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Abstract

This dissertation addresses theory and applications of generalized autoregressive condi-

tional heteroscedasticity (GARCH) models with Markov regimes for digital speech pro-

cessing. The GARCH model is widely-used in the field of econometrics for volatility

forecast derivation of econometric rates, and it was recently proposed in the field of signal

processing for applications such as speech enhancement, speech recognition, and voice

activity detection. GARCH models explicitly parameterize the time-varying volatility by

using both past conditional variances and past squared innovations (prediction errors),

while taking into account excess kurtosis (i.e., heavy tailed distribution) and volatility

clustering.

In this thesis, we develop a new statistical model for nonstationary signals in the joint

time-frequency domain based on GARCH formulation with Markov regimes. The pro-

posed model exploits the advantages of both the conditional heteroscedasticity structure

of GARCH models and the time-varying characteristics of hidden Markov chains. The

main motivation for this research is spectral modeling of speech signals for hands-free

communication applications such as speech enhancement, nonstationary noise reduction,

dereverberation, and audio source separation.

We analyze the asymptotic stationarity of Markov-switching GARCH (MS-GARCH)

processes in the general case of (p, q)-order GARCH models with finite-state Markov

chains. Necessary and sufficient conditions for asymptotic wide-sense stationarity are de-

veloped for several model formulations which are known in the literature. The properties

of the proposed model are investigated and algorithms are developed for conditional vari-

ance, as well as for signal estimation in noisy environments. The proposed model with

the corresponding estimation algorithms are shown to be useful for applications of speech

enhancement and speech dereverberation. In addition, a state smoothing algorithm is

1



2 ABSTRACT

developed for the sequence of active states estimation. Furthermore, a new formulation

for the speech enhancement problem is proposed in this thesis, which incorporates simul-

taneous operations of detection and estimation. A detector for speech presence in the

short-time Fourier transform domain is combined with an estimator, which jointly mini-

mizes a cost function that takes into account both detection and estimation errors. We

show that the proposed simultaneous detection and estimation approach enables greater

noise reduction than estimation only approach, without further degrading the speech

signal.

A simultaneous classification and estimation approach together with GARCH model-

ing is employed for developing an algorithm for single-sensor audio source separation. We

show that for mixtures of speech and music signals, an improved source separation can

be achieved compared to using Gaussian mixture model for both signals. Moreover, cost

parameters enable one to control the trade-off between missed and false detection of the

desired signal, and correspondingly the trade-off between signal distortion and residual

interference.



Notation

x scalar / time-domain signal

x column vector

Xtk , X(t, k) time-frequency coefficient

{A}ij , aij the (i, j) element of matrix A

A−1 matrix inverse

diag{x} diagonal matrix with the vectorx on its diagonal

eig{A} the spectrum of matrix A

tr{·} trace

|x| absolute value

|A| determinant

(·)T , (·)′ transpose operation

(·)H Hermitian

(·)∗ complex conjugate

p(·) probability / probability density

E{·} expectation

V ar{·} variance

Cov{·} covariance

det(·) determinant

Iν(·) modified Bessel function of order ν

Jν(·) Bessel function of order ν

Γ(·) Gamma function

1F1 (a; b; x) confluent hypergeometric function

ρ(·) spectral radius
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⊗ Kronecker product

⊙ term-by-term vector multiplication

(÷) term-by-term vector division

▽ gradient
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RN
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(·)I imaginary part
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Chapter 1

Introduction

This dissertation addresses the theory of generalized autoregressive conditional het-

eroscedasticity (GARCH) models with Markov regimes and their applications to signal

processing, and in particular to digital speech processing.

GARCH model explicitly parameterizes a time-varying volatility by using both re-

cent conditional variances and recent squared innovations. This model is widely-used

in the field of econometrics for the analysis and volatility forecasts in financial markets.

Recently, this model was proposed for speech processing applications, such as speech en-

hancement, speech recognition, and voice activity detection. In this thesis we formulate

a new complex-valued Markov-switching GARCH (MS-GARCH) model for nonstation-

ary signals in the joint time-frequency domain. The MS-GARCH model exploits the

advantages of both the conditional heteroscedasticity structure of GARCH models and

the time-varying characteristics of hidden Markov chains. The basic motivation for our

research is based on spectral modeling of speech signals, where examples for applications

may include, e.g., noise reduction in communication systems (both background and tran-

sient noise), speech enhancement and dereverberation in hands-free communication, and

audio source separation.

The thesis starts with an asymptotic stationarity analysis of MS-GARCH processes.

In case of processes with time-varying variances, conditions for asymptotic wide-sense

stationarity are useful to ensure a stable process, with a finite second-order moment.

We then formulate a new complex-valued MS-GARCH model for nonstationary signals

in the short-time Fourier transform (STFT) domain. The properties of the model are

7



8 CHAPTER 1. INTRODUCTION

investigated and algorithms are developed for causal, as well as noncausal estimation in

noisy environment. The proposed model is shown to be useful for spectral modeling of

speech signals for the applications of speech enhancement and speech dereverberation.

A basic property of speech signals is that their expansion coefficients are sparse in the

STFT domain. Therefore, a reliable detector may significantly improve performance in

noisy environments. We propose a new formulation for the speech enhancement problem,

which incorporates simultaneous operations of detection and estimation. This approach

is applied to develop speech enhancement algorithms under stationary, as well as tran-

sient noise. A simultaneous classification and estimation approach together with GARCH

modeling is employed to develop an algorithm for single-sensor audio source separation.

In this chapter we briefly describe scientific background for the main topics of this

research and specify the structure of the thesis.

1.1 Markov-switching GARCH models

The GARCH model is widely-used in the field of econometrics, both by practitioners and

by researchers [1–5]. The model represents a powerful tool for analysis and forecasting of

volatility in financial markets. This model, first introduced by Bollerslev [1] as a gener-

alization of the ARCH model [2], explicitly parameterizes the time-varying volatility by

using both recent conditional variances and recent squared innovations. GARCH mod-

els preserve the persistence of the process volatility in the sense that small variations

tend to follow small variations and large variations tend to follow large variations. Incor-

porating GARCH models with hidden Markov chains, where each state (regime) of the

chain implies a different GARCH behavior, extends the dynamic formulation of the model

and enables a better fit for a process with a more complex time-varying volatility struc-

ture [6–11]. However, a major drawback of such models is that estimating the volatility

with switching-regimes requires knowledge of the entire history of the process, including

the regime path. Consequently, Markov-switching ARCH models were proposed [12, 13],

which avoid problems of path dependency in a noiseless environment. The conditional

variance in ARCH models depends on previous observations only, so the Markov chain

does not have to be known for constructing the conditional variance for a given regime.
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In [6], a variant of MS-GARCH (MS-GARCH) model was introduced relying on the

assumption that the conditional variance given current regime is dependent on the ex-

pectation of the previous conditional variances rather than their values. Accordingly,

the conditional variance depends on some finite, state dependent, expected conditional

variances via their conditional state probabilities. Klaassen [7] proposed modifying this

model by manipulating the current regime and all available observations while evaluat-

ing the expectation of previous conditional variances. A different method for reducing

the dependency of the conditional variance on past regimes has recently been proposed

in [8]. Accordingly, a Markov chain governs the ARCH parameters while the autoregres-

sive behavior of the conditional variance is subject to the assumption that past conditional

variances are in the same regime as that of the current conditional variance. These vari-

ants of MS-GARCH models were developed for improved volatility forecasts of financial

time-series under possible existence of shocks.

MS-GARCH processes, as well as the standard (single-state) GARCH process, are non-

stationary as their second-order moments change recursively over time. However, if these

processes are asymptotically wide-sense stationary then their variances are guarantied to

be finite. A necessary and sufficient condition for the stationarity of a (single-regime)

GARCH(p, q) process has been developed in [1]. A deep analysis of the probabilistic

structure of MS-GARCH model is derived in [14] with conditions for the existence of

moments of any order. In [15–17], stationarity analysis has been derived for some mixing

models of conditional heteroscedasticity, and conditions for the asymptotic stationarity of

some AR and ARMA models with Markov-regimes has been derived in [18–22]. However,

for the MS-GARCH models, stationarity conditions are known in the literature only for

some special cases. In [7], necessary (but not necessarily sufficient) conditions for station-

arity are developed for the special case of two regimes and GARCH modeling of order

(1, 1). A necessary and sufficient stationarity condition has been developed in [8] for a spe-

cific MS-GARCH model formulation, but only in case of GARCH(1, 1) behavior in each

regime. We introduce a comprehensive approach for stationarity analysis of MS-GARCH

models, which manipulates a backward recursion of the model’s second-order moment. A

recursive formulation of the state-dependent conditional variances is developed and the

corresponding conditions for stationarity are obtained. In particular, we derive necessary
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and sufficient conditions for the asymptotic wide-sense stationarity of two different vari-

ants of MS-GARCH processes, and obtain expressions for their asymptotic variances in

the general case of m-state Markov chains and (p, q)-order GARCH processes.

Recently, GARCH models have been employed for modeling speech signals in the time-

frequency domain [23–25], for speech recognition application [26], and for voice activity

detection [27]. Speech signals in the STFT domain demonstrate both variability clus-

tering and heavy tail behavior similarly to financial time-series [25]. Motivated by these

characteristics, it was proposed to model the conditional variance of speech signals in the

STFT domain by a complex GARCH model. This model has been shown useful for speech

enhancement applications [23–25], but it relies on the assumption that the model parame-

ters are time-invariant. It is commonly assumed in econometrics that the analyzed process

is observed in a noiseless environment so that its past observations provide a complete

specification of its current conditional variance, for any given regime. In our proposed

MS-GARCH approach for speech modeling, the desired signal is generally observed in a

noisy environment. Accordingly, we developed algorithm for conditional variance estima-

tion which is based on iterating propagation and update steps with regime conditional

probabilities. In addition, we developed state smoothing algorithm which generalizes

existing algorithms which are used for state smoothing in hidden-Markov processes.

1.2 Speech enhancement

The problem of spectral enhancement of noisy speech signals from a single microphone has

attracted considerable research effort for over thirty years, and is still an active research

area, e.g., [28–40]. This problem is often formulated as estimation of speech spectral

components from a degraded signal which consists of statistically independent additive

noise. A variety of different approaches for spectral enhancement of noisy speech signals

have been introduced over the years. One of the earlier methods is the spectral subtraction

[29,30]. Accordingly, an estimate of the clean signal is obtained by subtracting an estimate

of the power spectral density (PSD) of the background noise from the short-term PSD

of the degraded signal. The square root of the result is considered as an estimate for the

spectral magnitude of the desired signal, while the phase of the noisy signal is used as
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the desired phase. This method generally results in random fluctuations in the residual

noise, known as musical noise, which may be annoying and disturb the perception of the

enhanced speech [41]. Many variations for the spectral subtraction method have been

developed during the years to cope with the musical residual noise phenomena [42–45].

Statistical methods for speech enhancement are designed to minimize the expected

value of some distortion measure between the clean and estimated signals [32–34, 36,

38, 46, 47]. These approaches require presumption of reliable statistical models for the

speech and noisy signals and specification of a perceptually meaningful distortion measure.

Distortion measures which are of particular interest in speech enhancement applications

are the squared error [32, 48], the squared error of the short-term spectral amplitude

(STSA) [33] and the squared error of the log spectral amplitude (LSA) [34,38]. To enable

further attenuation of the additive noise, estimation under speech presence uncertainty is

often considered [32, 33, 37, 38, 41, 49, 50]. In addition, to eliminate residual noise in case

of speech absence, voice activity detector (VAD) is often incorporated with the estimator

output [51–56]. Subspace methods for speech enhancement attempt to decompose the

vector space of the noisy signal into a signal-plus-noise subspace and a noise-only subspace

[57–60]. Spectral enhancement is then performed by removing the noise subspace and

estimating the speech coefficients from the signal-plus-noise subspace. Another spectral

enhancement method relies on modeling the vectors of speech signal based on hidden

Markov models (HMMs) [35, 61–63]. The probability distribution of the speech (and in

some applications also of the noise) are estimated from long training sequences of clean

samples. The speech signal is then estimated from the noisy observation based on the

trained model according to some distortion criteria. HMMs are successfully applied for

speech recognition applications, e.g., [64, 65]. However, for the application of speech

enhancement they were not found to be sufficiently refined models [66].

1.2.1 Spectral modeling of speech signals

Spectral enhancement of speech signals often relies on the assumption that the spectral

coefficients of the speech signal (as well as of the noise signal) are statistically indepen-

dent, with conditional distribution which may be considered as, e.g., Gaussian [33,34,38],

Super-Gaussian [47], Laplace [67], or Gamma [68]. Although the statistical independency
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assumption simplifies the design of the optimal estimator under any of the assumed dis-

tributions, it does not hold in reality since consecutive spectral magnitudes are strongly

correlated [24, 25, 41, 69]. In fact, in many of the above-mentioned speech enhancement

algorithms, the time-frequency dependent speech spectral variances are estimated using

the decision-directed approach [33,70] which relies on the strong correlation of successive

spectral variances. Let x and d denote speech signal and uncorrelated noise signal, respec-

tively, and let y = x+ d denote the observed signal. Applying the STFT to the observed

signal we obtain Ytk = Xtk +Dtk were t and k denote the time-frame and frequency-bin

indices, respectively. The decision-directed estimator for the speech spectral variance is

given by

λ̂tk = α
∣

∣

∣
X̂t−1,k

∣

∣

∣

2

+ (1 − α) max
{(

|Ytk|2 − λd,tk

)

, 0
}

(1.1)

were λ̂tk denotes the estimate for the speech spectral variance and λd,tk denotes the spectral

variance of the noise spectral coefficient. The parameter α (0 ≤ α ≤ 1) is a weighting

factor (typically chosen close to one) that controls the tradeoff between noise reduction

and transient distortion brought into the signal [70]. A larger value of α results in a greater

reduction of the musical noise phenomena, but at the expense of attenuated speech onsets

and audible modifications of transient components. It is worth noting, that the noise

spectral variance needs also to be estimated. This can be practically obtained during

speech absence intervals or from the noisy observations by using the minima controlled

recursive averaging algorithm [38,71] or the minimum statistics approach [72].

A relaxed statistical model for speech signals was proposed in [69]. This model is based

on the assumptions that speech spectral phases are iid random variables, and the speech

spectral component Xtk is a zero-mean complex Gaussian random variable with iid real

and imaginary components. The sequence of speech spectral variances {λtk | t = 0, 1, ...} is

a random process and each spectral variance is correlated with the sequence of the spectral

magnitudes. However, given a specific spectral variance λtk, the spectral magnitude at

the same time-frequency bin is statistically independent with other spectral magnitudes.

This model firstly treated both the sequences of the spectral coefficients {Xtk} and of the

spectral variances {λtk} at a specific frequency-bin as random processes.

Recently, it was proposed to model speech spectral coefficients using GARCH model

[23–25]. This model explicitly parameterizes the time-varying volatility (conditional vari-



1.3. OTHER SPEECH PROCESSING APPLICATIONS 13

ance) at a specific frequency-bin index, by using both recent conditional variances and

recent squared values of the spectral coefficients. It was shown that under perfect de-

tection for the speech spectral coefficients, improved performance is achieved by using

the GARCH model compared to using the decision-directed approach. In this disserta-

tion, we introduce a GARCH model with Markov regimes for speech spectral modeling.

This model exploits the advantages of both the conditional heteroscedasticity structure

of GARCH models and the time-varying characteristics of hidden Markov chains. The

model parameters are allowed to change in time according to the state of a hidden Markov

chain and may be ascribed to switching between speech phonemes or different speakers.

We develop model based algorithms, which are shown to be useful for speech enhancement

applications, speech dereverberation, and acoustic source separation.

1.3 Other speech processing applications

While the classical problem of speech enhancement was extensively studied during recent

decades, the applications of hands-free communication and digital storing of audio signals

raised interesting problems such as speech dereverberation, nonstationary noise reduction,

and acoustic blind source separation.

Speech signals that are received by a distant microphone from the speech source usually

contain reverberation. The sound wave produced by the speaker is propagated outward

from the source. The wavefronts reflect off the walls and other objects and superimposed

at the microphone. These reflections can degrade the fidelity and intelligibility of speech

signals and the performance of automatic speech recognition systems [73]. The received

reverberated sound generally consists of a direct sound, reflections that arrive shortly after

the direct sound (commonly called early reverberation), and reflections that arrive after

the early reverberation (or late reverberation) [73–75]. While the early reflections mainly

contribute to spectral coloration and may even improve the intelligibility of the speech

sound, the late reverberation changes the waveform’s temporal envelope as decaying ’tails’

are added at sound offsets. This may cause distant and echo-ey sound quality [73, 76].

Algorithms for reverberation reduction (or dereverberation) can be divided to two classes.

Algorithms in the first class are based on an estimation of the acoustic impulse response
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(AIR). The desired signal is, in that case, estimated by deconvolution methods, e.g.,

[77–79]. Two drawbacks of these algorithms are, however, that they have shown to be

sensitive to small changes in the AIR, and in some cases the order of the AIR needs

to be known [80, 81]. Methods in the second category try to suppress reverberation

without estimating the AIR, e.g., [74, 82–84]. The spectral coefficients of the desired

signal are estimated using some statistical model, while trying to suppress the undesired

reverberation. We develop a dual-microphone speech dereverberation algorithm for noisy

environments, which is aimed at suppressing late reverberation and background noise. The

spectral variance of the late reverberation is obtained with adaptively-estimated direct

path compensation, and a MS-GARCH model is used to estimate the spectral variance

of the desired signal, which includes the direct sound and early reverberation.

Blind separation of mixed audio signals received by a single microphone has been

a challenging problem for many years. Examples of applications include separation of

speakers [85, 86], separation of different musical sources (e.g., different musical instru-

ments) [85, 87, 88], separation of speech or singing voice from background music [89–92],

and signal enhancement in nonstationary noise environments [35, 62, 93–95]. In case the

signals are received by multiple microphones, spatial filtering may be employed as well

as mutual statistical information between the received signals, e.g., [96–102]. However, if

several sources are recorded by a single microphone, some a priori information is necessary

to enable a reasonable separation performance.

In [94,95] speech and nonstationary noise signals are assumed to evolve as autoregres-

sive (AR) processes, while the a priori statistical information (codebooks) is obtained us-

ing a training phase and includes several sets of linear prediction coefficients. In [87,88,90]

the acoustic signals are modeled by Gaussian mixture models (GMMs). In [35, 62] the

acoustic signals are modeled by hidden Markov models (HMMs) with AR sub-sources.

The assumed statistical models provide a priori information about the distinct signals,

which together with training sequences of signals and appropriately extracted codebooks

enable source separation from signal mixtures. GMM and AR-based codebooks are gener-

ally insufficient for representing statistically rich signals such as speech signals [92], since

each state specifies a predetermined probability density function (pdf), or a mixture of

pdf’s. We develop a new algorithm for single-sensor audio source separation of speech
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and music signals, which is based on MS-GARCH modeling of the speech signals and

GMM for the music signals. Since in MS-GARCH model the active state only specifies

the evolution of the spectral variances along time, the corresponding statistical model

can take almost any values for the spectral variances. The separation of the speech from

the music signal is obtained by a classification and estimation approach, which enables to

control the trade-off between residual interference and signal distortion.

1.4 Detection and estimation of speech signals

In many signal processing applications as well as communication applications, the signal

to be estimated is not surely present in the available noisy observation. Therefore, as

specified in Section 1.2, algorithms often try to estimate the signal under uncertainty

(i.e., using some a priori probability for the existence of the signal) [32, 33, 38, 41], or

alternatively, apply an independent detector for signal presence [51–56]. This detector

may be designed based on the noisy observation, or, on the estimated signal. The spectral

coefficients of the speech signal are generally sparse in the STFT domain in the sense that

speech is present only in some of the frames, and in each frame only some of the frequency-

bins contain the significant part of the signal energy. Therefore, both signal estimation

and detection are generally required while processing noisy speech signals [38, 41, 103].

However, existing algorithms often focus on estimating the spectral coefficients rather

than detecting their existence. The spectral-subtraction algorithm [29, 30] contains an

elementary detector for speech activity in the time-frequency domain, but it generates

musical noise caused by falsely detecting noise peaks as bins that contain speech, which are

randomly scattered in the STFT domain. Subspace approaches for speech enhancement

[57,59,60,104] decompose the vector of the noisy signal into a signal-plus-noise subspace

and a noise subspace, and the speech spectral coefficients are estimated after removing

the noise subspace. Accordingly, these algorithms are aimed at detecting the speech

coefficients and subsequently estimating their values. McAulay and Malpass [32] were

the first to propose a speech spectral estimator under a two-state model. They derived

a maximum likelihood (ML) estimator for the speech spectral amplitude under speech-

presence uncertainty. Ephraim and Malah followed this approach of signal estimation
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under speech presence uncertainty and derived an estimator which minimizes the mean-

square error (MSE) of the short-term spectral amplitude (STSA) [33]. In [49], speech

presence probability is evaluated to improve the minimum MSE (MMSE) of the LSA

estimator, and in [38] a further improvement of the MMSE-LSA estimator is achieved

based on a two-state model.

A reliable detector for speech activity in the time-frequency domain is of major impor-

tance, not only to improve noise reduction, but also for noise estimation, speech coding

and speech recognition. Many VAD algorithms are designed on a frame-by-frame basis,

e.g., [51–56], or the activity of speech is detected in each time-frequency bin, e.g., [38,103].

The detection of speech presence by using a microphone array has recently received much

attention, e.g., [105–108]. Spriet et al. [109] analyzed the impact of speech detection errors

on the noise reduction performance of multichannel systems and showed that a reliable

speech detector is crucial to achieve a potentially better speech enhancement performance.

Approaches for the design of coupled operations of signal detection and estimation have

been proposed for some communication applications, e.g., [110–113]. In [114] a method

for optimal simultaneous classification and estimation has been proposed by minimizing

the erroneous classification probability in the worst case under a false alarm constraint.

Middleton et al. [115, 116] were the first to propose simultaneous signal detection and

estimation within the framework of statistical decision theory. They proposed some dual

schemes for the two operations while considering several coupling methods between the

two operations. The detector is generally optimized with the knowledge of the specific

structure of the estimator, and the estimator is optimized in the sense of minimizing a

Bayes risk associated with the combined operations.

In this research, we reformulate the speech enhancement problem as a joint problem

of speech activity detection and spectral estimation. The problem formulation assumes

sparsity of the speech spectral coefficients and it introduces coupled operations of detection

and estimation using a combined Bayes risk. The Bayes risk incorporates both the cost

of estimation errors and the cost of fault detection, whether it is a missed-detection of

speech components or a false detection. While considering the problem of single-channel

audio source separation, multi-hypotheses are used for both signals. In that case we

incorporate simultaneous classification and estimation scheme for the separation. In both
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cases, the combined cost results in cost parameters that enable to control the trade-off

between signal distortion, caused by missed detection of speech components, and residual

noise resulting from false-detection.

1.5 Thesis structure

This thesis is organized as follows. Chapter 2 briefly outlines the basic theories and

methods which were used during this research. The original contribution of this research

starts in Chapter 3.

