volterra representation in the STFT domain (cont.)
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xp−p′,k′xp−p′′,k′′cp′,p′′,k,k′,k′′

[Avargel & Cohen, submitted to IEEE Trans. Signal Process.]

For a given frequency-bin index k, the temporal signal d2;p,k

consists of all possible combinations of input frequencies taken
two at a time.

The contribution of each frequency couple
{k ′, k ′′| k ′, k ′′ ∈ {0, . . . ,N − 1}} to the output signal at
frequency bin k is given as a Volterra-like expansion with
cp′,p′′,k,k′,k′′ being its quadratic kernel.
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Volterra representation in the STFT domain (cont.)

The kernel cp′,p′′,k,k′,k′′ is given by

cp′,p′′,k,k′,k′′ =
{

h2(n,m) ∗ φk,k′,k′′(n,m)
}∣

∣

n=p′L, m=p′′L

The DTFT of φk,k′,k′′(n,m) is

Φk,k′,k′′ (ω, η) = Ψ̃∗

(

ω + η −
2π

N
k

)

Ψ

(

ω −
2π

N
k ′

)

Ψ

(

ω −
2π

N
k ′′

)
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Volterra representation in the STFT domain (cont.)
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Figure: The energy of φk,k′,k′′(n,m) for k = 1 and k ′ = 0, as obtained for
different synthesis windows of length N = 256.
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An approximate model

To reduce the model complexity, let us assume that the
analysis and synthesis filters are selective enough with
bandwidths of nearly π/N.

Accordingly, most of the energy of cp′,p′′,k,k′,k′′ is
concentrated in a small region around the index
k ′′ = (k − k ′)modN, such that

d2;p,k ≈
N−1
∑

k′=0

∑

p′,p′′

xp−p′,k′xp−p′′,(k−k′)mod Ncp′,p′′,k,k′,(k−k′)mod N
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An approximate model (cont.)

Extending the so-called cross-multiplicative transfer function
(CMTF) approximation to this case, a kernel cp′,p′′,k,k′,k′′ may
be approximated as purely multiplicative in the STFT domain:

d2;p,k ≈

N−1
∑

k′=0

xp,k′xp,(k−k′)mod Nck′,(k−k′)mod N

We refer to ck′,k′′ as a quadratic cross-term.
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An approximate model (cont.)

Only frequency indices {k ′, k ′′}, whose sum is k or k + N,
contribute to the output at frequency bin k.

A(0, 0)

E(N − 1, 0)

k′ + k′′ = k

k′ + k′′ = k + N

D

B C(0, N − 1)

O
F

HG

k′

k′′
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An approximate model (cont.)

Finally, the proposed model for quadratically nonlinear
systems in the STFT domain is given by:

dp,k =

N−1
∑

k′=0

M−1
∑

p′=0

xp−p′,k′hp′,k,k′

+

N−1
∑

k′=0

xp,k′xp,(k−k′)mod Nck′,(k−k′)modN

[Avargel & Cohen, submitted to IEEE Trans. Signal Process.]

where hp′,k,k′ is a crossband filters, and ck′,(k−k′)mod N is a
quadratic cross-term.
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An approximate model (cont.)

hp,k,k′
−1

hp,k,k′

hp,k,k′+1

xp,k′
−1

xp,k′

xp,k′+1

ck′
−1,k−k′+1

ck′,k−k′
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−1

·

×

·

×
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×
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Figure: Block diagram of the proposed model.
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Batch estimation

Employing the proposed quadratic STFT model, an estimator
for the system output in the STFT domain can be written as

ŷp,k =
k+K
∑

k′=k−K

M−1
∑

p′=0

xp−p′,k′ modNhp′,k,k′ mod N

+

N−1
∑

k′=0

xp,k′xp,(k−k′) modNck′,(k−k′) modN

LS estimate:

θ̂k = arg min
θk

‖yk − Rkθk‖
2
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Experimental results

White Gaussian input signals:

y(n) =
767X
m=0

g1(m)x(n − m) +
767X
m=0

g1(m)x2(n − m) + ξ(n)
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Experimental results (cont.)