In Chapter 3, we develop a comprehensive approach for stationarity analysis of MS-

GARCH models. We consider the general case of m-state Markov chains and (p, q)-

order GARCH processes, and specify the unconditional variance of the process using the

expectation of the regime dependent conditional variances. No history knowledge of the

process is assumed, except for the model parameters. The expectation of the conditional

variance at a given regime is then recursively constructed from the conditional expectation

of both previous conditional and unconditional variances. Consequently, we obtain a

complete recursion for the expected vector of state dependent conditional variances. The

recursive vector form is constructed by means of a representative matrix which is built

from the model parameters. We show that constraining the largest absolute eigenvalue of

the representative matrix to be less than one is necessary and sufficient for the convergence

of the unconditional variance, and therefore, for the asymptotic stationarity of the process.

We derive stationarity conditions for the general formulation of the two variants of MS-

GARCH models introduced by Klaassen [7] and Haas et al. [8]. We show that our results

reduce in some degenerated cases to the stationarity conditions developed by Bollerslev [1],

and by Klaassen and Haas et al.. Furthermore, we show that the stationarity conditions

developed by Klaassen are not only necessary but also sufficient for asymptotic stationarity

of his model.

In Chapter 4, we introduce a Markov-switching time-frequency GARCH (MSTF-

GARCH) model for speech signals in the STFT domain. The MSTF-GARCH model

exploits the advantages of both the conditional heteroscedasticity structure of GARCH

models and the time-varying characteristics of hidden Markov chains. The expansion
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coefficients are considered as nonstationary random signals in the time-frequency domain

and modeled as multivariate complex GARCH processes with Markov-switching regimes.

A corresponding recursive algorithm is developed for signal restoration in a noisy environ-

ment. The conditional variance is estimated by iterating propagation and update steps

with regime conditional probabilities. The model parameters are estimated from a train-

ing data set prior to the signal restoration using ML approach, and the number of states

is assumed to be known. We show that the derivation in [117] of bounds on the MSE

of a composite source signal estimation is applicable for obtaining an upper bound on

the MSE of a single step MSTF-GARCH estimation. Experimental results demonstrate

the improved performance of the proposed algorithm for restoration of MSTF-GARCH

process compared to using an estimator which assumes a stationary process and com-

pared to using an estimator which assumes a smaller number of regimes than the process

actually has. Furthermore, it is demonstrated that the squared absolute values of speech

coefficients in the STFT domain are better evaluated by using the MSTF-GARCH model

than by using the decision-directed approach.

In Appendix 4.A, we present an application of the MSTF-GARCH model to speech

enhancement. We employ the MSTF-GARCH model by assuming different Markov chains

in distinct frequency subbands with identical state transition probabilities. The GARCH

parameters are state dependent and frequency variant. We define an additional state

for the case where speech coefficients are absent (or below a certain threshold level) and

introduce parameter estimation method which is computationally more efficient than the

traditional ML approach. Furthermore, the probability of the speech absence state can

be used as a soft voice activity detector which is naturally generated in the reconstruction

algorithm. Experimental results demonstrate improved noise reduction performance while

preserving weak components of the speech signal.

Chapter 5 addresses the problem of state smoothing in MS-GARCH processes in noisy

environments. The dependency of the conditional variance on past observations and past

active regimes are taken into consideration as we generalize both the forward-backward

recursions [118] and the stable backward recursion [119, 120]. We derive two recursive

steps for the evaluation of conditional densities of future observations. The first step

is an upward recursion which manipulates the future observations for the evaluation of
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their conditional densities, corresponding to all possible future paths. The second step is

a backward recursion which integrates over these paths to evaluate the future densities

required for the noncausal state probability. The computational complexity of the gener-

alized recursions grows exponentially with the number of future observations employed for

the fixed-lag smoothing. However, experimental results demonstrate that the significant

part of the improvement in performance, compared to using causal estimation, is achieved

by considering a few future observations.

In Chapter 6, we propose a new formulation for the speech enhancement problem

based on simultaneous operations of detection and estimations. A detector for the speech

coefficients is combined with an estimator, which jointly minimizes a cost function that

takes into account both estimation and detection errors. Under speech-presence, the cost

is proportional to a quadratic spectral amplitude (QSA) error [33], while under speech-

absence, the distortion depends on a certain attenuation factor [29, 38, 70]. We derive a

combined detector and estimator with cost parameters that enable to control the trade-

off between speech distortion, caused by missed detection of speech components, and

residual musical noise resulting from false-detection. The combined solution generalizes

the well-known STSA algorithm, which involves merely estimation under signal presence

uncertainty. In addition, we propose a modification of the decision-directed a priori SNR

estimator, which is suitable for transient-noise environments. Experimental results show

that the simultaneous detection and estimation yields better noise reduction than the

STSA algorithm while not degrading the speech signal. The advantage of using a suitable

indicator for transient noise is demonstrated in a nonstationary noise environment, where

the proposed algorithm facilitates suppression of transient noise with a controlled level of

speech distortion.

Appendix 6.B introduces a closely related application of removal of transient noise

using a practical detector for the presence of transient noise. We formulate a speech en-

hancement problem under multiple hypotheses, assuming some indicator or detector for

the presence of noise transients in the STFT domain is available. Cost parameters control

the trade-off between speech distortion and residual transient noise. We derive an optimal

signal estimator that employs the available detector and show that the resulting estima-

tor generalizes the optimally-modified log-spectral amplitude (OM-LSA) estimator [38].



20 CHAPTER 1. INTRODUCTION

Experimental results demonstrate the improved performance obtained by the proposed

algorithm, compared to using the OM-LSA.

Chapter 7 deals with the problem of single-channel audio source separation. A novel

approach is proposed for single-channel blind source separation of speech and music sig-

nals. This approach includes a new codebook for speech signals, as well as a new separa-

tion algorithm which relies on a simultaneous classification and estimation procedure. The

codebook is based on GARCH modeling of speech signals and a GMM for music signals.

Two methods are proposed for classification and estimation. One is based on simultaneous

operations of classification and estimation which jointly minimize a combined Bayes risk.

The second method employs a given (non-optimal) classifier, and applies an estimator

which is optimally designed to yield a controlled level of residual interference and signal

distortion. The GARCH model for the speech signal with several states of parameters en-

ables smooth (diagonal) covariance matrices with possible state switching. Experimental

results demonstrate that for mixtures of speech and piano signals it is more advantageous

to model the speech signal by GARCH than GMM, and the codebook generated by the

GARCH model yields significantly improved separation performance. In addition, the

classification and estimation approach enables the user to control the trade-off between

the distortion of the desired signal caused by missed detection, and the amount of the

residual signal resulting from false detection.

In Chapter 8, we consider the problem of speech dereverberation using MS-GARCH

modeling. We develop an improved dual-microphone speech dereverberation algorithm

which relies on a MS-GARCH modeling of the desired early speech component, which

consists of the direct sound and early reverberation. The model is applied to distinctive

frequency subbands and specifies the volatility clustering of successive spectral coeffi-

cients, while a speech-absence state is used for evaluating the speech presence probability.

Furthermore, an adaptive approach is developed to estimate the parameter for the di-

rect path compensation (DPC) directly from the observed signals. Experimental results

show that using the MS-GARCH modeling rather than the decision-directed approach,

improved results can be obtained. Furthermore, by using the proposed algorithm, the

performance obtained with blindly estimated DPC parameter is comparable to that ob-

tained with an optimal DPC parameter that is calculated from the actual AIR, which is
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unknown in practice.

Chapter 9 summarizes the main contributions of this dissertation and presents some

future research directions.
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Chapter 2

Research Methods

In this chapter, we briefly review research methods which were useful during this research.

We start by introducing the GARCH model formulation. We then continue by introducing

a specific formulation for MS-GARCH model with its known conditions for asymptotic

stationarity. The GARCH modeling approach for speech spectral coefficients is briefly re-

viewed with the variance estimation algorithm, as well as spectral enhancement approach.

Finally, we briefly review existing methods for single-sensor blind source separation and

speech dereverberation by using spectral enhancement.

2.1 GARCH Models and stationarity analysis

A linear (p, q)-order GARCH model is defined as follows. Let εt denote a real-valued

discrete-time stochastic process, and let ψt denote the information set (σ-field) of all

information through time t. The GARCH(p, q) process is then given by [1]

εt = σt vt (2.1)

where {vt} are iid random variables with zero mean, unit variance, and some predeter-

mined probability density. The conditional variance of the process, σ2
t = E {ε2

t |ψt−1},
evolves as

σ2
t = ξ +

q
∑

i=1

αiε
2
t−i +

p
∑

j=1

βjσ
2
t−j (2.2)

23
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where

p ≥ 0, q > 0 ,

ξ > 0, αi ≥ 0, i = 1, ..., q,

βj ≥ 0, j = 1, ..., p.

For p = 0 the process reduces to the ARCH(q) process [2], and for q = p = 0 the

process εt is simply a white noise. The nonnegativity of the parameters αi, i = 1, ..., q

and βj , j = 1, ..., p, together with ξ > 0, are sufficient to ensure a positive conditional

variance, σ2
t . However, since the conditional variance is a time varying random process,

it is net guarantied in general that the process would be finite.

Theorem 2.1. [1] The GARCH(p, q) process as defined in (2.1) and (2.2) is (asymptot-

ically) wide-sense stationary with E(εt) = 0, limt→∞ V ar(εt) = ξ/
(

∑q
i=1 αi +

∑p
j=1 βj

)

and Cov(εt, ετ) = 0 for t 6= τ if and only if
∑q

i=1 αi +
∑p

j=1 βj < 1.

The proof can be found in [1, 5].

Theorem 2.1 gives important constraint on the model parameters such that the second-

order moment of the GARCH process would be finite. It also shows that under this

condition, the process is asymptotically wide-sense stationary.

2.1.1 Markov-switching GARCH model

Let St ∈ {1, ..., m} denote the (unobserved) regime at a discrete time t and let st be

a realization of St, assuming that {St} is a first-order stationary Markov chain with

transition probabilities aij , p(St = j |St−1 = i), a transition probabilities matrix A,

{A}ij = aij , and stationary probabilities π = [π1, π2, ..., πm]′, πi , p (St = i), where ′

denotes the transpose operation.

Incorporating GARCH models with a hidden Markov chain, where each state of the

chain (regime) allows a different GARCH behavior and thus a different volatility struc-

ture, extends the dynamic formulation of the model and potentially enables improved

forecasts of the volatility [6–11]. Unfortunately, the volatility of a GARCH process with

switching-regimes depends on the entire history of the process, including the regime path,

which makes the derivation of a volatility estimator impractical. Many different variants
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have been formulated for Markov-switching GARCH models. One popular formulation in

econometrics is the model proposed by Klaassen [7] as a modification of Gray’s model [6].

These models integrate out the unobserved regime path so that the conditional variance

can be constructed from previous observations only. Accordingly, given the Markovian

active state st ∈ {1, 2}, the conditional variance follows [7]:

σ2
t,st

= ξst
+ αst

ε2
t−1 + βst

E
{

σ2
t−1,St−1

| st, ψt−1

}

. (2.3)

As can be seen from (2.3), this model formulation originally assumes a degenerated model

with only two-state Markov chain with GARCH(1, 1) in each state. Define a 2×2 matrix

C with elements cij = p(St−1 = j |St = i)(αi + βi). Then, we have the following theorem:

Theorem 2.2. [7] Necessary conditions for asymptotic wide-sense stationarity of the

process defined in (2.1) and (2.3) are c11, c22 < 1 and det(I − C) > 0. The asymptotic

conditional variances are then given by:




σ2
1

σ2
1



 = (I − C)−1





ξ1

ξ2



 . (2.4)

Proof. The unconditional variance under st can be obtained by taking expectation which

is conditioned on the active state

σ2
t,st

= ξst
+ αst

E
[

ε2
t−1 | st

]

+ βst
E
[

σ2
t−1,St−1

| st

]

= ξst
+ αst

E
{

E
[

ε2
t−1 | st−1, st

]

| st

}

+ βst
E
{

E
[

σ2
t−1,St−1

| st−1, st

]

| st

}

= ξst
+ αst

E
{

σ2
t−1,st−1

| st

}

+ βst
E
{

σ2
t−1,st−1

| st

}

= ξst
+ (αst

+ βst
)E
{

σ2
t−1,st−1

| st

}

. (2.5)

Next, assume that σ2
t,1 and σ2

t,2 are time invariant, and denote them by σ2
1 and σ2

2, respec-

tively. Then




σ2
1

σ2
1



 =





ξ1

ξ2



+ C





σ2
1

σ2
1



 (2.6)

where cij = p (St−1 = j |St = i) (αi + βi) and

p (st−1 | st) =
p (st−1 | st) p (st−1)

p (St−1 = 1 | st) p (St−1 = 1) + p (St−1 = 2 | st) p (St−1 = 2)
. (2.7)

Under the assumption that σ2
1 and σ2

2 exist, (I − C) is invertible and we have (2.4).
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The necessary conditions for the existence of the unconditional variances are derived as

follows. Since we have sufficient conditions for the positivity of the conditional variances

(i.e., ξs > 0 and αs, βs ≥ 0 for s = 1, 2), all elements of (I − C)−1 must be non negative

and (I − C)−1 must not have a zero raw. Since c12 = α1 +β1 − c11 and c21 = α2 +β2 − c22

we can write

(I − C)−1 =
1

det (I − C)





1 − c22 α1 + β1 − c11

α2 + β2 − c22 1 − c11



 . (2.8)

Since

αi + βi − cii = (αi + βi) [1 − p (St−1 = i |St = i)] ≥ 0 (2.9)

the nonnegativity of (2.8) implies that det (I − C) > 0, so that 1−c11 ≥ 0 and 1−c22 ≥ 0.

But c11 and c22 must not equal one, otherwise, det (I − C) ≤ 0. Therefore, necessary

conditions for the existence of stationary variances are c11, c22 < 1 and det (I − C) >

0.

In Chapter 3 we derive conditions which are both necessary and sufficient for asymp-

totic stationarity, considering any finite-state Markov chain and any (p, q)-order of

GARCH model in each state.

2.2 Time-frequency GARCH model and spectral

speech enhancement

2.2.1 Time-frequency GARCH model

Recall x and d represent speech and uncorrelated additive noise signals, and y = x + d

represents the observed signal. Applying the STFT to the observed signal we have in the

time-frequency domain

Ytk = Xtk +Dtk . (2.10)

Let X τ = {Xtk | t = 0, 1, ..., τ, k = 0, ..., K − 1} represent the set of clean spectral coeffi-

cients up to frame τ . Let Htk
1 and Htk

0 denote hypotheses for speech present and absence,

respectively, in the time-frequency bin (t, k), and let

λtk|τ , E
{

|Xtk|2 | Htk
1 ,X τ

}

(2.11)
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denote the conditional variance of Xtk under the hypothesis that speech is present in the

time-frequency bin (t, k), given the clean spectral coefficients up to time-frame τ . The

time-frequency GARCH (TF-GARCH) relies on the following assumptions [23, 25]:

1. Given {λtk} and the state of speech presence in each time-frequency bin (Htk
1 or

Htk
0 ), the speech spectral coefficients {Xtk} are generated by

Xtk =
√

λtkVtk , (2.12)

where
{

Vtk | Htk
0

}

are identically zero, and
{

Vtk | Htk
1

}

are statistically independent

complex random variable with zero mean, unit variance, and independent and iden-

tically distributed (iid) real and imaginary parts:

Htk
1 : E {Vtk} = 0, E

{

|Vtk|2
}

= 1 ,

Htk
1 : Vtk = 0 . (2.13)

2. Under Htk
1 , the real and imaginary parts of Vtk are iid with Gaussian probability

density.

3. The conditional variance λtk|t−1, referred to as the one-frame-ahead conditional vari-

ance, is a random process which evolves as a GARCH(1, 1) process:

λtk|t−1 = λmin + α |Xt−1,k|2 + β
(

λt−1,k|t−2 − λmin

)

(2.14)

where

λmin > 0, α ≥ 0, β ≥ 0, α + β < 1 . (2.15)

4. The noise spectral coefficients {Dtk} are zero-mean statistically independent Gaus-

sian random variables, with iid real and imaginary parts.

The first assumption implies that the speech spectral coefficients
{

Xtk | Htk
1

}

are condi-

tionally zero-mean statistically independent random variables given their variances {λtk}.
However, the GARCH formulation parameterizes the correlation between successive con-

ditional variances at the same frequency-bin index.
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2.2.2 Variance estimation

Since the conditional variance in the TF-GARCH depends on the entire history of the

process, while observing noisy signal, the conditional variances can not be reconstructed

and need to be estimated. The estimation of the spectral variance from the noisy obser-

vations is estimated by using two steps. First, the conditional variance estimate λ̂tk|t−1

is being updated one frame ahead in time by using the additional information Ytk, than,

for the next frame the conditional variance is updated based on the model formulation.

Specifically, an estimate for λtk|t is obtained by calculating its conditional mean under

Htk
1 given Ytk and λ̂tk|t−1. By definition λtk|t = |Xtk|2. Hence, the update step is obtained

by [24, 69]:

λ̂tk|k = E
{

|Xtk|2
∣

∣

∣
Htk

1 , λ̂tk|t−1, Ytk

}

=
ξ̂tk|t−1

1 + ξ̂tk|t−1

(

λd,tk +
ξ̂tk|t−1

1 + ξ̂tk|t−1

)

|Ytk|2 (2.16)

where λd,tk = E {|Dtk|2} and ξ̂tk|t−1 , λ̂tk|t−1/λd,tk is the a priori SNR. Substituting (2.16)

into the model formulation (2.14) we have the propagation step:

λ̂tk|t−1 = E
{

λtk|t−1 | Ht−1,k
1 , λ̂t−1,k|t−2, Yt−1,k

}

= λmin + αE
{

|Xt−1,k|2 | Ht−1,k
1 , λ̂t−1,k|t−2, Yt−1,k

}

+ β
(

λ̂t−1,k|t−2 − λmin

)

= λmin + αλ̂t−1,k|t−1 + β
(

λ̂t−1,k|t−2 − λmin

)

. (2.17)

This two-step estimation method allows estimation of the conditional variances from the

noisy coefficients. It is important to note that the model parameters are generally esti-

mated from a training set using maximum likelihood (ML) approach [5].

2.2.3 Spectral enhancement

Having an estimate for the spectral variances of the speech spectral coefficients, λ̂tk, an

estimator for the coefficients Xtk is obtained by minimizing the expected distortion given

λ̂tk, λd,tk, Ytk and the a posteriori speech presence probability qtk , p
(

Htk
1 | Ytk

)

[41]:

min
X̂tk

E
{

d
(

Xtk, X̂tk

)

| qtk, λ̂tk, λd,tk, Ytk

}

. (2.18)
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In particular, restricting ourselves to a squared error distortion measure of the form

d
(

Xtk, X̂tk

)

=
∣

∣

∣
g
(

X̂tk

)

− g̃ (Xtk)
∣

∣

∣

2

(2.19)

where g (X) and g̃ (X) are specific functions which determine the fidelity criteria, the

optimal estimator is calculated from

g
(

X̂tk

)

= E
{

g̃ (Xtk) | qtk, λ̂tk, λd,tk, Ytk

}

= qtk E
{

g̃ (Xtk) | Htk
1 , λ̂tk, λd,tk, Ytk

}

+ (1 − qtk)E
{

g̃ (Xtk) | Htk
0 , Ytk

}

. (2.20)

Fidelity criteria that are of particular interest for speech enhancement applications are

the MMSE of the STSA [33] and MMSE of the LSA [34]. The MMSE-STSA estimator is

derived by substituting into (2.19) the functions

g
(

X̂tk

)

=
∣

∣

∣
X̂tk

∣

∣

∣

g̃ (Xtk) =







|Xtk| , under Htk
1

Gmin |Ytk| , under Htk
0

. (2.21)

Let γtk = |Ytk|2/λd,tk denote the a posteriori SNR and let υtk , γtk ξ̂tk/(1 + ξ̂tk). The

resulting estimator is given by

X̂tk =
[

qtk GSTSA

(

ξ̂tk, γtk

)

+ (1 − qtk)Gmin

]

Ytk (2.22)

where [33]

GSTSA (ξ, γ) ,

√
π υ

2γ
exp

(

−υ
2

) [

(1 + υ) I0

(υ

2

)

+ υ I1

(υ

2

)]

, (2.23)

and Iν (·) denotes the modified Bessel function of order ν. The MMSE-LSA estimator is

obtained by using the functions

g
(

X̂tk

)

= log
∣

∣

∣
X̂tk

∣

∣

∣

g̃ (Xtk) =







log |Xtk| , under Htk
1

log (Gmin |Ytk|) , under Htk
0 .

(2.24)

and the resulting estimator follows

X̂tk = GLSA

(

ξ̂tk, γtk

)qtk

G1−qtk

min Ytk (2.25)
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where [34]

GLSA (ξ, γ) =
ξ

1 + ξ
exp

(

1

2

∫ ∞

υ

e−x

x
dx

)

. (2.26)

It is important to note, that both estimators (2.22) and (2.25) are insensitive to the phase

estimation error, and they are combined with the phase of the noisy signal [33].

2.3 Single-channel blind source separation

Separation of a mixture of signals observed via a single sensor is an ill posed problem, and

some a priori information is required to enable reasonable reconstructions. In [87–89],

a GMM is proposed for the signals’ codebook in the STFT domain, and in [94, 95] an

AR model is proposed with different sets of prediction coefficients for each of the signals

in the time domain. However, each set of AR coefficients, together with the excitation

variance corresponds to a specific covariance matrix in the STFT domain, similarly to the

GMM. Under each of these models, each framed signal is considered as generated from

some specific distribution which is related to the codebook with some probability, and a

frame-by-frame separation is applied.

Let s1, s2 ∈ CN denote the vectors of the STFT expansion coefficients of signals s1(n)

and s2(n), respectively, for some specific frame index. Let q1 and q2 denote the active

states of the codebooks corresponding to signals s1 and s2, respectively, with known a

priori probabilities p1 (i) , p (q1 = i), i = 0, ..., m1 and p2 (j) , p (q2 = j), j = 0, ..., m2,

and
∑

i p1 (i) =
∑

j p2 (j) = 1. Given that q1 = i and q2 = j, s1 and s2 are assumed

conditionally zero-mean complex-valued Gaussian random vectors with known diagonal

covariance matrices, i.e. ,s1 ∼ CN
(

0,Σ
(i)
1

)

and s2 ∼ CN
(

0,Σ
(j)
2

)

. For the AR model

[35, 62, 94, 95], each set of prediction coefficients in the time domain corresponds to a

specific covariance matrix in the STFT domain, up to scaling by the excitation variance.

Assuming sufficiently long frames, these covariance matrices are considered as diagonal

[95].

Based on a given codebook, it is proposed in [88] and [95] to first find the active pair

of states {i, j} = {q1 = i, q2 = j} using a maximum a posteriori (MAP) criterion:

{

î, ĵ
}

= arg max
i,j

p (x | i, j) p (i, j) (2.27)



2.4. SPEECH DEREVERBERATION 31

where x = s1+s2, p (· | i, j) = p (· | q1 = i, q2 = j), and for statistically independent signals

p (i, j) = p1 (i) p2 (j). Subsequently, conditioned on these states (i.e., classification), the

desired signal may be reconstructed in the mmse sense by

ŝ1 = E
{

s1 |x, î, ĵ
}

= Σ
(î)
1

(

Σ
(î)
1 + Σ

(ĵ)
2

)−1

x

, Wîĵ x (2.28)

and similarly1 ŝ2 = Wĵ î x. Alternatively [35, 88, 90], the desired signal may be recon-

structed in the mmse sense directly from

ŝ1 = E {s1 |x}

= Eij {E [s1 |x, i, j]}

=
∑

i,j

p (i, j |x)Wij x . (2.29)

In case of additional uncorrelated stationary noise in the mixed signal, i.e.,

x = s1 + s2 + d (2.30)

with d ∼ CN (0,Σ), the covariance matrix of the noise signal is added to the covariance

matrix of the interfering signal, and then the signal estimators remain in the same forms.

2.4 Speech dereverberation

A generalized statistical reverberation model has been proposed in [73–75]. Accordingly,

the AIR h (n), can be split into two segments, he (n) and hl (n):

h (n) =



















he (n) , 0 ≤ n ≤ Tr

hl (n) , n ≥ Tr

0 , otherwise

. (2.31)

The value Tr is chosen such that he (n) contains the direct path, and that hl (n) contains

of all later reflections. To enable modeling the energy related to the direct path, the

1Note that in this section the index i always refers to the signal s1 and the index j refers to the other

signal s2. Therefore, Wji = Σ
(j)
2

(

Σ
(i)
1 + Σ

(j)
2

)

−1

.



32 CHAPTER 2. RESEARCH METHODS

following model is used:

he (n) =







be (n) e−δn , 0 ≤ n ≤ Tr

0 , otherwise
, (2.32)

where be (t) is a white zero-mean Gaussian stationary noise signal and δ is linked to the

reverberation time2, T60. The reverberation component hl (t) follows

hl (t) =







bl (t) e
−δt , t ≥ Tr

0 , otherwise
, (2.33)

where bl (n) is a white zero-mean Gaussian stationary noise signal. It is assumed that

be (n) and bl (n) are uncorrelated, and the energy envelope of h (n) can be expressed as

Eh

{

h2 (n)
}

=



















σ2
ee

−δn , 0 ≤ n ≤ Tr

σ2
l e

−δn , n ≥ Tr

0 , otherwise

, (2.34)

where σ2
e and σ2

l denote the variances of be (n) and bl (n), respectively, and generally,

σ2
e ≥ σ2

l .

Considering a speech signal x (n) which is propagates towards a microphone, through

a room with AIR h (n), the received signal can be denoted as

y (n) = xe (n) + xl (n) + d (n) , (2.35)

where xe (n) is the early speech component, xl (n) is the late reverberant signal, and d (n) is

an uncorrelated additive noise. Spectral enhancement approach for speech dereverberation

is aimed at estimating the early speech component from the noisy observation by using a

time-frequency dependent gain function. Consequently, in the STFT domain we have

X̂e (t, k) = G (t, k)Y (t, k) . (2.36)

The gain function may be obtained by means of spectral subtraction [74] or MMSE-

LSA sense [75]. In any case, the spectral variances of both the early speech component,

λe (t, k) = E
{

|Xe (t, k)|2
}

, and of the late reverberant signal, λl (t, k) = E
{

|Xl (t, k)|2
}

,

2The reverberation time, T60, is defined as the time for the reverberation level to decay to 60 dB below

the initial level.
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are estimated from the observed signal based on the reverberation model. Accordingly,

while evaluating the gain function, the a priori and a posteriori SNRs are given by

ξ̂ (tk) =
λ̂e (t, k)

λ̂l (t, k) + λd (t, k)

γ̂ (t, k) =
|Y (t, k)|2

λ̂l (t, k) + λd (t, k)
. (2.37)
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Chapter 3

Stationarity Analysis of

Markov-Switching GARCH

Processes1

GARCH models with Markov-switching regimes are often used for volatility analysis of fi-

nancial time series. Such models imply less persistence in the conditional variance than the

standard GARCH model, and potentially provide a significant improvement in volatility

forecast. Nevertheless, conditions for asymptotic wide-sense stationarity have been de-

rived only for some degenerated models. In this chapter, we introduce a comprehensive

approach for stationarity analysis of Markov-switching GARCH models, which manipu-

lates a backward recursion of the model’s second-order moment. A recursive formulation

of the state-dependent conditional variances is developed and the corresponding conditions

for stationarity are obtained. In particular, we derive necessary and sufficient conditions

for the asymptotic wide-sense stationarity of two different variants of Markov-switching

GARCH processes, and obtain expressions for their asymptotic variances in the general

case of m-state Markov chains and (p, q)-order GARCH processes.

1This chapter is based on [121].

35



36 CHAPTER 3. STATIONARITY ANALYSIS OF MS-GARCH PROCESSES

3.1 Introduction

Volatility analysis of financial time series is of major importance in many financial applica-

tions. The generalized autoregressive conditional heteroscedasticity (GARCH) model [1]

has been applied quite extensively in the field of econometrics, both by practitioners

and by researchers, and shown to be useful for the analysis and forecasting the volatility

of time-varying processes such as those pertaining to financial markets. Incorporating

GARCH models with a hidden Markov chain, where each state of the chain (regime)

allows a different GARCH behavior and thus a different volatility structure, extends

the dynamic formulation of the model and potentially enables improved forecasts of the

volatility [6–11]. Unfortunately, the volatility of a GARCH process with switching-regimes

depends on the entire history of the process, including the regime path, which makes the

derivation of a volatility estimator impractical.

Cai [12] and Hamilton and Susmel [13] applied the idea of regime-switching parameters

into ARCH specification. The conditional variance of an ARCH model depends only on

past observations, and accordingly the restriction to ARCH models avoids problems of infi-

nite path dependency. Gray [6], Klaassen [7] and Haas, Mittnik and Paolella [8], proposed

different variants of Markov-switching GARCH models, which also avoid the problem of

dependency on the regime’s path. Gray introduced a Markov-switching GARCH model

relying on the assumption that the conditional variance at any regime depends on the

expectation of previous conditional variances, rather than their values. Accordingly, the

conditional variance depends only on some finite set of past state-dependent, expected

values via their conditional state probabilities, and thus can be constructed from past ob-

servations. Klaassen proposed modifying Gray’s model by conditioning the expectation of

previous conditional variances on all available observations and also on the current regime.

A different concept of Markov-switching GARCH model has recently been introduced by

Haas, Mittnik and Paolella. Accordingly, a finite state-space Markov chain is assumed to

govern the ARCH parameters while the autoregressive behavior of the conditional vari-

ance is subject to the assumption that past conditional variances are in the same regime

as that of the current one.

Markov-switching GARCH processes, as well as the standard GARCH process, are
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nonstationary as their second-order moments change recursively over time. However, if

these processes are asymptotically wide-sense stationary then their variances are guar-

antied to be finite. A necessary and sufficient condition for the stationarity of a (single-

regime) GARCH(p, q) process has been developed in [1]. Condition for the stationarity

of a natural, path-dependent Markov-switching GARCH(p, q) model, has been developed

in [122], and in [14] a deep analysis of the probabilistic structure of that model is de-

rived with conditions for the existence of moments of any order. In [15–17], stationarity

analysis has been derived for some mixing models of conditional heteroscedasticity, and

conditions for the asymptotic stationarity of some AR and ARMA models with Markov-

regimes has been derived in [18–22]. However, for the Markov-switching GARCH models

described above, which avoid the dependency of the conditional variance on the chain’s

history, stationarity conditions are known in the literature only for some special cases.

Klaassen [7] developed necessary (but not necessarily sufficient) conditions for stationarity

of his model in the special case of two regimes and GARCH modeling of order (1, 1). A

necessary and sufficient stationarity condition has been developed by Haas, Mittnik and

Paolella [8] for their Markov-switching GARCH model, but only in case of GARCH(1, 1)

behavior in each regime.

In this chapter, we develop a comprehensive approach for stationarity analysis of

Markov-switching GARCH models, in the general case of m-state Markov chains and

(p, q)-order GARCH processes. We specify the unconditional variance of the process us-

ing the expectation of the regime dependent conditional variances, and assume no history

knowledge of the process except for the model parameters. The expectation of the con-

ditional variance at a given regime is then recursively constructed from the conditional

expectation of both previous conditional and unconditional variances. Consequently, we

obtain a complete recursion for the expected vector of state dependent conditional vari-

ances. The recursive vector form is constructed by means of a representative matrix which

is built from the model parameters. We show that constraining the largest absolute eigen-

value of the representative matrix to be less than one is necessary and sufficient for the

convergence of the unconditional variance, and therefore, for the asymptotic stationarity

of the process. We derive stationarity conditions for the general formulation of the two

variants of Markov-switching GARCH models introduced by Klaassen and Haas et al..
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We show that our results reduce in some degenerated cases to the stationarity condi-

tions developed by Bollerslev [1], Klaassen [7] and Haas et al. [8]. Furthermore, we show

that the stationarity conditions developed by Klaassen are not only necessary but also

sufficient for asymptotic stationarity of his model.

This chapter is organized as follows: In Section 3.2, we review the variants proposed

by Klaassen and Haas et al. for Markov-switching GARCH models, and develop compre-

hensive necessary and sufficient conditions for asymptotic stationarity appropriate for the

general formulation of the models. In Section 3.3, we derive relations between our results

and previous works.

3.2 Stationarity of Markov-switching GARCH mod-

els

Let St ∈ {1, ..., m} denote the (unobserved) regime at a discrete time t and let st be

a realization of St, assuming that {St} is a first-order stationary Markov chain with

transition probabilities aij , p(St = j |St−1 = i), a transition probabilities matrix A,

{A}ij = aij , and stationary probabilities π = [π1, π2, ..., πm]′, πi , p (St = i), where ′

denotes the transpose operation. Let It denote the observation set up to time t, and

let {vt} be a zero-mean unit-variance random process, with independent and identically

distributed elements. Given that St = st, a Markov-switching GARCH model of order

(p, q) can be formulated as

εt = σt,st
vt (3.1)

where the conditional variance of the process σ2
t,st

= E {ε2
t |St = st, It−1} is a function of

p previous conditional variances and q previous squared observations.

Klaassen [7] and Haas, Mittnik and Paolella [8], proposed different variants of Markov-

switching GARCH models. The former is a modification of Gray’s model [6]. Each

of these overcomes the problem of dependency on the regime’s path encountered when

naturally integrating the GARCH model with switching-regimes. However, conditions

for these models to be asymptotically wide-sense stationary and therefore to guarantee a
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finite second-order moments, are known only for some special cases. Klaassen developed

necessary conditions for the stationarity of his model in the case of two-state Markov

chain and GARCH of order (1, 1). Hass et al. gave a necessary and sufficient stationarity

condition for their model, but this condition is restricted to a first-order GARCH model

in each of the regimes (i.e., p = q = 1). We first review these variants of Markov-

switching GARCH models, which we call MSG-I and MSG-II, respectively. Then we

develop necessary and sufficient conditions for their asymptotic wide-sense stationarity

and derive their stationary variances.

3.2.1 MSG-I model

Gray [6] proposed to model the conditional variance of a Markov-switching GARCH model

as dependent on the expectation of its past values over the entire set of states, rather than

dependent on past states and the corresponding conditional variances. Accordingly, the

state dependent conditional variance follows

σ2
t,st

= ξst
+

q
∑

i=1

αi,st
ε2

t−i +

p
∑

j=1

βj,st
E
(

ε2
t−j | It−j−1

)

= ξst
+

q
∑

i=1

αi,st
ε2

t−i +

p
∑

j=1

βj,st

m
∑

st−j=1

p (St−j = st−j | It−j−1) σ
2
t−j,st−j

, (3.2)

and the following constraints

ξst
> 0, αi,st

≥ 0, βj,st
≥ 0, i = 1, ..., q, j = 1, ..., p, st = 1, ..., m (3.3)

are sufficient for the positivity of the conditional variance.

Gray’s model integrates out the unobserved regime path so that the conditional vari-

ance can be constructed from previous observations only. As a consequence, there is no

path dependency problem although GARCH effects are still allowed. Empirical analy-

sis of modeling financial time series demonstrates that this Markov-switching GARCH

model implies less persistence in the conditional variance than the standard GARCH

model, and in addition, its one-step ahead volatility forecast significantly outperforms the

single-regime GARCH model (see, for instance [6, 9, 11]).
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Klaassen [7] proposed modifying Gray’s model by replacing p (St−j = st−j | It−j−1) in

(3.2) by p (St−j = st−j | It−1, St = st) while evaluating σ2
t,st

. Consequently, all available

observations are used, as well as the given regime in which the conditional variance is

calculated. The conditional variance according to Klaassen’s model (denoted here as

MSG-I) is given by

σ2
t,st

= ξst
+

q
∑

i=1

αi,st
ε2

t−i +

p
∑

j=1

βj,st

m
∑

st−j=1

p (St−j = st−j | It−1, St = st) σ
2
t−j,st−j

, (3.4)

and the same constraints (3.3) are sufficient for the positivity of the conditional variance.

Both models integrate out the unobserved regimes for evaluating the conditional vari-

ance. However, Klaassen’s model employs all the available information while Gray’s model

employs only part of it since it does not utilize all the available observations and the as-

sumed regime in which the conditional variance is being calculated. Specifically, if process’

regimes are highly persistent, then both the current state st and the previous innovation

εt−1 give much information about previous states and thus the conditional probability of

st−1 given all the observations up to time t−1 and the next state, is substantially different

from the probability of st−1 which is conditioned only on observations up to time t−2 [7].

In contrast to Gray, Klaassen do manipulate this information in his model while eval-

uating the expectation of previous conditional variances. Furthermore, the formulation

(3.4) better exploits the available information, and its structure yields straightforward

expressions for the multi-step ahead volatility forecasts [7, 9].

The unconditional variance of the MSG-I process, defined in (3.1) and (3.4), can be

calculated as follows:

E
[

ε2
t

]

= EIt−1,St

[

E
(

ε2
t | It−1, st

)]

= ESt

[

EIt−1

(

σ2
t,st

| st

)]

=
m
∑

st=1

πst
EIt−1

(

σ2
t,st

| st

)

. (3.5)

For notation simplification, we shall use E(· | st) and p(· | st) to represent E(· |St =

st) and p(· |St = st), respectively, where st represents the regime realization at time t.

Furthermore, we shall use Et (·) to denote the expectation over the information up to time
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t, i.e., EIt
(·). The expectation of the regime dependent conditional variance follows

Et−1

[

σ2
t,st

| st

]

= ξst
+

q
∑

i=1

αi,st
Et−1

[

ε2
t−i | st

]

+

p
∑

j=1

βj,st

m
∑

st−j=1

Et−1

[

p (st−j | It−1, st) σ
2
t−j,st−j

| st

]

, (3.6)

where the expectation over ε2
t−i can be obtained by

Et−1

[

ε2
t−i | st

]

=
m
∑

st−i=1

∫

It−1

ε2
t−i p (It−1 |st, st−i) p (st−i | st) dIt−1

=
m
∑

st−i=1

p (st−i | st)Et−1

[

ε2
t−i | st−i, st

]

. (3.7)

Note that given the current active state, the expected absolute value is independent of

any future states. Therefore,

Et−1

[

ε2
t−i | st−i, st

]

= Et−1

[

ε2
t−i | st−i

]

=

∫

It−i−1

∫

εt−i

ε2
t−i p (εt−i | It−i−1, st−i) p (It−i−1 | st−i) dεt−idIt−i−1

= Et−i−1

[

E
(

ε2
t−i | It−i−1, st−i

)

| st−i

]

= Et−i−1

[

σ2
t−i,st−i

| st−i

]

. (3.8)

Furthermore, the conditional expectation over the conditional variance in (3.6), weighted

by the current state probability can be obtained by

Et−1

[

p (st−j | It−1, st) σ
2
t−j,st−j

| st

]

=

∫

It−1

σ2
t−j,st−j

p (st−j | It−1, st) p (It−1 | st) dIt−1

=

∫

It−1

σ2
t−j,st−j

p (It−1 | st−j, st) p (st−j | st) dIt−1

= p (st−j | st)Et−j−1

[

σ2
t−j,st−j

| st−j

]

. (3.9)

Consequently, the expectation of the conditional variance at a given regime st can

be recursively constructed, according to the model definitions, from both expectation of

previous conditional variances and expected squared values given the current regime st.

Let r = max {p, q} and define αi,s , 0 for all i > q and βi,s , 0 for all i > p. Then, by

substituting (3.7), (3.8) and (3.9) into (3.6) we obtain

Et−1

[

σ2
t,st

| st

]

= ξst
+

r
∑

i=1

(αi,st
+ βi,st

)

m
∑

st−i=1

p (st−i | st)Et−i−1

[

σ2
t−i,st−i

| st−i

]

, (3.10)
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and applying Bayes’ rule we have

p (st−i | st) =
πst−i

πst

p (st | st−i) =
πst−i

πst

{

Ai
}

st−i,st
. (3.11)

The expected state dependent conditional variance (3.10) is recursively generated from a

weighted sum of its previous expected values through their conditioned probabilities and

the model parameters. Let ξ , [ξ1, ..., ξm]′, let K(i) be an m-by-m matrix with elements

{

K(i)
}

s,s̃
, (αi,s + βi,s)

πs̃

πs

{

Ai
}

s̃,s
, s, s̃ = 1, ..., m , (3.12)

and let ht , [Et−1

(

σ2
t,1 |St = 1

)

, ..., Et−1

(

σ2
t,m |St = m

)

]′ be an m-by-1 vector of the

expected state dependent conditional variances. Then, we have

ht = ξ +
r
∑

i=1

K(i)ht−i . (3.13)

Define the rm-by-1 vectors h̃t ,
[

h′
t, h′

t−1, ..., h′
t−r+1

]′
and ξ̃ ,,, [ξ′, 0, ..., 0]′ , and let

ΨI ,





























K(1) K(2) · · · K(r)

Im 0m · · · 0m

0m Im
...

. . .
. . .

. . .
...

0m · · · 0 Im 0m





























(3.14)

be an mr-by-mr matrix where Im represents the identity matrix of size m-by-m and 0m

is an m-by-m matrix of zeros. Then a recursive vector form of the expected conditional

variance (3.13) can be written as

h̃t = ξ̃ + ΨI h̃t−1, t ≥ 0 , (3.15)

with some initial conditions h̃−1.

Let ρ (·) denote the spectral radius of a matrix, i.e., its largest eigenvalue in modulus,

and let ΛI be an m-by-m square matrix built from the mr-by-mr matrix (I − ΨI)
−1 such

that {ΛI}ij =
{

(I − ΨI)
−1}

ij
, i, j = 1, ..., m. Then we have the following theorem:
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Theorem 3.1. An MSG-I process as defined by (3.1) and (3.4) is asymptotically wide-

sense stationary with variance limt→∞E (ε2
t ) = π′ΛIξ, if and only if ρ (ΨI) < 12.

Proof. The recursive equation (3.15) can be written as

h̃t = Ψt
I h̃0 +

t−1
∑

i=0

Ψt
I ξ̃ , t ≥ 0 . (3.16)

According to the matrix convergence theorem (e.g., [124, pp. 327-329]), a necessary and

sufficient condition for the convergence of (3.16) for t → ∞ is ρ (ΨI) < 1. Under this

condition, Ψt
I converges to zero as t goes to infinity and

∑t−1
i=0 Ψi

I converges to (I − ΨI)
−1,

where the matrix (I − ΨI) is then guaranteed to be invertible. Therefore, if ρ (ΨI) < 1,

equation (3.16) yields

lim
t→∞

h̃t = (I − ΨI)
−1

ξ̃ . (3.17)

By definition, the first m elements of h̃t constitute the vector ht, while the first m

elements of ξ̃ constitute the vector ξ, and the remaining elements of ξ̃ are zeros. Conse-

quently,

lim
t→∞

ht = ΛIξ (3.18)

and using (3.5) we have

lim
t→∞

E
(

ε2
t

)

= π′ΛIξ . (3.19)

Otherwise, if ρ (ΨI) ≥ 1, the expected variance goes to infinity with the growth of the

time index.

3.2.2 MSG-II model

Another variant of Markov-switching GARCH model has recently been proposed by Haas,

Mittnik and Paolella [8]. This model assumes that a Markov chain controls the ARCH

parameters at each regime (i.e., ξs and αi,s), while the autoregressive behavior in each

regime is subject to the assumption that past conditional variances are in the same regime

as that of the current conditional variance. Specifically, the vector of conditional variances

σ2
t ,

[

σ2
t,1, σ

2
t,2, ..., σ

2
t,m

]′
is given by

2Note that for a matrix with nonnegative elements, there exists a real eigenvalue which is equal to the

spectral radius [123, p. 288].
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σ2
t = ξ +

q
∑

i=1

αiε
2
t−i +

p
∑

j=1

B(j)σ2
t−j , (3.20)

where αi , [αi,1, ..., αi,m]′, i = 1, ..., q, and βj , [βj,1, ..., βj,m]′, j = 1, ..., p, are vectors

of state dependent GARCH parameters, and B(j) , diag{βj} is a diagonal matrix with

elements βj on its diagonal. The same constraints which are sufficient to ensure a positive

conditional variance in MSG-I model (3.3) are also applied here to guaranty the positivity

of the conditional variance.

Note that the conditional variance at a specific regime depends on previous conditional

variances of the same regime through the diagonal matrices B(j). Consequently, this model

allows derivation of the conditional variance at a given time from past observations only.

Furthermore, the MSG-II model is analytically more tractable than MSG-I model [8]

and its conditional variance can be straightforwardly constructed since the conditional

variance at a specific time does not depend on previous state probabilities but only on

previous observations and previous conditional variances.

Let αi be an m-by-1 vector of zeros for i > q and let B(j) = 0m for j > p. Let Ω(i)

denote an m2-by-m2 block matrix of basic dimension m-by-m

Ω(i) ,

















Ω
(i)
11 Ω

(i)
21 · · · Ω

(i)
m1

Ω
(i)
12 Ω

(i)
22 · · · Ω

(i)
m2

...
...

Ω
(i)
1m Ω

(i)
2m · · · Ω

(i)
mm

















, (3.21)

with each block given by

Ω
(i)
ss̃ , p (St−i = s |St = s̃)

(

αie
′
s + B(i)

)

, s, s̃ = 1, ..., m , (3.22)

where es is an m-by-1 vector of all zeros, except its sth element which is one. We define

an rm2-by-rm2 matrix by
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ΨII ,





























Ω(1) Ω(2) · · · Ω(r)

Im2 0m2 · · · 0m2

0m2 Im2

...
. . .

. . .
. . .

...

0m2 · · · 0m2 Im2 0m2





























. (3.23)

Let ΛII be an m2-by-m2 matrix which is built from the rm2-by-rm2 matrix (I − ΨII)
−1

such that {ΛII}ij =
{

(I − ΨII)
−1}

ij
, i, j = 1, ..., m2. Let π̄ , [π1e

′
1, π2e

′
2, ..., πme′

m]′, then

we get the following theorem for the stationarity condition of an MSG-II process:

Theorem 3.2. An MSG-II process as defined by (3.1) and (3.20) is asymptotically wide-

sense stationary with variance limt→∞E (ε2
t ) = π̄′ΛIIξ, if and only if ρ (ΨII) < 1.

The proof is given in Appendix 3.A.