Acoustic echo cancellation application:

0 0.2 0.4 0.6 0.8 1 1.2 1.4

(e)

(d)

(c)

(b)

(a)

Time [sec]

A
m

pl
itu
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(a). Loudspeaker

(b). Microphone

(c). Linear (14.5 dB)

(d). Volterra (19.1 dB)

(e). Proposed (29.5 dB)
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Computational complexity

Let r = L/N. Then, the ratio between the Volterra (fullband)
and proposed (subband) complexities is given by

Of

Os
∼ r

(

2N1 + N2
2

)2

[

2N1
(2K+1)

rN
+ N

]2

For instance, for N = 256, r = 0.5 (i.e., L = 128), N1 = 1024,
N2 = 80 and K = 2 the proposed approach complexity is
reduced by approximately 300.

Computational efficiency obtained by the proposed approach
becomes even more significant when systems with long
memory are considered.
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Nonlinear undermodeling error

Is the inclusion of a nonlinear component in the model always
preferable?

Linear

Nonlinear

x(n) ŷ(n)

Employing a purely linear model for nonlinear system
estimation is referred to as nonlinear undermodeling.

Quantifying the nonlinear undermodeling error is of major
importance since in many cases a purely linear model is fitted
to the data.
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Nonlinear undermodeling error

Is the inclusion of a nonlinear component in the model always
preferable?

Linear

Nonlinear

x(n) ŷ(n)

Employing a purely linear model for nonlinear system
estimation is referred to as nonlinear undermodeling.

Quantifying the nonlinear undermodeling error is of major
importance since in many cases a purely linear model is fitted
to the data.
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Nonlinear undermodeling error (cont.)

We investigate the influence of nonlinear undermodeling in the
STFT domain for batch and adaptive estimation schemes,
taking into account:

Noise level (SNR).
Data length.
Power ratio of nonlinear to linear components (NLR).

ŷp,k =

k+K
∑

k′=k−K

M−1
∑

p′=0

xp−p′,k′ mod Nhp′,k,k′ modN

+ γ
N−1
∑

k′=0

xp,k′xp,(k−k′)mod Nck′,(k−k′)mod N

γ ∈ {0, 1} determines whether the nonlinear component is included
in the model structure.
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Nonlinear undermodeling error (cont.)

We investigate the influence of nonlinear undermodeling in the
STFT domain for batch and adaptive estimation schemes,
taking into account:

Noise level (SNR).
Data length.
Power ratio of nonlinear to linear components (NLR).

ŷp,k =

k+K
∑

k′=k−K

M−1
∑

p′=0

xp−p′,k′ mod Nhp′,k,k′ modN

+ γ
N−1
∑

k′=0

xp,k′xp,(k−k′)mod Nck′,(k−k′)mod N

γ ∈ {0, 1} determines whether the nonlinear component is included
in the model structure.
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Batch estimation

The model parameters are estimated off-line:

LS estimate:

θ̂γk = arg min
θk

‖yk − Rγkθk‖
2

=
(

RH
γkRγk

)

−1
RH

γkyk

ǫ0k(K ) - the mse obtained by using only a linear model.

ǫ1k(K ) - the mse obtained by incorporating also a quadratic
component into the model .
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MSE analysis

We derive an explicit expression for the mmse:

ǫγk(K ) =
αγk(K )

η
+ βγk(K )

αγk(K ),
(2K + 1)M

P
+ γ

N/2 + 1

P

βγk(K ), 1 −
(2K + 1)M

P
− ‖hk‖

−2

[

h1(K ) +
σ2

xc(K )

P

]

1

1 + ϕ

−γ

[

1 + N/2 + ‖hk‖
−2

h2

P
+ ϕ

]

1

1 + ϕ

η = σ2
d /σ2

ξ (SNR) ; ϕ = σ2
dQ

/σ2
dL

(NLR) ;

h1 (K ) ,
P2K

m=0




h̄k,(k−K+m)modN




2
; h2 ,

PN−1

k′=0

���h̄0,k,k′

���2 ; c (K ) ,
P4

i=1

P
m∈Li

���c̄m,(k−m) mod N

���2.
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Theoretical MSE curves

What can be verified from the MSE expression?