3.2.3 Comparison of stationarity conditions

It has been pointed out in [8], that stationarity of the MSG-II model with p = q = 1

requires that the regression parameters β1,s < 1 for all s. It follows from (3.20) that for

general order (p, q), it is necessary that
∑m

i=1 βi,s < 1 . However, the reaction parameters

αi,s may become rather large with correspondence to the regime probabilities. For MSG-I

and model, the reaction parameters αi,s as well as the regression parameters βi,s may

be larger than one, provided that the corresponding regime probabilities are sufficiently

small. Furthermore, in the representative matrix ΨI (3.14) the reaction parameters and

the regression parameters are weighted by the same weights p (St−i = s |St = s̃). Conse-

quently, for a given state s, the values of αi,s and βi,s in MSG-I model have the same

contribution to the model stationarity3, but for MSG-II model, each of them affects dif-

ferently the heteroscedasticity evolution. Figure 3.1 illustrates the stationarity regions

for MSG-I model (solid line) and MSG-II (dashed-dotted line), in the case of two-state

Markov chains and GARCH of order (1, 1). In (a), the regime transition probabilities are

3This also holds for the natural extension of GARCH(p, q) to Markov-switching, which has been

analyzed in [122].
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a1,1 = 0.6 and a2,2 = 0.7 and the reaction parameters are α1,1 = 0.4 and α1,2 = 0.5. The

stationarity region is the interior intersection of each curve and the two axes. In (b),

a1,1 = 0.2, a2,2 = 0.3 are considered with reaction parameters α1,1 = 0.8 and α1,2 = 0.2.

For the MSG-I model, stationarity is allowed with regression parameters larger than one

while for the MSG-II, β1,1 and β1,2 must be both smaller than one for stationarity. In both

cases, π2 > π1, however, in (a) the stationarity region of the MSG-II is contained in the

stationarity region of MSG-I while in (b), in which case α1,1 >> α1,2, for β1,1 ∈ [0.2, 0.55]

stationarity is achieved with a larger β1,2 for the MSG-II than for the MSG-I.

3.3 Relation to other works

Klaassen [7] developed conditions which are necessary, but not necessarily sufficient, for

asymptotic stationarity of a two-state MSG-I model of order (1, 1). Consider the 2-by-2

matrix C with elements

cij = aji (α1,i + β1,i)πj/πi, i, j = 1, 2 , (3.24)

Klaassen showed that the stationary variance of the process is given by

σ2 = π′(I − C)−1
ξ , (3.25)

and that the conditions:

c11, c22 < 1, and det(I − C) > 0 , (3.26)

are necessary to ensure that the stationary variance is finite and positive.

For the special case of our analysis for GARCH orders of (1, 1) and MSG-I model with

two states, the representative matrix ΨI reduces to matrix C and the stationary variance

reduces to the expression given in (3.25). Metzler showed [125] that for a nonnegative

matrix C (i.e., cij ≥ 0), ρ (C) < 1 if and only if all of the principal minors of (I − C) are

positive. Furthermore, together with Hawkins-Simon condition [126], ρ (C) is less than one

if and only if (I − C)−1 has no negative elements. Therefore, for the nonnegative matrix

C, the condition c11, c22 < 1 implies det(I − C) > 0 and it is equivalent to ρ (C) < 1.

Accordingly, the conditions of Klaassen are not only necessary but also sufficient for

asymptotic stationarity.



3.3. RELATION TO OTHER WORKS 47

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

β
1
,2

β1,2

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
1
,2

β1,2

(b)

Figure 3.1: Stationarity regions for two-state Markov-chains with GARCH of order (1, 1) corre-

sponding to MSG-I (solid line) and MSG-II (dashed-dotted line). The regime transition proba-

bilities and the reaction parameters are (a) a1,1 = 0.6, a2,2 = 0.7 and α1,1 = 0.4, α1,2 = 0.5; (b)

a1,1 = 0.2, a2,2 = 0.3 and α1,1 = 0.8, α1,2 = 0.2.
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A necessary and sufficient condition for asymptotic stationarity of an MSG-II model

of order (1, 1) has been developed by Haas et al. [8]. Accordingly, the largest eigenvalue

in modulus of an m2-by-m2 block matrix D is constrained to be less than one, where

D =

















D11 D21 · · · Dm1

D12 D22 · · · Dm2

...
...

...

D1m D2m · · · Dmm

















(3.27)

is built from matrices Dij of size m-by-m which are obtained by

Dij = aij

(

B(1) + α1e
′
j

)

. (3.28)

The stationarity analysis in [8] for an MSG-II process employs a forward recursive

calculation of the expected conditional variance, assuming some initial conditions. As a

result, the probabilities of state transitions, aij, are used for evaluating the expectation of

the one step ahead conditional variance. Our analysis manipulates a backward recursion

of the conditional variance expectation, and thus, it uses the stationary probabilities of

the Markov chain, along with the transition probabilities, to generate previous conditional

states probabilities p (st−i | st). Therefore, when we degenerate the MSG-II model to order

p = q = 1 (which is the case analyzed in [8]) the block matrices D (3.27) and ΨII (3.23)

are not identical, and specifically, for that order of model we have ΨII = Ω(1) and

Ω
(1)
ij =

πiaij

πjaji

Dji . (3.29)

Although our representative matrix ΨII and that developed in [8] do not share the same

elements, we show in Appendix 3.B that their eigenvalues are identical and therefore both

conditions are equivalent for that order of MSG-II.

A special case of any of the MSG models is a degenerated case of having a single

regime of order (p, q) (the models reduce to a standard GARCH(p, q) model). In that

case, the representative matrices are equal, ΨI = ΨII . Francq, Roussignol and Zaköıan

[122] developed a stationarity condition for the natural case of Markov-switching GARCH

model, in which case the conditional variance depends on the active regime-path. For

the special case of a single-regime model they got the transition matrix of a standard

GARCH(p, q) model which is equal to that which is derived e.g ., by substituting K(i) =
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αi,1+βi,1 and I1 = 1 in (3.14). They showed that having the spectral radius of that matrix

to be less than one is equivalent to Bollerslev’s condition for the asymptotic wide-sense

stationarity of a GARCH(p, q) model,
∑r

i=1 (αi,1 + βi,1) < 1 [1].

3.4 Conclusions

Conditions for asymptotic wide-sense stationarity of random processes with time-variant

distributions are useful for ensuring the existence of a finite asymptotic volatility of the

process. We developed a comprehensive approach for stationarity analysis of Markov-

switching GARCH processes where finite state space Markov chains control the switching

between regimes, and GARCH models of order (p, q) are active in each regime. Necessary

and sufficient conditions for the asymptotic stationarity are obtained by constraining the

spectral radius of representative matrices, which are built from the model parameters.

These matrices also enable derivation of compact expressions for the stationary variance

of the processes.

3.A Proof of Theorem 3.2

In this appendix we prove Theorem 3.2, which gives necessary and sufficient condition for

the asymptotic wide-sense stationarity of MSG-II model and also its stationary variance.

Following (3.20) and (3.5), the expectation of the MSG-II conditional variance under

a chain state s, follows:

Et−1(σ
2
t,s | st) = ξs +

q
∑

i=1

αi,sEt−1

(

ε2
t−i | st

)

+

p
∑

j=1

βj,sEt−1(σ
2
t−j,s | st) (3.30)

where using (3.7) and (3.8)

Et−1

(

ε2
t−i | st

)

=
m
∑

st−i=1

p (st−i | st)Et−i−1

(

σ2
t−i,st−i

| st−i

)

, (3.31)

and

Et−1(σ
2
t−j,s | st) = ESt−j

[

Et−1(σ
2
t−j,s | st−j, st)

]

=
m
∑

st−j=1

p (st−j | st)Et−i−1

(

σ2
t−j,s | st−j

)

. (3.32)
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The main difference between an MSG-II model and MSG-I model is that the conditional

variance depends on previous conditional variances of the same regime, regardless of the

past regimes path. By contrast, for MSG-I model, the conditional variance is a linear

combination of past state-dependent conditional variances, where for each one the state

is conditioned to be the active one. Consequently, the computation of the unconditional

variance for an MSG-II model requires the terms Et−j−1(σ
2
t−j,s | st−j) for all s = 1, ..., m,

while in case of MSG-I model, only Et−j−1(σ
2
t−j,st−j

| st−j) is relevant to calculate the

expectation of the unconditional variance. Accordingly, an m2-by-1 vector is necessary

to represent Et−1(σ
2
t,s | st) elements, and rm2-by-rm2 matrix is employed for the recursive

formulation.

By substituting (3.32) and (3.31) into (3.30) we have

Et−1(σ
2
t,s | st) = ξs+

r
∑

i=1

m
∑

st−i=1

p (st−i | st)
[

αi,sEt−i−1

(

σ2
t−i,st−i

| st−i

)

+ βi,sEt−i−1

(

σ2
t−i,s | st−i

)

]

.

(3.33)

Let gt (s, st) , Et−1

(

σ2
t,s | st

)

, and let gt , [gt (1, 1) , gt (2, 1) , ..., gt (m, 1) , gt (1, 2) , ..., gt (m,m)]′

be a vector of expected, state dependent, conditional variances. Then, a recursive formu-

lation of the conditional variance is given by

g̃t = ξ̃ + ΨII g̃t−1, t ≥ 0 , (3.34)

where g̃t ,
[

g′
t, g′

t−1, ..., g′
t−r+1

]′
. The completion of this proof follows the proof of

Theorem 1.

3.B Equivalence with Haas condition

In this appendix we show that the eigenvalues of matrices D (3.27) and ΨII = Ω(1) (3.23)

are equal for the case of an m-state MSG-II model of order (1, 1).

Let D̃ denote an m2-by-m2 matrix that is given by

D̃ ,

















B(1) + α1e
′
1 0m · · · 0m

0m B(1) + α1e
′
2

. . .
...

...
. . .

. . . 0m

0m · · · 0m B(1) + α1e
′
m

















, (3.35)
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and let ⊗ denote the Kronecker product. Then D = D̃ (A′ ⊗ Im). Let 1m denote an

m-by-1 vector of ones and let P , diag(π ⊗ 1m). By substituting (3.28) into (3.29), we

have

Ω
(1)
ij =

πi

πj
aij

(

B(1) + α1e
′
i

)

(3.36)

and

Ω(1) = P−1 (A′ ⊗ Im) D̃P. (3.37)

Therefore, Ω(1) and (A′ ⊗ Im) D̃ are similar matrices, and the spectrum of Ω(1), eig
{

Ω(1)
}

,

satisfies

eig
{

Ω(1)
}

= eig
{

(A′ ⊗ Im) D̃
}

= eig
{

D̃ (A′ ⊗ Im)
}

= eig {D} . (3.38)
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Chapter 4

Markov-Switching GARCH Process

in the Short-Time Fourier Transform

Domain1

In this chapter, we introduce a Markov-switching generalized autoregressive conditional

heteroscedasticity (GARCH) model for nonstationary processes with time-varying volatil-

ity structure in the short-time Fourier transform (STFT) domain. The expansion coeffi-

cients in the STFT domain are modeled as a multivariate complex GARCH process with

Markov-switching regimes. The GARCH formulation parameterizes the correlation be-

tween sequential conditional variances while the Markov chain allows the process to switch

between regimes of different GARCH formulations. We obtain a necessary and sufficient

condition for the asymptotic wide-sense stationarity of the model, and develop a recursive

algorithm for signal restoration in a noisy environment. The conditional variance is esti-

mated by iterating propagation and update steps with regime conditional probabilities,

while the model parameters are evaluated a priori from a training data set. Experimental

results demonstrate the performance of the proposed algorithm.

In Appendix 4.A, we introduce an application of the Markov-switching GARCH model

in the STFT domain to speech enhancement. A GARCH model is utilized with Markov

switching regimes, where the parameters are assumed to be frequency variant. The model

parameters are evaluated in each frequency subband and a special state (regime) is de-

1This chapter is based on [127,128].
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fined for the case where speech coefficients are absent or below a threshold level. The

problem of speech enhancement under speech presence uncertainty is addressed and it is

shown a soft voice activity detector may be inherently incorporated within the algorithm.

Experimental results demonstrate the potential of our proposed model to improve noise

reduction while retaining weak components of the speech signal.

4.1 Introduction

The generalized autoregressive conditional heteroscedasticity (GARCH) model is widely-

used in the field of econometrics for volatility forecast derivation of economic rates. This

model, first introduced by Bollerslev [1] as a generalization of the ARCH model [2], explic-

itly parameterizes the time-varying volatility by using both recent conditional variances

and recent squared innovations. GARCH models preserve the persistence of the process

volatility in the sense that small variations tend to follow small variations and large varia-

tions tend to follow large variations. Incorporating GARCH models with hidden Markov

chains, where each state (regime) of the chain implies a different GARCH behavior, ex-

tends the dynamic formulation of the model and enables a better fit for a process with a

more complex time-varying volatility structure [7–9]. However, a major drawback of such

models is that estimating the volatility with switching-regimes requires knowledge of the

entire history of the process, including the regime path. Consequently, Cai [12] and Hamil-

ton and Susmel [13] proposed a Markov-switching ARCH model, which avoids problems of

path dependency in a noiseless environment. The conditional variance in ARCH models

depends on previous observations only, so the Markov chain does not have to be known for

constructing the conditional variance for a given regime. Gray [6] introduced a variant of

Markov-switching GARCH model relying on the assumption that the conditional variance

given current regime is dependent on the expectation of the previous conditional variances

rather than their values. Accordingly, the conditional variance depends on some finite,

state dependent, expected conditional variances via their conditional state probabilities.

Klaassen [7] proposed modifying Gray’s model by manipulating the current regime and

all available observations while evaluating the expectation of previous conditional vari-

ances. A different method for reducing the dependency of the conditional variance on
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past regimes has recently been proposed by Haas, Mittnik and Paolella [8]. Accordingly,

a Markov chain governs the ARCH parameters while the autoregressive behavior of the

conditional variance is subject to the assumption that past conditional variances are in

the same regime as that of the current conditional variance. Gray, Klaassen and Haas et

al. developed their variants of Markov-switching GARCH models for improved volatility

forecasts of financial time-series under possible existence of shocks. They assumed that

a process is observed in a noiseless environment so that its past observations provide a

complete specification of its current conditional variance, for any given regime.

Recently, GARCH models have been employed for modeling speech signals in the time-

frequency domain [23–25]. Speech signals in the short-time Fourier transform (STFT)

domain demonstrate both “variability clustering” and heavy tail behavior similarly to fi-

nancial time-series [25]. Motivated by these characteristics, it was proposed to model the

conditional variance of speech signals in the STFT domain by a complex, K-dimensional

GARCH model, with statistically independent elements (given past information) sharing

the same GARCH specification. This time-frequency GARCH (TF-GARCH) model has

been shown useful for speech enhancement applications, but it relies on the assumption

that the model parameters are time-invariant. In [26], a GARCH model has been utilized

in the time domain for speech recognition applications. The model parameters, charac-

terizing the speech phonemes, are assumed speaker independent and time-varying. It was

shown that estimating the GARCH specifications for each speech segment and using the

parameters as part of the signal characteristics, speech recognition performance can be

improved.

In this chapter, we introduce a Markov-switching time-frequency GARCH (MSTF-

GARCH) model which exploits the advantages of both the conditional heteroscedasticity

structure of GARCH models and the time-varying characteristics of hidden Markov chains.

Modeling probability density functions of speech signals by utilizing hidden Markov mod-

els has been found useful in speech recognition applications [63–65], and modeling the

speech spectral coefficients as hidden Markov processes with a probability density proto-

type in each frame was applied to the problem of speech enhancement [35, 62]. Here we

model the expansion coefficients of nonstationary random signals in the time-frequency

domain as multivariate complex GARCH processes with Markov-switching regimes, and
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obtain a necessary and sufficient condition for the asymptotic wide-sense stationarity of

the model. A corresponding recursive algorithm is developed for signal restoration in a

noisy environment. The conditional variance is estimated by iterating propagation and

update steps with regime conditional probabilities. The model parameters are estimated

from a training data set prior to the signal restoration using maximum-likelihood (ML)

approach, and the number of states is assumed to be known. We show that the derivation

in [117] of bounds on the mean-square error (MSE) of a composite source signal estimation

is applicable for obtaining an upper bound on the MSE of a single step MSTF-GARCH

estimation. Experimental results demonstrate the improved performance of the proposed

algorithm for restoration of MSTF-GARCH process compared to using an estimator which

assumes a stationary process and compared to using an estimator which assumes a smaller

number of regimes than the process actually has. Furthermore, it is demonstrated that the

squared absolute values of speech coefficients in the STFT domain are better evaluated

by using the MSTF-GARCH model than by using the decision-directed approach.

This chapter is organized as follows. In Section 4.2, we introduce the Markov-switching

time-frequency GARCH model and obtain a necessary and sufficient condition for its

asymptotic wide-sense stationarity. In Section 4.3, we address the problem of signal es-

timation from noisy observations. In Section 4.4, we derive an upper bound on a single

estimation step mean-square error. In Section 4.5, we address the problem of model esti-

mation. Finally, in Section 4.6 we provide some experimental results which demonstrate

restoration of MSTF-GARCH process from noisy observations, and estimation of con-

ditional variances and squared absolute values in the STFT domain from noisy speech

signals.

4.2 Markov-switching time-frequency GARCH

model

In this section we briefly review the TF-GARCH model [25], and introduce a new time-

frequency GARCH model with Markov-switching regimes, which allows further flexibility

in the formulation of the time variation of the conditional variance.
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4.2.1 Time-frequency GARCH model

Let {Xtk | t = 0, ..., T − 1 , k = 0, ..., K − 1} be the coefficients of a time-frequency trans-

formation of a discrete-time signal x (e.g., STFT coefficients), where t is the time frame

index and k is the frequency-bin index. Let Xt , [Xt,0, ..., Xt,K−1]
′ be the vector of spec-

tral coefficients at time frame t, let X τ = X τ
0 , {Xt | t = 0, ..., τ} represent the set of

spectral coefficients up to time τ , and let λtk|τ , E {|Xtk|2 | X τ} denote the conditional

variance of the spectral coefficient at time-frequency bin (t, k), given the clean spectral

coefficients up to time τ . Let {Vt} ∈ CK be a complex Gaussian random process with

Vt ∼ CN (0, IK), where IK is a K-by-K identity matrix. AK-dimensional time-frequency

GARCH model of order (p, q), is defined as follows [25]:

Xtk =
√

λtk|t−1Vtk , k = 0, ..., K − 1 (4.1)

λt|t−1 = ζ · 1 +

q
∑

i=1

αiXt−i ⊙ X∗
t−i +

p
∑

j=1

βjλt−j|t−j−1 , (4.2)

where 1 denotes a vector of ones, ⊙ denotes a term-by-term multiplication and ∗ denotes

complex conjugation. The conditional variance vector, λt|t−1 = E {Xt ⊙ X∗
t | X t−1}, re-

ferred to as the one-frame-ahead conditional variance [25], is a linear function of the

coefficients’ past squared values and conditional variances, where

ζ > 0, αi ≥ 0, i = 1, ..., q, βj ≥ 0, j = 1, ..., p , (4.3)

are sufficient constraints for the positivity of the conditional variance [1]. The time-

frequency GARCH has been introduced in [23] for modeling speech signals in the STFT

domain, but the parameters of the GARCH model are assumed time invariant. Extending

this model such that the model parameters may vary with time introduces additional

flexibility in the model formulation, which may result in better characterization of speech

signals and improved restoration in noisy environments.

4.2.2 MSTF-GARCH formulation

Let St denote the (unobserved) state at time t and let st be a realization of St, assuming

St is a first-order Markov chain. Let It , {X t,St} denote all available information

up to time t, which contains the clean signal coefficients and the regimes path up to
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time t, St , {s0, ..., st}. Denote by λtk|t−1,st
, E {|Xtk|2 | It−1, st} the one-frame-ahead

conditional variance of the spectral coefficient Xtk given the information up to time t− 1

and the chain state st. We assume that the spectral coefficients Xtk are generated by

an m-state Markov-switching time-frequency GARCH process of order (p, q), denoted by

Xtk ∼MSTF-GARCH(p, q), which follows:

Xtk =
√

λtk|t−1,st
Vtk , k = 0, ..., K − 1 , (4.4)

and the one-frame-ahead conditional variance evolves as follows:

λt|t−1,st
= ζst

1 +

q
∑

i=1

αi,st
Xt−i ⊙ X∗

t−i +

p
∑

j=1

βj,st
λt−j|t−j−1,st−j

, (4.5)

where

ζs > 0, αi,s ≥ 0, βj,s ≥ 0, i = 1, ..., q, j = 1, ..., p, s = 1, ..., m (4.6)

are sufficient constraints for the positivity of the one-frame-ahead conditional variance.

It follows from (4.4) and (4.5) that the conditional density of the coefficients depends on

past values (through previous conditional variances) and also on the regime-path up to

the current time. As considered in previous works on TF-GARCH, we assume that the

model parameters are frequency-invariant. This restriction can be easily relaxed for the

case of frequency (or sub-band) dependent parameters, i.e., ζk,s, αi,k,s and βi,k,s, but the

complexity of the model estimation then grows rapidly (see Section 4.5).

GARCH models provide a rich class of possible parametrization of conditional het-

eroscedasticity (i.e., time-varying volatility) and the hidden Markov chain allows these

GARCH formulations to switch along time. Volatility persistence naturally arises in a

single-regime GARCH model. However, the existence of a Markov chain with different

GARCH parameters allows the process to switch between regimes of different volatility

formulations and different levels of volatility.

4.2.3 Stationarity of an MSTF-GARCH process

The conditional variance of a GARCH process, and in particular of a Markov-switching

GARCH process, changes recursively over time. Consequently, asymptotic wide-sence
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stationarity is required to ensure a finite second-order moment [7, 8, 121]. Necessary and

sufficient conditions for the asymptotic stationarity of three variants of GARCH models

with Markov-switching regimes have been derived in [121]. Those models generalize the

models of Gray [6], Klaassen [7] and Haas et al. [8], but they all differ from our MSTF-

GARCH model, which is a multivariate, complex valued process that entails the regime

path for the construction of the conditional variance from past observations. A necessary

and sufficient condition for asymptotic wide-sense stationarity of an MSTF-GARCH pro-

cess has been derived in [128]. For the completeness of this chapter we briefly summarize

these results:

Assuming a stationary Markov chain with stationary probabilities πs = p (St = s), the

unconditional variance of the process can be calculated using (4.4) and (4.5):

E {Xt ⊙X∗
t} =

∑

st

πst
E {Xt ⊙X∗

t | st}

=
∑

st

πst
E
{

λt|t−1,st

}

, (4.7)

where

E
{

λt|t−1,st

}

= ζst
1 +

q
∑

i=1

αi,st
E
{

Xt−i ⊙ X∗
t−i | st

}

+

p
∑

j=1

βj,st
E
{

λt−j|t−j−1,St−j
| st

}

,

(4.8)

and

E
{

λt−i|t−i−1,St−i
| st

}

=
∑

st−i

p (st−i | st)E
{

λt−i|t−i−1,st−i

}

. (4.9)

Note that E
{

λt|t−1,st

}

denotes the expected value of the conditional variance under the

regime St = st, but E
{

λt|t−1,St
| ·
}

denotes a conditional expectation of the conditional

variance at time t where the active regime at that time is unknown. Since no prior

information is given, we have

E
{

Xt−i ⊙X∗
t−i | st

}

=
∑

st−i

p (st−i | st)E
{

λt−i|t−i−1,st−i

}

, (4.10)

and consequently we obtain [128]

E
{

λt|t−1,st

}

= ζst
1 +

r
∑

i=1

∑

st−i

(αi,st
+ βi,st

)
πst−i

πst

{

Ai
}

st−i,st
E
{

λt−i|t−i−1,st−i

}

, (4.11)
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where r , max{p, q}, αi,st
, 0 ∀i > q, βi,st

, 0 ∀i > p, andA is the transition probabilities

matrix, i.e., {A}ij , aij = p (St = j |St−1 = i). Define m-by-m matrices Ki , i = 1, ..., r

with elements

{Ki}s,s̃ , (αi,s + βi,s)
πs̃

πs

{

Ai
}

s̃,s
, s, s̃ = 1, ..., m , (4.12)

and an mr-by-mr matrix as follows

Ψ ,





























K1 K2 · · · Kr

Im 0 · · · 0

0 Im
...

. . .
. . .

. . .
...

0 · · · 0 Im 0





























. (4.13)

Let ρ (·) denote the spectral radius of a matrix, i.e., its largest eigenvalue in modulus,

and let Φ be an m-by-m square matrix built from the mr-by-mr matrix (I − Ψ)−1 such

that {Φ}ij =
{

(I − Ψ)−1}

ij
, i, j = 1, ..., m. Then a necessary and sufficient condition

for asymptotic wide-sense stationarity of an MSTF-GARCH process is ρ (Ψ) < 1, and

the asymptotic covariance matrix of the process is then a diagonal matrix (see [128] for a

detailed proof):

lim
t→∞

E
{

XtX
H
t

}

= (πΦζ) IK , (4.14)

where ζ , [ζ1, ..., ζm]′, π is the row vector of the stationary probabilities of the Markov

chain, and (·)H denotes the Hermitian transpose operation.

This stationarity condition is a necessary and sufficient condition for the existence of

a finite second-order moment of the process. It implies that in some regimes (but not in

all of them) the conditional variance may grow over time (i.e.,
∑

i αi,s +
∑

j βj,s > 1 for

some states s) but still the unconditional variance can be finite [121, 128].

4.3 Restoration of noisy MSTF-GARCH process

In this section we develop a recursive algorithm for the restoration of MSTF-GARCH

processes observed in additive stationary noise.
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A hidden Markov process is a discrete-time finite-state Markov chain observed through

a memoryless invariant channel, where the chain state is assumed to be hidden but the

transition probabilities between sequential states are assumed to be known. As a conse-

quence of the memoryless channel, the conditional density of the observed signal at time

t (say Xt) given the chain state st, depends only on the given state and not on previous

observations, i.e., the conditional density of a hidden Markov process (HMP) realizes

p(Xt | st,Xt−1,Xt−2, ...) = p(Xt | st). Combining GARCH models with hidden Markov

chains, where each state is assumed to have a different GARCH formulation, introduces

further complexity when trying to forecast or estimate the process, since the conditional

variance of the process evolves as a function of previous conditional variances, as implied

from (4.5). Consequently, the conditional density depends on the entire history of the

process, i.e., past values and active states. To avoid this problem, several variants of

GARCH processes with Markov-switching regimes have been proposed, e.g., [6–8]. These

models formulate differently the conditional variance at any regime as dependent on past

signal observations only. However, these variants of Markov-switching GARCH models

have been developed for the purpose of forecasting volatility of financial time-series, as-

suming that the process is observed in a noiseless environment, and that all past clean

signal values are given.

We use an MSTF-GARCH(1, 1) model, as defined in (4.4) and (4.5), to model complex,

nonstationarity random signals and we develop a recursive signal estimation algorithm for

restoring the clean signal and its second-order moment, from noisy observations. The or-

der (1, 1) is chosen for computational simplicity since higher (p, q)-orders imply strong

dependency of successive conditional variances. Therefore, p = q = 1 is generally as-

sumed for the applications of Markov-switching GARCH modeling, e.g., [6–8, 12, 13].

Let {Xtk} and {Dtk} denote the spectral coefficients of signal and uncorrelated addi-

tive noise signal, respectively, and let Ytk = Xtk + Dtk represent the observed signal.

Let Xt be a K-dimensional complex-valued stochastic process, which evolves as an m-

state first-order MSTF-GARCH, i.e., Xt ∼MSTF-GARCH(1, 1), and let Dt represent

a K-dimensional complex Gaussian random noise, Dt ∼ CN (0, Rd), with known di-

agonal covariance matrix Rd = diag{σ2}. We assume that all MSTF-GARCH model

parameters are known, i.e., the initial regimes probability π(0), the probability tran-
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sitions matrix A, and the GARCH(1, 1) parameters in each of the m regimes. Let

φ ,
{

π(0), A, ζ1, ..., ζm, α1, ..., αm, β1, ..., βm

}

be the set of parameters which specifies

the model, where for a first-order process we denote αs , α1,s and βs , β1,s. In practice,

the model parameters φ are estimated from a set of clean training signals as generally

done with hidden Markov models [35,62,64,129] while the covariance matrix of the noise

process can be estimated using the minimum statistics [72] or the minima controlled re-

cursive averaging algorithms [38, 71]. The problem of model estimation is addressed in

Section 4.5.

The spectral restoration problem is generally formulated as deriving an estimator X̂tk

for the spectral coefficients, such that the expected value of a certain distortion measure

is minimized. We develop a recursive estimator for the signal’s spectral coefficients and

for their absolute squared values in the sense of minimum mean-square error (MMSE),

and we then extend this framework to signal restoration in the sense of MMSE of the

log-spectral amplitude (LSA), which is often used in speech enhancement applications,

see for instance [34, 38].

Let Yτ = Yτ
0 , {Yt | t = 0, ..., τ} be the set of observations up to time τ . The causal

MMSE estimator of the coefficients Xt given the noisy observations up to time t is obtained

as follows:

E
{

Xt | Y t
}

=
∑

st

p
(

st | Y t
)

E
{

Xt | st,Y t
}

. (4.15)

Denote the state dependent, one-frame-ahead conditional covariance matrix of the clean

signal as

Rx
st

, E
{

XtX
H
t | st, It−1

}

. (4.16)

Following the model formulation this covariance matrix is a function of Rx
st−1

and Xt−1

only. However, the clean signal values are usually unavailable, nor the sequence of active

states, so the evaluation of (4.16) requires the whole available observations. To overcome

this problem, we assume that given current regime, past estimated conditional covariances

are sufficient statistics for the conditional variance estimation [24]. Accordingly, given the

set of estimated one-frame-ahead conditional variances Λ̂t ,
{

λ̂t|t−1,St
|St = 1, ..., m

}

which manipulates the observations up to time t − 1, we may use the following signal
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estimator:

X̂t =
∑

st

p
(

st | Λ̂t,Yt

)

E
{

Xt | st, R̂
x
st
,Yt

}

, (4.17)

where under a Gaussian model

E
{

Xt | st, R̂
x
st
,Yt

}

= R̂x
st

(

R̂x
st

+Rd
)−1

Yt . (4.18)

Note that R̂x
st

is a K-by-K diagonal matrix (since {Vtk} are statistically independent)

with the estimated state-dependent conditional variance λ̂t|t−1,st
on its diagonal. This

state-dependent conditional variance can be recursively estimated in the MMSE sense

by calculating its conditional expectation under st given the observation Yt−1 and the

previous set of estimated conditional variances:

λ̂t|t−1,st
, E

{

λt|t−1,St
| st, Λ̂t−1,Yt−1;φ

}

= ζst
1 + αst

E
{

Xt−1 ⊙X∗
t−1 | st, Λ̂t−1,Yt−1;φ

}

+ βst
E
{

λt−1|t−2,St−1
| st, Λ̂t−1,Yt−1;φ

}

. (4.19)

The conditional second-order moment in (4.19), can be obtained by

λ̂t−1|t−1,st
, E

{

Xt−1 ⊙ X∗
t−1 | st, Λ̂t−1,Yt−1;φ

}

=
∑

st−1

p
(

st−1 | st, Λ̂t−1,Yt−1;φ
)

E
{

Xt−1 ⊙ X∗
t−1 | st−1, st, Λ̂t−1,Yt−1;φ

}

=
∑

st−1

p
(

st−1 | st, Λ̂t−1,Yt−1;φ
)

E
{

Xt−1 ⊙ X∗
t−1 | st−1, λ̂t−1|t−2,st−1

,Yt−1;φ
}

,
∑

st−1

p
(

st−1 | st, Λ̂t−1,Yt−1;φ
)

λ̂t−1|t−1,st−1
. (4.20)

The expected one-frame-ahead conditional variance in (4.19), given the one-frame-ahead

regime, can be obtained by:

λ̂t−1|t−2,st
, E

{

λt−1|t−2,St−1
| st, Λ̂t−1,Yt−1;φ

}

=
∑

st−1

p
(

st−1 | st, Λ̂t−1,Yt−1;φ
)

E
{

λt−1|t−2,St−1
| st−1, st, Λ̂t−1;φ

}

=
∑

st−1

p
(

st−1 | st, Λ̂t−1,Yt−1;φ
)

λ̂t−1|t−2,st−1
. (4.21)

The third lines in (4.20) and in (4.21) rely on the fact that given all observations up

to time t − 1 and given the state st−1, the second-order moment of the process at that
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time, and also its conditional variance, are independent of any future state. Moreover,

notice that λ̂t|t,st
and λ̂t|t,st+1

in (4.20) represent the expected second-order moment of the

process based on information up to time t, given the chain state at the same time, and

given the next state, respectively. Similarly, λ̂t|t−1,st
and λ̂t|t−1,st+1

in (4.21) represent the

expectation of the one-frame-ahead conditional variance at time t given the chain state

st, and given the chain state at the next time step, respectively.

The MMSE estimation of the process’ second-order moment λ̂t|t,st
in (4.20) given the

estimated one-frame-ahead conditional variance of the same regime λ̂t|t−1,st
(4.21), can

be obtained by

λ̂t|t,st
= E

{

Xt ⊙ X∗
t | st, λ̂t|t−1,st

,Yt

}

= R̂x
st

(

R̂x
st

+Rd
)−1

[

σ2 + R̂x
st

(

R̂x
st

+Rd
)−1

(Yt ⊙ Y∗
t )

]

, st = 1, ..., m , (4.22)

similarly to the method in [24] applied to the case of a single-regime spectral GARCH.

Following the notation in [24] we call (4.22) the update step as it updates the estimation of

the signal’s second-order moment at time t from its estimated one-frame-ahead conditional

variance, using the new observation Yt. Substituting (4.20), (4.21) and (4.22) into (4.19)

we obtain the propagation step which propagates ahead in time to obtain a conditional

variance estimation at the next time, t + 1 (assuming regime st+1), using the available

information up to the current time t:

λ̂t+1|t,st+1
= ζst+1

1 + αst+1
λ̂t|t,st+1

+ βst+1
λ̂t|t−1,st+1

, st+1 = 1, ..., m . (4.23)

Let Λ̂t ,
{

Λ̂0, Λ̂1, ..., Λ̂t

}

be the set of the recursively estimated conditional variances

up to time t, then we can manipulate all previous estimations to recursively evaluate the

probability p
(

st−1 | st, Λ̂
t−1,Yt−1;φ

)

in (4.20) and (4.21) by

p
(

st−1 | st, Λ̂
t−1,Yt−1;φ

)

= p
(

st−1 | Λ̂t−1,Yt−1;φ
)

ast−1,st
/p
(

st | Λ̂t−1,Yt−1;φ
)

, (4.24)

where

p
(

st | Λ̂t−1,Yt−1;φ
)

=
∑

st−1

p
(

st−1 | Λ̂t−1,Yt−1;φ
)

ast−1,st
. (4.25)
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The conditional state probability at the right of (4.25) can be obtained by

p
(

st | Λ̂t,Yt;φ
)

=
b
(

Yt, st | Λ̂t;φ
)

b
(

Yt | Λ̂t;φ
)

=
b
(

Yt | st, λ̂t|t−1,st

)

p
(

st | Λ̂t−1,Yt−1;φ
)

∑

st
b
(

Yt|st, λ̂t|t−1,st

)

p
(

st | Λ̂t−1,Yt−1;φ
) , (4.26)

where b (· | ·) denotes a conditional density function. Specifically, b
(

Yt | st, λ̂t|t−1,st

)

is the

observation conditional density which is a complex normal distribution with zero-mean

and R̂x
st

+Rd covariance matrix,

b
(

Yt | st, λ̂t|t−1,st

)

=
1

πK |R̂x
st

+Rd|
exp

{

YH
t

(

R̂x
st

+Rd
)−1

Yt

}

. (4.27)

Computing the conditional density b
(

Yt | st, λ̂t|t−1,st

)

tends to be numerically unstable

for large values of K since the diagonal values of its covariance matrix (i.e., λ̂t|t−1,st
) are

typically of the same order of magnitude. Therefore, b
(

Yt | st, λ̂t|t−1,st

)

tends to zero or

infinity exponentially fast as K increases. It is therefore useful to recursively evaluate a

normalized density b̃
(

Yt | st, λ̂t|t−1,st

)

as follows:

b̃
(

Yt,0, ..., Ytk̃ | st, λ̂t|t−1,st

)

=
b̃
(

Yt,0, ..., Yt,k̃−1 | st, λ̂t|t−1,st

)

b
(

Yt,k̃ | st, λ̂t|t−1,st

)

∑

st
b̃
(

Yt,0, ..., Yt,k̃−1 | st, λ̂t|t−1,st

)

b
(

Yt,k̃ | st, λ̂t|t−1,st

) ,

(4.28)

for k̃ = 0, ..., K − 1 and substitute it into (4.26). As can be seen from (4.26), this

normalization of b
(

Yt | st, λ̂t|t−1,st

)

does not affect the value of p
(

st | Λ̂t,Yt;φ
)

.

The causal one-frame-ahead conditional variance and the conditional second-order

moment of the process can be obtained by

λ̂t|t−1 =
∑

st

p
(

st | Λ̂t,Yt

)

E
{

λt|t−1,St
| st, Λ̂t

}

=
∑

st

p
(

st | Λ̂t,Yt

)

λ̂t|t−1,st
(4.29)

λ̂t|t =
∑

st

p
(

st | Λ̂t,Yt

)

E
{

Xt ⊙ X∗
t | st, λ̂t|t−1,st

,Yt

}

=
∑

st

p
(

st | Λ̂t,Yt

)

λ̂t|t,st
, (4.30)
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while a state smoothing (i.e., noncausal state probability estimation) for the path-

dependent MSTF-GARCH model has been derived in [130] and may be employed for

noncausal estimation.

The causal recursive MMSE signal restoration algorithm, presented in (4.17) to (4.26),

has a compact vector form with respect to the regimes vector. Let st , [St = 1, ..., St =

m]′ be the regimes vector at time t, let

ρt(sτ ) ,
[

p
(

Sτ = 1 | Λ̂t,Yt

)

, ..., p
(

Sτ = m | Λ̂t,Yt

)]′

(4.31)

be the probabilities of the regimes vector sτ , conditioned on all observations up to frame

t. Let Ct be a regimes probability matrix at time t conditioned on the next regime and

all available observations up to time t, i.e., ct,ij = p
(

St = i |St+1 = j, Λ̂t,Yt

)

, i, j =

1, ..., m. Let α and β represent the vectors of the m regimes’ GARCH parameters, i.e.,

α , [α1, ..., αm]′ and β , [β1, ..., βm]′. Let λ̂tk|τ1,sτ2
,
[

λ̂tk|τ1,Sτ2
=1, ..., λ̂tk|τ1,Sτ2

=m

]′

be an

m × 1 vector of the kth index estimated conditional variances based on observations up

to time τ1, and the corresponding m regimes vector sτ2 . Denote by a(i) and c
(i)
t the ith

column of matrices A and Ct, respectively, and let (÷) denote a term-by-term division

of two vectors. A step-by-step vector form of the causal signal estimation procedure is

described in Table 4.1.

The algorithm, summarized in Table 4.1, estimates both the spectral coefficients and

their conditional variance in the MMSE sense. A more general signal enhancement prob-

lem is formulated as minimization of the following distortion measure:

E
{

|f (Xtk) − f(X̂tk)|2 | Y t
}

, (4.32)

where f(X) is a Borel integrable function. The estimator can be found from

f
(

X̂tk

)

= E
{

f (Xtk) | Y t
}

, (4.33)

where

E
{

f (Xtk) | Y t
}

=
∑

st

p
(

St = st | Y t
)

E
{

f (Xtk) | st,Y t
}

. (4.34)

The log-spectral amplitude MMSE estimator, obtained by substituting f (X) = log |X|
into (4.33), is of particular importance in speech enhancement applications, see for in-

stance [34, 38]. The LSA estimator [34] is given by
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Table 4.1: Vector form of the recursive MSTF-GARCH signal estimation

Initialization:

ρ−1(s0) = π

λ̂−1,k|−2,s0 = λ̂−1,k|−1,s0 = 0m×1, k = 0, ..., K − 1

for t = 0, ..., T − 1

λ̂tk|t−1,st
= ζ + α ⊙ λ̂t−1,k|t−1,st

+ β ⊙ λ̂t−1,k|t−2,st
, k = 0, ..., K − 1

λ̂tk|t,st
= λ̂tk|t−1,st

⊙
[

σ2
k1 +

(

λ̂tk|t−1,st
· |Ytk|2

)

(÷)
(

λ̂tk|t−1,st
+ σ2

k1
)]

(÷)
(

λ̂tk|t−1,st
+ σ2

k1
)

, k = 0, ..., K − 1

b
(

Yt|st, λ̂t|t−1,st

)

= π−K |R̂x
st

+Rd|−1 exp

{

−YH
t

(

R̂x
st

+Rd

)−1

Yt

}

, st = 1, ..., m

Bt , diag
{

b
(

Yt|st, λ̂t|t−1,st

)}

ρt(st) = Bt ρt−1(st) [1′Bt ρt−1(st)]
−1

ρt(st+1) = A′ρt(st)

for i = 1, ..., m : c
(i)
t = a(i) ⊙ ρt(st)/ρt(st+1 = i)

λ̂tk|t,st+1
= C ′

t λ̂tk|t,st
, k = 0, ..., K − 1

λ̂tk|t−1,st+1
= C ′

t λ̂tk|t−1,st
, k = 0, ..., K − 1

X̂t|t,st
= R̂x

st

(

R̂x
st

+Rd
)−1

Yt

X̂tk = ρ′
t(st)X̂tk|t,st

, k = 0, ..., K − 1

|̂Xtk| = exp (E {log |Xtk| | λtk, Ytk})

= G (ξtk, ϑtk) |Ytk| , (4.35)

where

ξtk ,
λtk

σ2
tk

, γtk ,
|Ytk|2
σ2

tk

, ϑtk ,
γtkξtk
1 + ξtk

(4.36)

and

G(ξ, ϑ) =
ξ

1 + ξ
exp

(

1

2

∫ ∞

ϑ

e−t

t
dt

)

. (4.37)

ξtk and γtk represent the a priori and a posteriori SNRs respectively [33].

By substituting (4.35) into (4.34), and combining the result with the phase of the

noisy signal [34], we obtain the spectral coefficient estimator in the MMSE-LSA sense
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X̂tk = Ytk

∏

st

G
(

ξ̂tk,st
, ϑ̂tk,st

)p(st|Yt)
, (4.38)

where

ξ̂tk,st
,
λ̂tk|t,st

σ2
tk

, ϑ̂tk,st
,

γtkξ̂tk,st

1 + ξ̂tk,st

, (4.39)

and p (st|Y t) is recursively estimated using (4.26).

4.4 Estimation efficiency

In this section we analyze the mean-square error of a one step ahead MMSE estima-

tion using the proposed recursive algorithm. The recursive formulation of the MSTF-

GARCH yields an accumulated error in the estimation of the variance and the signal.

However, for each regime and in each frame the algorithm evaluates the conditional vari-

ance as a weighted sum of previous estimated conditional variances and squared abso-

lute values (4.20), (4.21). These weights are proportional to the conditional densities

b
(

Yt | st, λ̂t|t−1,st

)

in (4.26). Consequently, an over estimation of the conditional variance

on a specific frame can be followed in the algorithm by giving a high probability (i.e.,

higher weight) to a regime with small parameters which compensates the previous over

estimation. Similarly, an under estimation of the conditional variance can be compensated

by giving a high probability to a regime with large parameters.

Assume that the process is observed perfectly (without noise) up to time t − 1 and

that the regime path is known up to that time. Then, λt−1|t−2,st−1
can be calculated

by (4.5). Following Ephraim and Merhav [117] which derive bounds for the MSE of a

composite source signal estimation, we assume that (i) the Markov chain is stationary

and the necessary and sufficient condition for a bounded variance is satisfied; (ii) λ̂t|t,st
is

square integrable with respect to b
(

Yt |λt|t−1,st

)

and b
(

Yt |λt|t−1,s̃t

)

; and (iii) the regime

transition probabilities are positive, i.e., aij ≥ amin > 0 ∀i, j = 1, ..., m.

The one-step-ahead MMSE estimator (4.17) is unbiased in the sense that E
{

X̂t

}

=

E {Xt}, and following [117] we obtain an upper bound for the variance of the one-step-

ahead estimation error, assuming that the process is observed with an additive, indepen-

dent stationary noise. The one-step-ahead MSE is given by
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e2t ,
1

K
trE

{

(

Xt − X̂t

)(

Xt − X̂t

)H
}

, (4.40)

where the signal estimator X̂t follows

X̂t = E
{

Xt | It−1,Yt

}

= E
{

Xt | st−1,λt−1|t−2,st−1
,Xt−1,Yt

}

= E {Xt |Λt,Yt} . (4.41)

Under the above assumptions the MSE can be written as [117, eq. (13) − (17)]

e2t = µ2
t + η2

t , (4.42)

where

µ2
t ,

1

K
trE {cov (Xt |Λt, st,Yt)}

=
1

K
trE

{

cov
(

Xt |λt|t−1,st
, st,Yt

)}

(4.43)

η2
t ,

1

2

∑

st 6=s̃t

E {p (st | st−1,Λt,Yt) p (s̃t | st−1,Λt,Yt) g (st, s̃t,Λt,Yt)} , (4.44)

and

g (st, s̃t,Λt,Yt) ,
1

K
tr

{

(

X̂t|t,st
− X̂t|t,s̃t

)(

X̂t|t,st
− X̂t|t,s̃t

)H
}

= g
(

st, s̃t,λt|t−1,st
,λt|t−1,s̃t

,Yt

)

. (4.45)

The state probabilities in (4.44) can be evaluated using (4.26):

p (st | st−1,Λt,Yt) =
b
(

Yt | st,λt|t−1,st

)

ast−1,st
∑

st
b
(

Yt | st,λt|t−1,st

)

ast−1,st

, (4.46)

and the signal estimate given the state st is given by

X̂t|t,st
= Wst

Yt , (4.47)

where Wst
is the conditional Wiener filter: Wst

, Rx
st

(

Rx
st

+Rd
)−1

. Substituting (4.47)

into (4.45), we have
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g (st, s̃t,Λt,Yt) =
1

K
YH

t (Wst
−Ws̃t

)H (Wst
−Ws̃t

)Yt

,
1

K
YH

t W
2
s̃tst

Yt . (4.48)

The one-step-ahead MSE, e2t , is decomposed into two positive terms, µ2
t and η2

t . The first

is the MSE of the estimator X̂t|t,st
which relies on knowing the true regime at time t,

and therefore it is the optimal estimator in the MMSE sense. This term is evaluated by

substituting (4.43) into (4.47):

µ2
t =

1

K
tr
∑

st

ast−1st
Wst

Rd . (4.49)

The second term, η2
t , is a weighted sum of cross error terms which depend on pairs of the

process regimes. This term is difficult to evaluate, but it is upper bounded by [117, eq.