SNR
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E

 

 

η∗

|∆ǫH (ϕ1) |

|∆ǫL (η) |
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ǫ1k(K)
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|∆ǫH (ϕ2) |
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ǫ1k(K)

(a) NLR = ϕ1 (b) NLR = 0.2ϕ1
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Discussion

ǫ1k(K ) > ǫ0k(K ) for low SNR (η << 1), and ǫ1k(K ) ≤ ǫ0k(K )
for high SNR (η >> 1) =⇒ as the SNR increases, the mse
performance can be generally improved by incorporating
also the nonlinear component into the model (γ = 1).

The stronger the nonlinearity of the system, the larger the
improvement achieved by using the full nonlinear model.

As the nonlinearity becomes weaker, higher SNR should be
considered to justify the inclusion of the nonlinear component.
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Adaptive estimation

The nonlinear model parameters are adaptively estimated:

LMS adaptation:

hk(p + 1) = hk(p) + µLep,kx
∗

Lk(p)

ck(p + 1) = ck(p) + µQep,kx
∗

Qk(p)

The step-size µQ controls the nonlinear undermodeling

hk(p)

xp,k−K

xp,k

xp,k+K

·

×

·

×

xp,K

xp,0

·

×

xp,−K

.

.

.

+

.

.

.

(µL)

ck(p)

(µQ)

ŷp,k

.

.

.

.

.

.
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MSE analysis

Transient performance:

ǫk(p) = ǫmin
k + σ2

xE
{

‖gLk(p)‖2
}

+ σ4
xE
{

‖gQk(p)‖2
}

E
{

‖gLk(p + 1)‖
2
}

= αL E
{

‖gLk(p)‖
2
}

+ βL E
{

‖gQk(p)‖
2
}

+ γL

E
{

‖gQk(p + 1)‖2
}

= αQ E
{

‖gQk(p)‖2
}

+ βQ E
{

‖gLk(p)‖2
}

+ γQ

ǫmin
k = σ2

ξ + σ2
x




h̃k




2

- minimum mse

gLk(p) = hk(p) − h̄k and gQk (p) = ck(p) − c̄k - misalignment vectors

The parameters αL, βL, γL, αQ , βQ , γQ depend on µL and µQ .
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MSE analysis (cont.)

Steady-state performance:

Steady-state mse:

ǫk(∞) = f (µL, µQ) ǫmin
k

f (µL, µQ) =
2

2 − µLσ2
x(2K + 1)M − µQσ4

xN/2

Convergence conditions:

0 < µL <
2

σ2
x(2K + 1)M

0 < µQ <
2

σ4
xN/2
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Results
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Discussion

Incorporating the nonlinear component into the model may not
necessarily imply a lower steady-state mse in subbands.

The estimation of the nonlinear component improves the mse
performance only when the NLR is relatively high.

As the nonlinearity becomes weaker, the steady-state mse
associated with the linear model decreases, while the relative
improvement achieved by the nonlinear model becomes
smaller.
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Summary

The problem of linear and nonlinear system identification in
the STFT domain has been considered.

The influence of the system parameters on the model order
and model structure has been investigated.

A novel approach for improved nonlinear system identification
has been introduced.

Future Research:

Adaptive-control algorithms for nonlinear system
identification.

Time-varying system identification in the STFT domain - new
models and estimation approaches.

Extension to multichannel processing (e.g., RTF
identification).
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Thank you!
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