(18) and (23)]

η2
t ≤ 1

2

∑

st 6=s̃t

a−2
min (Ist

(s̃t) + Is̃t
(st)) , (4.50)

where

Ist
(s̃t) ≤

1

K

∑

st 6=s̃t

tr
{

W 2
sts̃t
Qs̃t

}

(

|Rλ (st, s̃t) | · |Qst
|−λ · |Qs̃t

|λ−1 +
tr
{

W 2
sts̃t
Rλ (st, s̃t)

}

tr
{

W 2
sts̃t
Qs̃t

}

)

(4.51)

with λ > 0 [117, eq. (31) to (39) and (54) to (60)], Qst
denotes the covariance matrix of

the noisy signal given the regime st, and Rλ (st, s̃t) is defined by

Rλ (st, s̃t) ,
[

λQ−1
st

+ (1 − λ)Q−1
s̃t

]−1
. (4.52)

In the derivation of (4.51) it is assumed that Rλ (st, s̃t) is positive definite [117]. Since

Qst
is a diagonal matrix with positive eigenvalues, Rλ (st, s̃t) is positive definite for any

0 < λ < 1. Substituting (4.51) into (4.50) and using the diagonality of the covariance

matrices, we obtain an upper bound for the cross error term

η2
t ≤ 1

a2
minK

∑

st 6=s̃t

(

tr
{

W 2
sts̃t
Qs̃t

}

· |Rλ (st, s̃t) | · |Qst
|−λ · |Qs̃t

|λ−1 + tr
{

W 2
sts̃t
Rλ (st, s̃t)

})

(4.53)

for 0 < λ < 1. It is worthwhile noting that our MSE analysis follows the analysis in [117]

but, the latter deals with a memoryless regime-switching process and a Toeplitz covariance

matrix, whereas in our case both assumptions do not hold.
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4.5 Model estimation

In this section we address the problem of estimating the model parameters φ , {π(0),

A, ζ1, ..., ζm, α1, ..., αm, β1, ..., βm}. The ML estimation approach is commonly used for

estimating the parameters of GARCH models (e.g., [1, 5, 7]) and also for estimating the

transition probability matrices (e.g., [129]). The model parameters are estimated from a

training data set of N clean signals of lengths Tn ,n = 1, ..., N . Let
{

X
(n)
t

}

denote the

spectral coefficients of the nth clean training signal and let X τ,(n) , {X(n)
t | t = 0, ..., τ}.

The conditional distribution of the vector X
(n)
t given its past observations is a mixing of

zero mean Gaussian vectors with diagonal covariance matrices R̂
x,(n)
st :

b
(

X
(n)
t | X t−1,(n)

)

=
∑

st

p
(

st | X t−1,(n)
)

b
(

X
(n)
t | st, R̂

x,(n)
st

)

. (4.54)

Given a set of model parameters φ, the diagonal covariance matrix of the density

b
(

X
(n)
t | st, R

x,(n)
st

)

can be recursively estimated by using the estimation algorithm intro-

duced in Section 4.3, where the signal observations are known in this case. Assuming that

the process is asymptotically wide-sense stationary, and that the training sequences are

sufficiently large, the initial state probabilities, π(0), and the initial conditional variance,

λ0|−1,s0
, have negligible contribution to the total likelihood. Therefore it is convenient to

choose in the following optimization problem the stationary values as the initial values,

i.e., λ̂0k|−1,s0 = Φ̂ζ̂ as the initial conditional variances, and π(0) = π̂ as the initial state

probabilities.

The conditional log-likelihood of the training set is given by

L(φ) =
∑

n

Tn−1
∑

t=0

log b
(

X
(n)
t | X t−1,(n);φ

)

. (4.55)

Using the constraints in (4.6) and imposing Â to be a transition probability matrix,

the ML estimates of the model parameters φ can be obtained by solving the following

nonlinear constrained optimization problem:
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max
φ̂

L(φ)

s.t. ζ̂i>0, α̂i ≥ 0, β̂i ≥ 0,
M
∑

j=1

âij = 1 ∀i ∈ {1, ..., m} . (4.56)

For a given parameters set φ̂, the sequence of state dependent conditional variances
{

Λ̂t

}

can be evaluated recursively according to the method described in Section 4.3 and so is

the set of conditional state probabilities p (st | X t−1). The conditional log-likelihood (4.55)

can then numerically maximized under the linear constrains of (4.56) as specified in [6,7]

or by using sequential quadratic programming [131,132]. The computational complexity

required for the model estimation is much higher than that required for a single-regime

GARCH model since m2 parameters are to be estimated for the transition probabilities

matrix and in addition 3m GARCH parameters are to be evaluated. However, using the

Markov-switching model, the optimization problem needs to be solved only once, prior to

the restoration procedure. It is well known that the optimal set of parameters, φ, is not

necessarily unique in a Markovian model [129] and in addition, the numerical optimization

solution may only guarantee a local maxima of the likelihood function. However, the

flexibility of the model enables better results than that achievable with a single-regime

GARCH model [7,8]. This is also shown in our simulation results, both for MSTF-GARCH

processes and for speech signals.

4.6 Experimental results

In this section we demonstrate the performance of the proposed algorithm when applied

to restoration of noisy MSTF-GARCH signals, and to estimation of conditional variances

and squared absolute values of speech signals in the STFT domain.

4.6.1 MSTF-GARCH signals

The proposed model estimation and signal restoration algorithm has been applied to

MSTF-GARCH models of 3 and 5 regimes, degraded by additive independent white noise

with 0 to 15 dB input signal-to-noise ratio (SNR). For each state space (m = 3, 5), a set of

20 stationary models have been simulated with uniformly distributed parameters on the
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interval (0, 1]. For each model, the parameters, φ, are estimated from a set of 10 training

signals, each of time length T = 100 and dimension K = 100. The estimated parameters

are employed for restoration of a set of test signals containing 20 noisy signals of the same

size, and basically 4 types of estimated variances are compared by incorporating them

into the signal’s recursive MMSE estimator of (4.17) and (4.18). The “theoretical limit” is

referred to as the estimator which exploits the true conditional variances, λt|t−1,st
, of the

simulated process. This estimator is the optimal estimator in the MMSE sense and its

performance is compared with those of the recursive estimators. The “MSTF-GARCH,

true model” is referred to as the recursive signal estimator, described in Section 4.3, which

manipulates the true parameters set, φ, and the “MSTF-GARCH, m = i” estimator

employs a set of estimated parameters, φ̂, assuming that the model has i regimes. For the

“MSTF-GARCH, m = i” estimator, the set of parameters, φ̂, is estimated using the ML

approach as described in Section 4.5. The performance of our algorithm is also compared

with that of an estimator that assumes a “constant variance” process. For that estimator

(only), the vector of “stationary” variances, are evaluated for each noisy signal from the

corresponding clean signal.

Figure 4.1 (a) shows the SNR improvement obtained by using the different estimators,

when applied to 3-state MSTF-GARCH signals. It can be seen that even when assuming

a small number of regimes, still the MSTF-GARCH estimator outperforms the “constant

variance” estimator, and the results achieved by assuming 3 or 5 regimes are comparable

to those obtained by using the true model parameters. Figure 4.1 (b) shows estimation

results for 5-state MSTF-GARCH processes, under the assumption of 1, 3, 5 or 7 regimes.

The estimation performances improve with the increase of the number of assumed regimes,

but using a larger number of regimes than the true number (e.g., 7 instead of 5 or 5 instead

of 3) yields less accurate results.

The time-varying behavior of the recursive estimator is demonstrated for a 5-state

MSTF-GARCH signal degraded by additive white noise with 5 dB SNR. Figure 4.2 shows

trace of the instantaneous output SNR for each time frame, obtained by the optimal es-

timator, the recursive estimators with presumable 1 or 5 regimes (i.e., “MSTF-GARCH,

m = 1, 5”) and a “constant variance” estimator. The varying volatility of the process

implies time-varying performances for all those estimators. Nevertheless, under the as-
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Figure 4.1: SNR improvements obtained by using different MSTF-GARCH based estimators

when applied to (a) 3-states MSTF-GARCH signals and (b) 5-state MSTF-GARCH signals.

MSTF-GARCH models with various number of regimes are considered and compared with the

true MSTF-GARCH parameters, the theoretical limit and a constant variance estimator.
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Figure 4.2: Trace of instantaneous output SNR achieved by the proposed algorithm when applied

to a realization of a 5-state MSTF-GARCH process degraded by additive white noise with 5 dB

SNR, and restored by an MSTF-GARCH estimator, assuming 1 and 5 states.

sumption of 5 regimes our recursive estimator follows the optimal estimator with a rela-

tively small degradation in performance. The single-regime estimator yields comparable

results as the 5-regimes estimator for frames with large input SNR. However, for frames

with low input SNR the results obtained by the single-regime estimator are comparable

to those obtained by the “constant variance” estimator.

4.6.2 Speech signals

The idea of using different states for the enhancement of speech signals was first introduced

by Drucker [28]. He assumed five categories of speech signals, comprising fricatives, stops,

vowels, glides, and nasals. The application of HMMs for speech enhancement requires

a higher number of states [35, 62] since these models allow only a single density, or a

finite set of mixture-densities, for the spectral coefficients in each state. The GARCH-

based models allow continuous values of conditional variances with possible transients

resulting from switching states. Hence, a small number of states may be sufficient for the

representation of the coefficients’ second-order moments. Furthermore, the dynamic of the
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spectral coefficients is frequency dependent. Therefore, we assume different parameters

in different sub-bands.

The speech signals used in our evaluation are taken from the TIMIT database. The

training set includes 10 different utterances from 10 different speakers, half male and half

female. The speech signals are sampled at 8 kHz and normalized to the same energy.

Transformation into the STFT domain is obtained by using half overlapping Hamming

analysis window of 32 millisecond length. We consider 1,3 and 5-state MSTF-GARCH

models for the speech signals and estimate the one-frame-ahead conditional variance for

test speech signals, not on the training set. Figure 4.3 shows typical estimates of the

one-frame-ahead conditional variance, λ̂tk|t−1, at frequencies of 1, 2 and 3 kHz, using the

different MSTF-GARCH models and assuming independent model parameters in each

frequency sub-band. The estimated conditional variances are compared with the clean

signal’s squared absolute value |Xtk|2. It can be seen that by increasing the number of

regimes, the conditional variance yields a better prediction of the squared absolute value

of the signal. Moreover, it can be seen that the conditional variance estimated by a single-

regime model is smoother than that estimated based on a multi-regime model, and the

latter better tracks rapid changes in the signal’s energy with possible switching of regimes.

During the first few frames, the speech signal is absent and thus, as long as the squared ab-

solute value is below the minimum variance allowed by the model, the predicted variances

are determined by the model threshold. However, the predicted variances converge to the

absolute squared value as soon as the latter exceeds this threshold. Larger number of

states may allow better representation of the conditional variance in different magnitude

ranges and different volatilities, at the expense of greater computational complexity.

Many speech enhancement algorithms employ the decision-directed approach for the

speech spectral variance estimation [33, 70]. Accordingly,

λ̂DD
tk = max

{

ᾱ
∣

∣

∣
X̂t−1,k

∣

∣

∣

2

+ (1 − ᾱ)
(

|Ytk|2 − σ2
k

)

, ξminσ
2
k

}

, (4.57)

where ᾱ (0 ≤ ᾱ ≤ 1) is a weighting factor that controls the trade-off between noise

reduction and transient distortion introduced into the signal. A larger value of ᾱ results

in a greater reduction of the musical noise phenomena, but at the expense of attenuated

speech onsets and audible modifications of transient components. The parameter ξmin is
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Figure 4.3: Typical traces of one-frame-ahead conditional variance estimates for speech signals

at frequencies (a) 1 kHz, (b) 2 kHz and (c) 3 kHz. The conditional variances are estimated by

MSTF-GARCH models of single-state (dashed-dotted line), 3 states (dotted line) and 5 states

(dashed line), and compared with the clean signal’s squared absolute value (solid line).
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Figure 4.4: Typical traces of estimated squared absolute values for speech signal at frequency

of 2 kHz. The variances are estimated by a 5-state MSTF-GARCH model (dashed-dotted line),

decision-directed approach (dotted line) and compared with the clean signal’s squared absolute

value (solid line). The SNRs are (a) 0 dB and (b) 10 dB.
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a lower bound on the a priori SNR.

The GARCH modeling enables an analytical derivation of the decision-directed es-

timator [69]. Considering the degenerated case of a single-state and a single-frequency

ARCH(1) model (i.e., β = 0), the update step (4.22) can be written as

λ̂tk|t = ᾱtkλ̂tk|t−1 + (1 − ᾱtk)
(

|Ytk|2 − σ2
k

)

(4.58)

with

ᾱtk , 1 −
λ̂2

tk|t−1
(

λ̂tk|t−1 + σ2
k

)2 , (4.59)

and 0 < ᾱtk < 1. Substituting the propagation step for λ̂tk|t−1 (4.23) into (4.58) with

α = 1, we obtain

λ̂tk|t = ᾱtkE
{

|Xt−1,k|2 | Y t−1
}

+ (1 − ᾱtk)
(

|Ytk|2 − σ2
k

)

+ ᾱtkζ . (4.60)

For ζ << E
{

|Xt−1,k|2 | Y t−1
}

, (4.60) is similar to the decision-directed variance esti-

mation (4.57) with ᾱtk ≡ ᾱ and where E
{

|Xt−1,k|2 | Y t−1
}

holds for
∣

∣

∣
X̂t−1,k

∣

∣

∣

2

which is

the squared absolute value of the spectral coefficient estimate based on the observations

Y t−1. Accordingly, the degenerated ARCH-based variance estimation with α = 1 and low

valued ζ is closely related to the decision-directed estimator with a time-varying frequency-

dependent weighting factor ᾱtk. However, the GARCH (and ARCH) modeling approach

manipulates the spectral variance as a random process, whereas the decision-directed ap-

proach assumes the spectral variance is a parameter which is heuristically evaluated. In

addition, the decision-directed approach thresholds the estimated variance to be larger

than ξminσ
2
k while in the GARCH modeling, the lower bound is inherently incorporated

into the variance estimation. Since λ̂tk|t−1 > ζ , from (4.22) we obtain the following lower

bound

λ̂tk|t >
ζ

ζ + σ2
k

(

σ2
k +

ζ

ζ + σ2
k

|Ytk|2
)

> 0 . (4.61)

Modeling the spectral coefficients as an MSTF-GARCH allows further flexibility for the

variance estimation. Figure 4.4 demonstrates the estimated squared absolute values of a

speech signal corrupted by a white Gaussian noise with SNR of (a) 0 dB and (b) 10 dB.

The signal squared absolute value at frequency of 2 kHz is compared with its estimated

variance using 5-state MSTF-GARCH model and by using the decision-directed approach.



80 CHAPTER 4. MS-GARCH PROCESS IN THE STFT DOMAIN

It shows that the MSTF-GARCH approach with 5 states yields a better estimate of

the squared absolute value both under high and low SNR conditions, especially in low

energy bins. Furthermore, the MSTF-GARCH approach enables a better tracking of rapid

changes in the coefficients energy than the decision-directed approach.

The differences between Figure 4.3 and Figure 4.4 is that the former demonstrates

the prediction of the coefficients’ variances (i.e., the conditional variance) in a noiseless

environment while the latter shows their second-order moments’ estimation in a noisy

environment. The variance prediction has a small delay of tracking rapid changes and the

update step yields a better estimate of the squared absolute value in high energy bins.

However, when noisy observations are employed, low-energy bins may be under the noise

level and thus the estimation may be less accurate (for both the MSTF-GARCH approach

and the decision-directed approach).

Figures 4.3 and 4.4 demonstrate that the proposed MSTF-GARCH model, when com-

pared to a single-regime model, or to the decision-directed approach, improves the variance

prediction and the squared absolute value estimation of speech signals in the STFT do-

main. Still, one needs to derive a frequency-dependent model and to estimate the signal

presence probability in each time-frequency bin of the noisy speech signal based on the

proposed model, which is a subject for further research.

4.7 Conclusions

We have proposed a statistical model for nonstationary processes with time-varying

volatility structure in the STFT domain. Exploiting the advantages of both the condi-

tional heteroscedasticity structure of GARCH models and the time-varying characteristics

of hidden Markov chains, we model the expansion coefficients as multivariate, complex

GARCH process with Markov-switching regimes. The correlation between successive co-

efficients in the time-frequency domain is taken into consideration by using the GARCH

formulation which specifies the conditional variance as a linear function of its past values

and past squared innovations. The time-varying structure of the conditional variance is

determined by a hidden Markov chain which allows a different GARCH formulation in

each state.
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We showed that an ML estimate of the model can be practically obtained from training

signals (assuming that the number of states is known), and developed a recursive algorithm

for estimating the signal and its conditional variance in the STFT domain from its noisy

observations. The conditional variance is recursively estimated for any regime by iterating

propagation and update steps, while the evaluation of the regime conditional probabilities

is based on the recursive correlation of the process. Experimental results demonstrate the

improved performance of the proposed recursive algorithm compared to using an estimator

which assumes a stationary process, even when the number of assumed regimes is smaller

than the true number. When the number of assumed regimes approaches the true one,

the recursive estimator yields comparable restoration results to those achievable by using

the true model parameters. The conditional variance of an MSTF-GARCH process, as

well as the instantaneous SNR on each frame, change over time. It is demonstrated that

the recursive estimation approach has relatively small performance degradation compared

to the theoretical estimation limit in the MMSE sense. Performance evaluation with real

speech signals demonstrates better variance estimation when using a multi-regime model,

compared to using a single-regime model, and improved squared absolute value estimation

in a noisy environment compared to using the decision-directed approach.

Several extensions of this work, which may be interesting for further research, include

analysis of the algorithm sensitivity to the number of the assumed states, the parameters

values and the training set; generalization of the multivariate complex Markov-switching

GARCH model, such that the conditional covariance matrix is not necessarily diagonal

and the correlation between distinct frequency-bins is also taken into account; and finally

estimation of the signal presence probability in the time-frequency domain and modifica-

tion of the recursive signal estimation algorithm under signal presence uncertainty.
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4.A Application of Markov-Switching GARCH

Model to Speech Enhancement in Subbands2

In this appendix, we introduce an application of the Markov-switching GARCH model

for spectral speech enhancement. A GARCH model is utilized with Markov switching

regimes, where the parameters are assumed to be frequency variant. The model param-

eters are evaluated in each frequency subband and a special state (regime) is defined for

the case where speech coefficients are absent or below a threshold level. The problem of

speech enhancement under speech presence uncertainty is addressed and it is shown a soft

voice activity detector may be inherently incorporated within the algorithm. Experimen-

tal results demonstrate the potential of our proposed model to improve noise reduction

while retaining weak components of the speech signal.

4.A.1 Introduction

Statistical modeling of speech signals in the short-time Fourier transform (STFT) domain

is of much interest in many speech enhancement applications. The Gaussian model [33]

enables to derive useful estimators for the speech expansion coefficients such as the mini-

mum mean-square error (MMSE) of the short-term spectral amplitude (STSA), as well as

MMSE of the log-spectral amplitude (LSA) [33, 34]. Recently, a generalized autoregres-

sive conditional heteroscedasticity (GARCH) model has been introduced for statistically

modeling speech signals in the STFT domain [24]. However, the proposed model assumes

that the parameters are both time and frequency invariant and it also requires an inde-

pendent detector for speech activity in the time-frequency domain. A Markov-switching

time-frequency GARCH (MSTF-GARCH) model has been proposed in [127] for modeling

nonstationary signals in the time-frequency domain. Accordingly, the parameters are al-

lowed to change in time according to the state of a hidden Markov chain (e.g., switching

between speech phonemes), but the parameters are still frequency-invariant. The model

is estimated using training signals based on maximum likelihood (ML) approach and a

recursive algorithm has been derived for conditional variance estimation and signal re-

2This appendix is based on [133].
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construction from noisy observations. However, not only that different phonemes may

result in different GARCH parameters, speech signals are generally characterized by dif-

ferent both volatility and energy levels in various frequency bands. Therefore, different

parameters may better represent different frequency subbands.

In this appendix, we modify the MSTF-GARCH model by assuming different Markov

chains in distinct subbands with identical state transition probabilities. The GARCH

parameters are state dependent and frequency variant. We define an additional state

for the case where speech coefficients are absent (or below a certain threshold level) and

introduce parameter estimation method which is computationally more efficient than the

traditional ML approach. Furthermore, the probability of the speech absence state can

be used as a soft voice activity detector which is naturally generated in the reconstruction

algorithm. Experimental results demonstrate improved noise reduction performance while

preserving weak components of the speech signal.

Section 4.A.2 introduces the statistical model. In Section 4.A.3, we show how the

model parameters can be estimated and in Section 4.A.4, we derive the speech enhance-

ment algorithm based on the proposed model. Finally, in Section 4.A.5 we evaluate the

performance of the proposed algorithm.

4.A.2 Model formulation

Let {Xtk | t = 0, 1, ...T − 1, k = 0, 1, ..., K − 1} denote the coefficients of a speech signal in

a STFT domain, where t is the time frame index and k is the frequency-bin index. Let

{vtk} be iid complex Gaussian random variables with zero-mean and unit variance, let κn

denote the nth frequency subband with n ∈ {1, 2, ..., N} and N < K. An (m+ 1)-state

hidden Markov chain is assumed for each frequency subband, denoted by St (κn), with

a realization st (κn) ∈ {0, 1, ..., m} and state transition probabilities which are indepen-

dent of the subband index. Let It denote all available information up to time t, i.e.,

{Xτk | τ = 0, 1, ..., t, k = 0, 1, ..., K − 1} and the regimes (states) path. Given the active

state St (κn) = st (κn), the one-frame-ahead conditional variance of the spectral coefficient

Xtk, k ∈ κn is defined by λtk|t−1,st
, E

{

|Xtk|2 | It−1, st

}

, with st = st (κn). The speech
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spectral coefficients are assumed to follow an MSTF-GARCH process of order (1, 1) [127]:

Xtk =
√

λtk|t−1,st
vtk , k ∈ κn (4.62)

λtk|t−1,st
= λmin,n,st

+ αn,st
|Xt−1,k|

2

+ βn,st

(

λt−1,k|t−2,st−1
− λmin,n,st−1

)

, (4.63)

where λmin,n,st
> 0 and αn,st

, βn,st
≥ 0 are sufficient constrains for the positivity

of the one-frame-ahead conditional variance, given that the initial conditions satisfy

λ0k|−1,s0
≥ λmin,n,s0

for all k ∈ κn and s0 = 0, 1, ..., m. Note that the model formula-

tion in [127] is slightly different. We assume that the parameters are frequency dependent

while each λmin,n,st
defines the minimum value of the conditional variance in subband κn

under St (κn) = st. Let ast−1,st
, p (St = st |St−1 = st−1), let πs denotes the stationary

probability of state s and let Ψ be an (m+ 1) × (m+ 1) matrix with elements

ψs+1,s̃+1 =
πs̃

πs

as̃,s (αn,s + βn,s) , s, s̃ = 0, 1, ..., m . (4.64)

Then, a necessary and sufficient condition for asymptotic wide-sense stationarity of the

model defined in (4.62) and (4.63) is ρ (Ψ) < 1, where ρ (·) denotes spectral radius [128].

This condition is also necessary to ensure a finite second order moment for the process.

The unconditional expectation of the state-dependent one-frame-ahead conditional

variance follows

E
{

λtk|t−1,st

}

= λmin,n,st
+ αn,st

E
{

|Xt−1,k|2 | st

}

+ βn,st
E
{

λt−1,k|t−2,St−1
| st

}

− βn,st
E
{

λmin,n,St−1
| st

}

(4.65)

with

E
{

λmin,n,St−1
| st

}

=
∑

st−1

p (st−1 | st)λmin,n,st−1

=
∑

st−1

πst−1

πst

ast−1,st
λmin,n,st−1

. (4.66)

Therefore, the stationary variance of the process is given by (see [128])

lim
t→∞

E
{

|Xtk|2
}

= π (Im+1 − Ψ)−1 λ̃min,n , (4.67)

where π is a row vector of the stationary probabilities, Im+1 is the identity matrix of order

m+ 1,

λ̃min,n ,
[

λ̃min,n,0, λ̃min,n,1, ..., λ̃min,n,m

]T

(4.68)
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and

λ̃min,n,s , λmin,n,s −
βn,s

πs

∑

s̃

πs̃as̃,sλmin,n,s̃ . (4.69)

4.A.3 Model estimation

The estimation of a GARCH model with Markov regimes is generally obtained from

a training set using ML approach [5, 13]. However, the maximization of the likelihood

function is numerically unstable for multi-regime processes and only a local maxima can be

generally obtained. Assuming an (m+ 1)-state Markov chain with GARCH of order (1, 1)

in each regime, the maximization process generates (m+ 1)2 variables for the transition

probabilities and additional 3 × (m+ 1) variables for the GARCH parameters in each

regime. Speech signals in the STFT domain demonstrate different levels of magnitudes

in different subbands and the coefficients are generally sparse. Therefore, we limit the

conditional variances in each subband within a dynamic range of ηg dB and define a special

state for speech absence hypothesis. Let ζg , maxt,k |Xtk|2 and ζn , maxt,k∈κn
|Xtk|2

denote the global maximum energy and the local maximum energy of the coefficients (in

subband κn), respectively. Then, for the speech absence state (namely, st = 0), we set

λmin,n,0 = 10log10 ζg−ηg/10 , αn,0 = βn,0 = 0 . (4.70)

Under speech presence, a local dynamic range of ηℓ dB (ηℓ < ηg) is assumed for the

conditional variances. Furthermore, the parameters λmin,n,s, s > 0 are chosen to enable

tracking any transients between different levels of magnitudes results in switching the

active state. Without loss of generality, we sort the states according to the minimum

variance level such that

λmin,n,1 = max
{

λmin,n,0, 10log10 ζn−ηℓ/10
}

, (4.71)

and for s = 2, ..., m, λmin,n,s are log-spaced between λmin,n,1 and ζn. Each state practically

represents different floor level for the spectral coefficients’ variance. The parameters

αn,s, βn,s for s > 0 set the volatility level of the conditional variance and they are chosen

as follows. Assuming an immutable state s, the stationary variance follows

λ∞,n,s , lim
t→∞, k∈κn

λtk|t−1,s = λmin,n,s
1 − βn,s

1 − αn,s − βn,s

(4.72)
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provided that αn,s+βn,s < 1. Since different states are related to different dynamic ranges

in ascending order, we constrain λ∞,n,s ≤ λmin,n,s+1 and therefore

1 − βn,s

1 − αn,s − βn,s
≤ λmin,n,s+1

λmin,n,s
. (4.73)

The autoregressive parameters, βn,s, are chosen experimentally while the moving average

parameters, αn,s, are chosen to satisfy equality in (4.73). Although the clean signal is

assumed to be available for the model estimation, it is only the high energy values that

are needed in each subband. These values can be practically estimated from the noisy

coefficients using the spectral subtraction approach. The state transition probabilities

can be estimated from test signals such that each active state is determined by the energy

level of the subband.

4.A.4 Spectral enhancement of noisy speech

Let Dtk denote the spectral coefficients of a noise signal which is uncorrelated with the

speech signal and assume that Dtk ∼ CN (0, σ2
tk). Let Ytk = Xtk + Dtk be the noisy

observations and let Y t , {Yτk | τ = 0, 1, ..., t , k = 0, 1, ..., K − 1} denote the set of the

observed coefficients up to time t. The noise variance σ2
tk is assumed to be known and

it can be practically estimated using the improved minima controlled recursive averaging

approach [71]. Reconstruction of the one-frame-ahead conditional variances of the speech

coefficients is carried out recursively for each state by

λ̂tk|t−1,st
= λmin,n,st

+ αn,st
E
{

|Xt−1,k|2 | Y t−1, st

}

+ βn,st
E
{

λt−1,k|t−2,St−1
| Y t−1, st

}

− βn,st
E
{

λmin,n,St−1
| Y t−1, st

}

,(4.74)

where

E
{

|Xt−1,k|2 | Y t−1, st

}

=
∑

st−1

p
(

st−1 | st,Y t−1
)

E
{

|Xt−1,k|2 | Y t−1, st−1

}

,
∑

st−1

p
(

st−1 | st,Y t−1
)

λ̂t−1,k|t−1,st−1
, (4.75)

E
{

λt−1,k|t−2,St−1
| Y t−1, st

}

≃
∑

st−1

p
(

st−1 | st,Y t−1
)

λ̂t−1,k|t−2,st−1
(4.76)

and

E
{

λmin,n,St−1
| Y t−1, st

}

=
∑

st−1

p
(

st−1 | st,Y t−1
)

λmin,n,st−1
. (4.77)
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A detailed algorithm for the conditional variance restoration is described in [127].

Having an estimate for the speech coefficient’s second order moment under each state,

λ̂tk|t,st
, estimates of the speech coefficients are obtained by minimizing the mean-square

error of the log-spectral amplitude (LSA). Let

ξ̂tk,st
,
λ̂tk|t,st

σ2
tk

, ϑ̂tk,st
,

ξ̂tk,st

1 + ξ̂tk,st

· |Ytk|2
σ2

tk

. (4.78)

Then, the LSA estimation of the speech coefficients is given by

X̂tk = Ytk

∏

st

G
(

ξ̂tk,st
, ϑ̂tk,st

)p(st | Yt)
, (4.79)

where

G (ξ, ϑ) =
ξ

1 + ξ
exp

(

1

2

∫ ∞

ϑ

e−t

t
dt

)

(4.80)

is the LSA gain function [34] and the state probabilities, p (st | Y t), are evaluated according

to [127].

4.A.5 Experimental results and discussion

In this section, we demonstrate the application of the proposed model to speech enhance-

ment and to speech presence probability estimation.

The enhancement evaluation includes two objective quality measures; segmental SNR

and log-spectral distortion (LSD). The speech signals used in our evaluation are taken

from the TIMIT database. The signals are sampled in 16 kHz, degraded by a nonstation-

ary factory noise and transformed into the STFT domain using half overlapping Hamming

windows of 32 msec length. Twenty subbands are considered with global and local dy-

namic ranges of ηg = 50 dB and ηℓ = 20 dB, and four-state Markov chains (i.e., m = 3)

for each subband. The autoregressive parameters used in our simulations are βn,s = 0.8

for all n and s > 0. In each subband, the state persistence probability is 0.8 and as,s̃ are

equally chosen for all s 6= s̃. Figure 1 demonstrates the spectrograms and waveforms of

a clean signal, noisy signal with SNR of 5 dB, and the enhanced signal obtained by the

proposed algorithm. It shows that the background noise is highly attenuated while weak

speech components are retained, even while noise transients occur. Furthermore, the seg-

mental SNR and the LSD are improved. A subjective study of speech spectrograms and
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Figure 4.5: Speech spectograms and waveforms. (a) Clean signal: ”Draw every outer line.”;

(b) speech corrupted by factory noise with 5 dB SNR (LSD= 6.68 dB, SegSNR= 0.05 dB); (c)

speech reconstructed by using 4-state model (LSD= 3.14 dB, SegSNR= 6.76 dB).
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Figure 4.6: Conditional speech presence probability obtained by the proposed algorithm and by

the decision-directed based algorithm.

informal listening tests confirm that the quality of the enhanced speech is improved by

using frequency-dependent parameters which are derived from the different energy levels.

The conditional speech presence probability results from the enhancement algorithm

is compared with the statistical model-based voice activity detector (with hang-over) of

Sohn et al. [52] when applied to subbands. The later evaluates the conditional likelihood

Lt , p (Y t |St 6= 0) /p (Y t |St = 0) by utilizing the decision-directed approach for the a

priori SNR estimation (assuming only two states). The conditional speech presence prob-

ability is obtained by p (St 6= 0 | Y t) = µLt/ (1 + µLt), where µ , p (St 6= 0) /p (St = 0)

is the a priori probabilities ratio. Figure 2 demonstrates the speech presence probabili-

ties achieved when both algorithms are applied to a speech signal corrupted by a white

Gaussian noise with SNR of 15 dB. The instantaneous SNR is defined as the ratio be-

tween the norms of the clean signal and the noise signal in each subband. It can be

seen that the speech presence probability, derived from our proposed algorithm, results

in a higher dynamic range for the probabilities and in much lower values for low energy

coefficients. Furthermore, the probabilities ascribed to each instantaneous SNR are with

higher variance resulting from the Markovian nature of the model.
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Chapter 5

State Smoothing in

Markov-Switching GARCH Models1

In this chapter, we address the problem of state smoothing in path-dependent Markov-

switching generalized autoregressive conditional heteroscedasticity (GARCH) processes.

We develop a smoothing algorithm which extends the forward-backward recursions of

Chang and Hancock and the stable backward recursion of Lindgren, Askar and Derin. Two

recursive steps are derived for the evaluation of conditional densities of future observations.

The first step is an upward recursion which manipulates the future observations for the

evaluation of their conditional densities, and the second step is a backward recursion

which integrates over the possible future paths. Experimental results demonstrate the

improvement in performance, compared to using causal estimation.

5.1 Introduction

State estimation is of both theoretical and practical importance whenever the underlying

statistical model switches regimes over time [5, 129]. State smoothing (i.e., noncausal

state estimation) of hidden Markov processes (HMPs) has been originally introduced by

Chang and Hancock [118]. Their solution for estimating the noncausal state probability,

which is implemented using forward-backward recursions, decouples a forward recursion

for the evaluation of the joint probability density of the current state and all observations

1This chapter is based on [130].
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up to the same time, and a backward recursion for obtaining the future observations’

density given the current state. Lindgren [119] and Askar and Derin [120] developed

an alternative stable backward recursion for the state smoothing in HMPs. Kim [134]

extended the stable backward recursion to nonmemoryless autoregressive hidden Markov

processes (AR-HMPs) where both the current state (regime) and a finite set of past values

are required for the conditional density evaluation, see also [5, chap. 22].

Generalized autoregressive conditional heteroscedasticity (GARCH) models and also

Markov-switching GARCH (MS-GARCH) models, are widely used in the field of econo-

metrics for volatility forecast derivation of economics rates [7, 8, 12, 13] and they have re-

cently been utilized to several signal processing applications. In [135] GARCH modeling

has been applied to spatially non-uniform noise in multichannel signal processing. In [26]

a regime-switching GARCH model has been utilized for speech recognition and a complex-

valued GARCH model has been proposed in [24, 25] for modeling speech signals in the

short-time Fourier transform (STFT) domain for the application of speech enhancement.

Generally, when incorporating GARCH processes with switching-regimes, the volatility

evaluation requires knowledge of the pertinent history of the regime-switching GARCH

process, including the regime-path [12, 13]. Properties of path-dependent MS-GARCH

models have been studied by Francq et al. [122]. In order to estimate the model param-

eters, they showed that the conditional likelihood depends on all the possible paths and

for a Markov-switching ARCH model (in which case there is no dependency on past ac-

tive regimes) they showed that the forward-backward recursions can be employed for the

conditional likelihood evaluation. The complex-valued GARCH model has been shown

to be useful in speech enhancement applications [24, 25]. Motivated by extending the

dynamic formulation of the time-frequency GARCH model and enabling a better fit for

a process with a more complicated time-varying statistical behavior, a Markov-switching

time-frequency GARCH (MSTF-GARCH) model has been introduced [127]. However,

existing smoothing solutions are inapplicable in case of a path-dependent MS-GARCH

model since both past observations and the regime path are required for the conditional

variance estimation, whereas existing smoothing techniques rely on the assumption that

given the current state, past active regimes are statistically independent of future densi-

ties.
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In this chapter, we develop a state smoothing approach for MSTF-GARCH processes.

The dependency of the conditional variance on past observations and past active regimes

are taken into consideration as we generalize both the forward-backward recursions of

Chang and Hancock [118] and the stable backward recursion of Lindgren [119] and Askar

and Derin [120]. We derive two recursive steps for the evaluation of conditional densities

of future observations. The first step is an upward recursion which manipulates the future

observations for the evaluation of their conditional densities, corresponding to all possible

future paths. The second step is a backward recursion which integrates over these paths

to evaluate the future densities required for the noncausal state probability. The compu-

tational complexity of the generalized recursions grows exponentially with the number of

future observations employed for the fixed-lag smoothing. However, experimental results

demonstrate that the significant part of the improvement in performance, compared to

using causal estimation, is achieved by considering a few future observations.

The organization of this chapter is as follows: In Section 5.2, we introduce the Markov-

switching time-frequency GARCH model and formulate the state smoothing problem. In

Section 5.3 we develop generalized forward-backward recursions as well as generalized

stable backward recursion, and derive our noncausal state probability approach. Finally,

in Section 5.4 we provide experimental results which demonstrate state smoothing for

noisy Markov-switching time-frequency GARCH processes.

5.2 Problem formulation

Let Xt ∈ CK be a K-dimensional random vector at a discrete time t, and let Xtk, k ∈
{0, ..., K − 1}be its kth element. Let X t2

t1 = {Xt | t1 ≤ t ≤ t2} represent the data set from

time t1 up to t2 and let X t , X t
0 . Let St denote the (unobserved) state at time t and

let st be a realization of St, assuming St is a first-order Markov chain with transition

probabilities astst+1
, p (St+1 = st+1 |St = st). Let It , {X t,St} denote all available

information up to time t, where St , St
0 = {s0, ..., st}. We assume that Xtk are generated

by an m-state Markov-switching time-frequency GARCH process of order (1, 1) which

follows [127]:

Xtk =
√

λtk|t−1Vtk , k = 0, ..., K − 1 , (5.1)
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where {Vtk} are iid complex-valued random variables with zero-mean, unit variance and

some known probability density. Given the state st, the conditional variance of Xtk,

λtk|t−1,st
= E {|Xtk|2 | It−1, st}, is a linear function of the previous conditional variance

and squared absolute value:

λtk|t−1 ≡ λtk|t−1,st
= ξst

+ αst
|Xt−1,k|2 + βst

λt−1,k|t−2 , (5.2)

where ξs > 0, αs ≥ 0, and βs ≥ 0, s = 1, ..., m are sufficient constrains for the

positivity of the conditional variance. Let Ψ be an m-by-m matrix with elements

ψij = aji(αi + βi)πj/πi (5.3)

where πi = p(St = i) is the stationary probability of state i, and let ρ(·) represent the

spectral radius of a matrix. Then, a necessary and sufficient condition for the process

defined in (5.1) and (5.2) to be asymptotically wide-sense stationary is ρ(Ψ) < 1 [128].

Let Yt = Xt+Dt denote the observed noisy signal, where Dt denotes the noise process

which is uncorrelated with the signal Xt, and let Dt be a zero-mean complex-valued Gaus-

sian random process with a diagonal covariance matrix E
{

DtD
H
t

}

= diag{σ2}, where

(·)H denotes the Hermitian transpose operation. The state conditional probability of a

Markov-switching model, p (st|Yτ ), is of considerable theoretical and practical importance

for signal restoration and state sequence estimation (e.g., [127, 129]).

Solutions of the state smoothing problem, i.e., τ > t, are normally obtained for HMPs

using the forward-backward recursions [118] or the stable backward recursion [119, 120].

Extensions of these recursions for nonmemoryless AR-HMPs [134], [5, Chap. 22], are based

on the quality that st and a finite set of past clean observations give complete statistical

knowledge of future densities. However, in case of a path-dependent MS-GARCH model,

a recursive formulation specifies the conditional distribution of the process as dependent

on both past observations and the regime path, and therefore existing smoothing solutions

are inapplicable.

5.3 State probability smoothing

In this Section, we develop the noncausal state probability for the model defined in (5.1)

and (5.2). The smoothed probability is derived by generalizing both the forward-backward
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recursions [118] and the stable backward recursion [119,120].

5.3.1 Generalized forward-backward recursions

Assume that the conditional variance of the process is recursively estimated for any given

state (e.g., as proposed in [127]) and assume that the set of the recursively estimated

conditional variances at time t, Λ̂t ,
{

λ̂t|t−1,St
|St = 1, ..., m

}

, with the observed signal

Yt are sufficient statistics for the next conditional variance estimation for any given regime

[24, 127]. Let λ̂τ2|τ1,S
τ2
τ0

= E
{

Xτ2 ⊙X∗
τ2 | Sτ2

τ0 ,Yτ1
}

, τ2 ≥ τ1 > τ0 denote the vector of

estimated conditional variances at time τ2 based on the observations up to time τ1 and on

the given set of active regimes Sτ2
τ0 , where ⊙ denotes a term-by-term multiplication and ∗

denotes complex conjugation. Let

g
(

λt|t−1,st
,Yt

)

, E
{

Xt ⊙X∗
t |St = st,λt|t−1,st

,Yt

}

(5.4)

where the function g(·) is determined based on the statistical model of {Vtk} [24]. Define

the generalized forward density by

α
(

st,Y t
)

, f
(

st, Λ̂t,Yt

)

(5.5)

and the generalized backward density by

β
(

Y t+L
t+l | St+l−1

t ,Y t+l−1
)

, f
(

Y t+L
t+l | St+l−1

t , Λ̂t,Y t+l−1
t

)

. (5.6)

Then, by substituting l = 1 we have

f
(

st,Y t+L
t | Λ̂t

)

= α
(

st,Y t
)

β
(

Y t+L
t+1 | st,Y t

)

, (5.7)

and the noncausal state probability can be obtained by

p
(

st|Y t+L
)

= p
(

st | Λ̂t,Y t+L
t

)

=
α (st,Y t)β

(

Y t+L
t+1 | st,Y t

)

∑

st
α (st,Y t) β

(

Y t+L
t+1 | st,Y t

) . (5.8)

Proposition 5.1. The generalized forward density of an MSTF-GARCH(1,1) process,

α (st,Y t), satisfies the following recursion:

α
(

st,Y t
)

= f
(

Yt | st
, λ̂t|t−1,st

)

∑

st−1

α
(

st−1,Y t−1
)

ast−1st
, (5.9)

with the initial condition α (s0,Y0) = p(s0)f (Y0 | s0).
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Proof. The generalized forward density is obtained by

α
(

st,Y t
)

= f
(

Yt | st
, Λ̂t

)

f
(

st, Λ̂t

)

. (5.10)

Given the active regime, the state-dependent conditional variance is sufficient for the

conditional density. Furthermore, Λ̂t and
{

Λ̂t−1,Yt−1

}

represent the same statistical

information. Hence

α
(

st,Y t
)

= f
(

Yt | st
, λ̂t|t−1,st

)

f
(

st, Λ̂t−1,Yt−1

)

, (5.11)

where

f
(

st, Λ̂t−1,Yt−1

)

=
∑

st−1

α
(

st−1,Y t−1
)

ast−1st
. (5.12)

Substituting (5.12) into (5.11) we obtain the recursive formulation for the generalized

forward density2.

Proposition 5.2. The generalized backward density of an MSTF-GARCH(1,1) process,

β
(

Y t+L
t+1 | st,Y t

)

, satisfies the following two-step recursion:

Step I: For l = 1, ..., L and all St+l
t :

λ̂t+l|t+l−1,St+l
t

= ξst+l
1 + αst+l

λ̂t+l−1|t+l−1,St+l−1
t

+ βst+1
λ̂t+l−1|t+l−2,St+l−1

t
(5.13)

λ̂t+l|t+l,St+l
t

= g
(

λ̂t+l|t+l−1,St+l
t
,Yt+l

)

. (5.14)

Step II: For l = L, ..., 1 and all St+l
t :

f
(

Y t+L
t+l | St+l

t , λ̂t|t−1,st
,Y t+l−1

t

)

= β
(

Y t+L
t+l+1 | St+l

t ,Y t+l
)

f
(

Yt+l | St+l
t , λ̂t|t−1,st

,Y t+l−1
t

)

(5.15)

β
(

Y t+L
t+l | St+l−1

t ,Y t+l−1
)

=
∑

st+l

f
(

Y t+L
t+l | St+l

t , λ̂t|t−1,st
,Y t+l−1

t

)

ast+l−1st+l
, (5.16)

with β
(

Y t+L
t+L+1 | St+L

t ,Y t+L
)

= 1 as the initial condition for the second step, and where 1

denotes a vector of ones.

2The initial conditions for the generalized forward recursion have negligible effect on the conditional

densities assuming an asymptotic stationary process which is sufficiently long. Therefore, the initial

conditional variance f (Y0 | s0) can be estimated by using the state-dependent stationary density of the

process.
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Proof. The generalized backward density β
(

Y t+L
t+1 | st,Y t

)

= f
(

Y t+L
t+1 | st,Y t

)

can be ob-

tained by

β
(

Y t+L
t+1 | st,Y t

)

=
∑

st+1

f
(

Y t+L
t+1 | St+1

t , λ̂t|t−1,st
,Yt

)

astst+1
, (5.17)

where the multivariate density f
(

Y t+L
t+1 | St+1

t , λ̂t|t−1,st
,Yt

)

in (5.17) can be obtained by

f
(

Y t+L
t+1 | St+1

t , λ̂t|t−1,st
,Yt

)

= β
(

Y t+L
t+2 | St+1

t ,Y t+1
)

f
(

Yt+1 | St+1
t , λ̂t|t−1,st

,Yt

)

. (5.18)

From (5.17) and (5.18) we recursively obtain for any l = 1, ..., L :

β
(

Y t+L
t+l | St+l−1

t ,Y t+l−1
)

=
∑

st+l

f
(

Y t+L
t+l | St+l

t , λ̂t|t−1,st
,Y t+l−1

t

)

ast+l−1st+l
(5.19)

and

f
(

Y t+L
t+l | St+l

t , λ̂t|t−1,st
,Y t+l−1

t

)

= β
(

Y t+L
t+l+1 | St+l

t ,Y t+l
)

f
(

Yt+l | St+l
t , λ̂t|t−1,st

,Y t+l−1
t

)

.

(5.20)

The conditional density f
(

Yt+l | St+l
t , λ̂t|t−1,st

,Y t+l−1
t

)

in (5.20) is the density of the ob-

served data at time t + l conditioned on the regime path St+l
t , the recursively estimated

conditional variance at time t given st, and also on all observations from time t up to time

t + l − 1. This density has a diagonal covariance matrix with the following conditional

variance on its diagonal:

E
{

Yt+l ⊙ Y∗
t+l | St+l

t , λ̂t|t−1,st
,Y t+l−1

t

}

= σ2 + λ̂t+l|t+l−1,St+l
t

= σ2 + ξst+l
1 + αst+l

E{Xt+l−1 ⊙X∗
t+l−1 | St+l

t , λ̂t|t−1,st
,Y t+l−1

t }

+ βst+l
E{λt+l−1|t+l−2 | St+l−1

t , λ̂t|t−1,st
,Y t+l−2

t }. (5.21)

The expected absolute squared value of the signal at a specific time given the active regime

is independent of any future regimes, hence

E
{

Xt+l−1 ⊙X∗
t+l−1 | St+l

t , λ̂t|t−1,st
,Y t+l−1

t

}

= λ̂t+l−1|t+l−1,St+l−1
t

= g
(

λ̂t+l−1|t+l−2,St+l−1
t

,Yt+l−1

)

.(5.22)

Combining (5.22) with (5.21), we obtain Step I of the generalized backward recursion

((5.13) and (5.14)), and from (5.19) and (5.20) we obtain Step II ((5.15) and (5.16)).
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Step I is an upward recursion which manipulates the future observations for estimating

their conditional variances corresponding to all possible regime sequences St+L
t . Step II

is a backward recursion, which integrates the Step I results to evaluate the generalized

backward density. Each step of the generalized backward recursion is calculated for mL+1

regime sequences, and therefore the computational complexity increases exponentially

with the delay L. However, as the correlation of the current state and future observations

decreases along time, small values of L sufficiently enhance the chain sequence estimation,

as can be seen in the experimental results.

5.3.2 Generalized stable backward recursion

The stable backward recursion is derived by using the smoothed probability of two se-

quential states, which is given by [120]:

p
(

St+1
t | Y t+L

)

=
f
(

St+1
t ,Y t+L

t+1 | Y t
)

f
(

st+1 | Y t+L
)

f
(

st+1,Y t+L
t+1 | Y t

) . (5.23)

Under the assumption that
{

Λ̂t,Yt

}

are sufficient statistics for the next state-dependent

conditional variance estimation, we obtain

f
(

St+1
t ,Y t+L

t+1 | Y t
)

= f
(

st+1,Y t+L
t+1 | st,Y t

)

p
(

st | Y t
)

= f
(

Y t+L
t+1 | St+1

t ,Y t
)

p
(

st+1 | st,Y t
)

p
(

st | Y t
)

= f
(

Y t+L
t+1 | St+1

t , λ̂t|t−1,st
,Yt

)

astst+1
p
(

st | Λ̂t,Yt

)

(5.24)

and

f
(

st+1,Y t+L
t+1 | Y t

)

= f
(

Y t+L
t+1 | st+1,Y t

)

p
(

st+1 | Y t
)

= f
(

Y t+L
t+1 | st+1, λ̂t+1|t,st+1

)

p
(

st+1 | Λ̂t,Yt

)

. (5.25)

By substituting (5.24) and (5.25) into (5.23) and integrating out all states at time t+ 1,

we obtain the following backward recursion for the smoothed state probability:

p
(

st | Y t+L
)

= p
(

st | Λ̂t,Yt

)

∑

st+1

f
(

Y t+L
t+1 | St+1

t , λ̂t|t−1,st
,Yt

)

astst+1
p
(

st+1 | Y t+L
)

f
(

Y t+L
t+1 | st+1, λ̂t+1|t,st+1

)

p
(

st+1 | Λ̂t,Yt

) ,(5.26)

where the conditional density f
(

Y t+L
t+1 | St+1

t , λ̂t|t−1,st
,Yt

)

can be derived from the

generalized backward recursion (5.13)-(5.16). However, the conditional density
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f
(

Y t+L
t+1 | st+1, λ̂t+1|t,st+1

)

in the denominator of (5.26) requires calculation of a similar

recursion which is not informed of the regime st.

Although the stable backward recursion is known to be numerically more stable than

the forward-backward recursions, the instability of the latter is insignificant for short

delays and the former requires computation of the generalized backward recursion twice,

one for evaluating f
(

Y t+L
t+1 | St+1

t , λ̂t|t−1,st
,Yt

)

and one for f
(

Y t+L
t+1 | st+1, λ̂t+1|t,st+1

)

.

5.4 Experimental results

The generalized state smoothing has been applied to state detection in noisy MSTF-

GARCH(1, 1) processes with 3 states and 5 to 15 dB signal-to-noise ratios (SNRs). Twenty

random stationary models have been simulated with an unconditional Gaussian model

and uniformly distributed parameters on the intervals (0, 1/3], (1/3, 2/3] and (2/3, 1] for

each state respectively. For each model 20 signals are considered, each of dimension

K = 100 and time length T = 100. The conditional variances λ̂t|t−1,st
are estimated using

the recursive approach of [127]. Figure 5.1 shows the detection error rate p (ŝt 6= st) for

casual estimation as well as for noncausal estimation with up to L = 4 samples delay.

It can be seen that the state detection monotonically improves with the increase of the

delay. However, the most significant improvement is achieved by using up to 2 future

samples, and the contribution of additional future observations decays along time.

5.5 Conclusions

We have derived state smoothing for Markov-switching time-frequency GARCH process,

in which case the conditional variances depend on both past observations and the regime

path. Our noncausal state probability solution generalizes both the standard forward-

backward recursions and the stable backward recursion of HMP by capturing both the

signal correlation along time and its conditioning on the regime path. Accordingly, the

backward recursion requires two recursive steps for evaluating the conditional density

of the given future observations corresponding to all optional future paths. Although

the computational complexity of the generalized backward recursion grows exponentially
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Figure 5.1: State smoothing error rate for 3-state MSTF-GARCH models with SNRs of 5 dB

(triangle), 10 dB (asterisk) and 15 dB (circle).

with the delay, a small number of future observations contribute with the most significant

improvement to the state estimation. Combining the generalized recursions with the

recursive signal restoration algorithm of [127] facilitates a noncausal signal restoration,

which is a subject for further research.



Chapter 6

Simultaneous Detection and

Estimation Approach for Speech

Enhancement1

In this chapter, we present a simultaneous detection and estimation approach for speech

enhancement. A detector for speech presence in the short-time Fourier transform do-

main is combined with an estimator, which jointly minimizes a cost function that takes

into account both detection and estimation errors. Cost parameters control the trade-

off between speech distortion, caused by missed detection of speech components, and

residual musical noise resulting from false-detection. Furthermore, a modified decision-

directed a priori signal-to-noise ratio (SNR) estimation is proposed for transient-noise

environments. Experimental results demonstrate the advantage of using the proposed si-

multaneous detection and estimation approach with the proposed a priori SNR estimator,

which facilitate suppression of transient noise with a controlled level of speech distortion.

In Appendix 6.B we formulate a speech enhancement problem under multiple hypothe-

ses, assuming an indicator or detector for the transient noise presence is available in the

short-time Fourier transform (STFT) domain. Hypothetical presence of speech or tran-

sient noise is considered in the observed spectral coefficients, and cost parameters control

the trade-off between speech distortion and residual transient noise. An optimal esti-

mator, which minimizes the mean-square error of the log-spectral amplitude, is derived,

1This chapter is based on [136].
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while taking into account the probability of erroneous detection. Experimental results

demonstrate the improved performance in transient noise suppression, compared to using

the optimally-modified log-spectral amplitude estimator.

6.1 Introduction

Optimal design of efficient speech enhancement algorithms has attracted significant re-

search effort for several decades. Speech enhancement systems often operate in the short-

time Fourier transform (STFT) domain, where the speech spectral coefficients are esti-

mated from the spectral coefficients of the degraded signal. The spectral coefficients of

the speech signal are generally sparse in the STFT domain in the sense that speech is

present only in some of the frames, and in each frame only some of the frequency-bins

contain the significant part of the signal energy. However, existing algorithms often focus

on estimating the spectral coefficients rather than detecting their existence. The spectral-

subtraction algorithm [29, 30] contains an elementary detector for speech activity in the

time-frequency domain, but it generates musical noise caused by falsely detecting noise

peaks as bins that contain speech, which are randomly scattered in the STFT domain.

Subspace approaches for speech enhancement [57, 59, 60, 104] decompose the vector of

the noisy signal into a signal-plus-noise subspace and a noise subspace, and the speech

spectral coefficients are estimated after removing the noise subspace. Accordingly, these

algorithms are aimed at detecting the speech coefficients and subsequently estimating

their values. McAulay and Malpass [32] were the first to propose a speech spectral es-

timator under a two-state model. They derived a maximum likelihood (ML) estimator

for the speech spectral amplitude under speech-presence uncertainty. Ephraim and Malah

followed this approach of signal estimation under speech presence uncertainty and derived

an estimator which minimizes the mean-square error (MSE) of the short-term spectral

amplitude (STSA) [33]. In [49], speech presence probability is evaluated to improve the

minimum MSE (MMSE) of the log-spectral amplitude (LSA) estimator, and in [38] a fur-

ther improvement of the MMSE-LSA estimator is achieved based on a two-state model.

Under speech absence hypothesis Cohen and Berdugo [38] considered a constant attenu-

ation factor to enable a more natural residual noise, characterized by reduced musicality.
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Under slowly time-varying noise conditions, an estimator which minimizes the MSE

of the STSA or the LSA under speech presence uncertainty may yield reasonable re-

sults [33, 38]. However, under quickly time-varying noise conditions, abrupt transients

may not be sufficiently attenuated, since speech is falsely detected with some positive

probability. Reliable detectors for speech activity and noise transients are necessary to fur-

ther attenuate noise transients without much degrading the speech components [107,137].

Despite the sparsity of speech coefficients in the time-frequency domain and the impor-

tance of signal detection for noise suppression performance, common speech enhancement

algorithms deal with speech detection independently of speech estimation. Even when

a voice activity detector is available in the STFT domain (e.g., [51–56, 108]), it is not

straightforward to consider the detection errors when designing the optimal speech es-

timator. High attenuation of speech spectral coefficients due to missed detection errors

may significantly degrade speech quality and intelligibility, while falsely detecting noise

transients as speech-contained bins, may produce annoying musical noise.

In this chapter, we present a novel formulation of the speech enhancement problem,

which incorporates simultaneous operations of detection and estimation. A detector for

the speech coefficients is combined with an estimator, which jointly minimizes a cost func-

tion that takes into account both estimation and detection errors. Under speech-presence,

the cost is proportional to a quadratic spectral amplitude (QSA) error [33], while under

speech-absence, the distortion depends on a certain attenuation factor [29, 38, 70]. We

derive a combined detector and estimator with cost parameters that enable to control the

trade-off between speech distortion, caused by missed detection of speech components,

and residual musical noise resulting from false-detection. The combined solution gen-

eralizes the well-known STSA algorithm, which involves merely estimation under signal

presence uncertainty. In addition, we propose a modification of the decision-directed a

priori signal-to-noise ratio (SNR) estimator, which is suitable for transient-noise envi-

ronments. Experimental results show that the simultaneous detection and estimation

yields better noise reduction than the STSA algorithm while not degrading the speech

signal. The advantage of using a suitable indicator for transient noise is demonstrated in

a nonstationary noise environment, where the proposed algorithm facilitates suppression

of transient noise with a controlled level of speech distortion.
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The chapter is organized as follows. In Section 6.2, we briefly review classical speech

enhancement under signal presence uncertainty. In Section 6.3, we reformulate the speech

enhancement problem in the STFT domain as a simultaneous detection and estimation

problem. In Section 6.4, we derive the combined solution for a QSA distortion function.

In Section 6.5, we relate our proposed approach to the spectral-subtraction approach.

In Section 6.6, we present an a priori SNR estimator suitable for transient noise envi-

ronments, and in Section 6.7 we demonstrate the performance of the proposed approach

compared to existing algorithms, both under stationary and transient-noise environments.

6.2 Classical speech enhancement

In this section, we present the classical approach for spectral speech enhancement in non-

stationary noise environments, assuming that some indicator for transient noise activity

is available.

Let x (n) and d (n) denote speech and uncorrelated additive noise signals, and let

y (n) = x (n) + d (n) be the observed signal. Applying the STFT to the observed signal,

we have

Yℓk = Xℓk +Dℓk , (6.1)

where ℓ = 0, 1, ... is the time frame index and k = 0, 1, ..., K − 1 is the frequency-bin

index. Let Hℓk
1 and Hℓk

0 denote, respectively, speech presence and absence hypotheses in

the time-frequency bin (ℓ, k), i.e.,

Hℓk
1 : Yℓk = Xℓk +Dℓk

Hℓk
0 : Yℓk = Dℓk . (6.2)

We assume that the noise expansion coefficients can be represented as the sum of two

uncorrelated noise components Dℓk = Ds
ℓk + Dt

ℓk, where Ds
ℓk denotes a quasi-stationary

noise component and Dt
ℓk denotes a highly nonstationary transient component. The tran-

sient components are generally rare, but they may be of high energy and thus cause

significant degradation to speech quality and intelligibility. However, in many applica-

tions, a reliable indicator for the transient noise activity may be available in the system.

For example, in an emergency car (e.g., police or ambulance) the engine noise may be
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considered as quasi-stationary, but activating a siren results in a highly nonstationary

noise which is perceptually very annoying. Since the sound generation in the siren is

nonlinear, linear echo cancelers, e.g., [138], may be inappropriate. In a computer-based

communication system, a transient noise such as a keyboard typing noise may be present

in addition to quasi-stationary background office noise. Another example is a digital cam-

era, where activating the lens-motor (zooming in/out) may result in high-energy transient

noise components, which degrade the recorded audio. In the above examples, an indicator

for the transient noise activity may be available, i.e., siren source signal, keyboard output

signal and the lens-motor controller output. Furthermore, given that a transient noise

source is active, a detector for the transient noise in the STFT domain may be designed

and its spectrum can be estimated based on training data.

The objective of a speech enhancement system is to reconstruct the spectral coefficients

of the speech signal such that under speech-presence a certain distortion measure between

the spectral coefficient and its estimate, d
(

Xℓk, X̂ℓk

)

, is minimized, and under speech-

absence a constant attenuation of the noisy coefficient would be desired to maintain a

natural background noise [38, 70]. Although the speech expansion coefficients are not

necessarily present, most classical speech enhancement algorithms try to estimate the

spectral coefficients rather than detecting their existence, or try to independently design

detectors and estimators. The well-known spectral subtraction algorithm estimates the

speech spectrum by subtracting the estimated noise spectrum from the noisy squared

absolute coefficients [29, 30], and thresholding the result by some desired residual noise

level. Thresholding the spectral coefficients is in fact a detection operation in the time-

frequency domain, in the sense that speech coefficients are assumed to be absent in the

low-energy time-frequency bins and present in noisy coefficients whose energy is above

the threshold.

McAulay and Malpass were the first to propose a two-state model for the speech signal

in the time-frequency domain [32]. Accordingly, the MMSE estimator follows [115]

X̂ℓk = E {Xℓk | Yℓk}

= E
{

Xℓk | Yℓk, H
ℓk
1

}

p
(

Hℓk
1 | Yℓk

)

. (6.3)

The resulting estimator does not detect speech components, but rather, a soft-decision
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is performed to further attenuate the signal estimate by the a posteriori speech presence

probability. Ephraim and Malah followed the same approach and derived an estimator

which minimizes the MSE of the STSA under signal presence uncertainty [33]. Accord-

ingly,

∣

∣

∣
X̂ℓk

∣

∣

∣
= E

{

|Xℓk| | Yℓk, H
ℓk
1

}

p
(

Hℓk
1 | Yℓk

)

. (6.4)

Both in [32] and [33], under Hℓk
0 the speech components are assumed zero and the a priori

probability of speech presence is both time and frequency invariant, i.e., p
(

Hℓk
1

)

= p (H1).

In [38, 49], the speech presence probability is evaluated for each frequency-bin and time-

frame to improve the performance of the MMSE-LSA estimator [34]. Further improvement

of the MMSE-LSA suppression rule can be achieved by considering under Hℓk
0 a constant

attenuation factor Gf << 1, which is determined by subjective criteria for residual noise

naturalness, see also [70]. The OM-LSA estimator [38] is given by

∣

∣

∣
X̂ℓk

∣

∣

∣
=
(

exp
[

E
{

log |Xℓk| | Yℓk, H
ℓk
1

}])p(Hℓk
1

| Yℓk) (Gf |Yℓk|)1−p(Hℓk
1

| Yℓk) . (6.5)

Suppose that an indicator for the presence of transient noise components is available in

a highly nonstationary noise environment, then high-energy transients may be attenuated

by using one of the above-mentioned estimators (6.3)–(6.5) and heuristically setting the

a priori speech presence probability p
(

Hℓk
1

)

to a sufficiently small value. Unfortunately,

this also results in suppression of desired speech components and intolerable degradation

of speech quality. In general, an estimation-only approach under signal presence uncer-

tainty produces larger speech degradation for small p
(

Hℓk
1

)

, since the optimal estimate is

attenuated by the a posteriori speech presence probability. On the other hand, increasing

p
(

Hℓk
1

)

prevents the estimator from sufficiently attenuating noise components. Integrat-

ing a jointly optimal detector and estimator into the speech enhancement system may

significantly improve the speech enhancement performance under highly non-stationary

noise conditions and may allow further reduction of transient components without much

degradation of the desired signal.
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6.3 Reformulation of the speech enhancement prob-

lem

In this section, we reformulate the speech enhancement as a simultaneous detection and

estimation problem.

Middleton and Esposito [115] were the first to propose simultaneous signal detection

and estimation within the framework of statistical decision theory. A decision space,
{

ηℓk
0 , η

ℓk
1

}

, is assumed for the detection operation where under the decision ηℓk
j , signal

hypothesis Hℓk
j is accepted and a corresponding estimate X̂ℓk = X̂ℓk,j is considered. The

detection and estimation are strongly coupled so that the detector is optimized with the

knowledge of the specific structure of the estimator, and the estimator is optimized in

the sense of minimizing a Bayesian risk associated with the combined operations. For

notation simplification, we omit the time-frequency indices (ℓ, k). Let

Cj

(

X, X̂
)

≥ 0 (6.6)

denote the cost of making a decision ηj (and choosing an estimator X̂j) where X is the

desired signal. Then, the Bayes risk of the two operations associated with simultaneous

detection and estimation is defined by [115,116]

R =

1
∑

j=0

∫

Ωy

∫

Ωx

Cj

(

X, X̂
)

p (ηj | Y ) p (Y |X) p (X) dXdY (6.7)

where Ωx and Ωy are the spaces of the speech and noisy signals, respectively. The si-

multaneous detection and estimation approach is aimed at jointly minimizing the Bayes

risk over both the decision rule and the corresponding signal estimate. Let q , p (H1)

denote the a priori speech presence probability and let XR and XI denote the real and

imaginary parts of the expansion coefficient X. Then, the a priori distribution of the

speech expansion coefficient follows

p (X) = q p (X |H1) + (1 − q) p (X |H0) , (6.8)

where p (X |H0) = δ (X) and δ (X) , δ (XR, XI) denotes the Dirac-delta function. The

cost function Cj

(

X, X̂
)

may be defined differently whether H1 or H0 is true. Therefore,
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we let

Cij

(

X, X̂
)

, Cj

(

X, X̂ |Hi

)

(6.9)

denote the cost which is conditioned on the true hypothesis2. The cost function

Cij

(

X, X̂
)

depends on both the true signal value and its estimate under the decision

ηj and therefore couples the operations of detection and estimation. By substituting (6.8)

into (6.7) we obtain

R =

∫

Ωy

∫

Ωx

p (Y |X)
{

p (η0 | Y )
[

q p (X |H1)C10

(

X, X̂
)

+ (1 − q) p (X |H0)C00

(

X, X̂
)]

+ p (η1 | Y )
[

q p (X |H1)C11

(

X, X̂
)

+ (1 − q) p (X |H0)C01

(

X, X̂
)]}

dXdY . (6.10)

Let

rij (Y ) =

∫

Ωx

Cij

(

X, X̂
)

p (X |Hi) p (Y |X)dX (6.11)

denote a risk associated with the pair {Hi, ηj} and the observation Y . Then, the combined

Bayes risk follows

R =

∫

Ωy

p (η0 | Y ) [ q r10 (Y ) + (1 − q) r00 (Y )]

+ p (η1 | Y ) [ q r11 (Y ) + (1 − q) r01 (Y )] dY . (6.12)

Since the detector’s decision under a given observation is binary, i.e., p (ηj | Y ) ∈ {0, 1},
for minimizing the combined risk we first evaluate the optimal estimator under each of

the decisions, then the optimal decision rule is derived based on the optimal estimators

X̂0, X̂1 to further minimize the combined risk. The two-stage minimization guaranties

minimum combined risk [116]. The optimal nonrandom decision rule which minimizes

the combined risk (6.12) is given by:

Decide η1 (i.e., p (η1 | Y ) = 1) if

q [r10 (Y ) − r11 (Y )] ≥ (1 − q) [r01 (Y ) − r00 (Y )] , (6.13)

otherwise, decide η0.

2Note that X = 0 implies that H0 is true and X 6= 0 implies H1 so the sub-index i may seem to be

redundant. However, this notation simplifies the subsequent formulations.
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(a) (b)

Figure 6.1: (a) Independent detection and estimation system; (b) strongly coupled detection

and estimation system.

The optimal estimator under a decision ηj is obtained from (6.12) by

arg min
X̂j

{ q r1j (Y ) + (1 − q) r0j (Y )} . (6.14)

Note that rij (Y ) depends on the estimate X̂j through the cost function. Figure 6.1

shows a block diagram of the simultaneous detection and estimation scheme compared

with an independent detection and estimation system. The standard, non-coupled detec-

tion and estimation system (a) consists of an estimator and a detector which independently

chooses to accept or reject the estimator output. In the simultaneous detection and es-

timation scheme, the estimator is obtained by (6.14) and the interrelated decision rule

(6.13) chooses the appropriate estimator, X̂0 or X̂1, for minimizing the combined Bayes

risk. Since the risk rij (Y ) is a function of the signal estimate X̂j , the decision rule (6.13)

requires knowledge of the estimator under any of its own decisions. Therefore, the arrow

between the estimation and the detection blocks is unidirectional. It is important to note

that the optimal estimator (6.14) minimizes the Bayes risk under any given decision rule,

even if the detector is not optimal and/or is unknown to the estimator.

The cost function associated with the pair {Hi, ηj} is generally defined by

Cij

(

X, X̂
)

= bij dij

(

X, X̂
)

, (6.15)

where dij

(

X, X̂
)

is an appropriate distortion measure and the cost parameters bij control

the trade-off between the costs associated with the pairs {Hi, ηj}. That is, a high valued

b01 raises the cost of a false alarm, (i.e., decision of speech presence when speech is

actually absent) which may result in residual musical noise. Similarly, b10 is associated

with the cost of missed detection of a signal component, which may cause perceptual
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signal distortion. Under a correct classification, normalized cost parameters are generally

used, b00 = b11 = 1. However, dii (·, ·) is not necessarily zero since estimation errors are

still possible even when there is no detection error.

Contrary to the approach in [115, 116, 139], we do not reject the signal estimator

when a decision η0 is made. Instead, we allow the estimator X̂0 6= 0 to compensate

for any detection errors and to reduce potential musical noise and audible distortions.

Furthermore, when speech is indeed absent the distortion function is defined to allow

some natural background noise level such that under H0 the attenuation factor will be

lower bounded by a constant gain floor Gf << 1 as proposed in [24, 29, 38, 70].

6.4 Quadratic spectral amplitude cost function

In this section, we derive a speech simultaneous detection and estimation scheme for a

QSA cost function.

The distortion measure of the QSA cost function is defined by

dij

(

X, X̂
)

=







(

|X| −
∣

∣

∣
X̂j

∣

∣

∣

)2

i = 1 ,
(

Gf |Y | −
∣

∣

∣
X̂j

∣

∣

∣

)2

i = 0 ,
(6.16)

and is related to the STSA suppression rule of Ephraim and Malah [33]. We assume

that both X and D are statistically independent, zero-mean, complex-valued Gaussian

random variables with variances λx and λd, respectively. Let ξ , λx/λd denote the a

priori SNR under hypothesis H1, let γ , |Y |2/λd denote the a posteriori SNR and let

υ , γ ξ/ (1 + ξ). For evaluating the optimal detector and estimator under the QSA cost

function we denote by X , a ejα and Y , Rejθ the clean and noisy spectral coefficients,

respectively, where a = |X| and R = |Y |. Accordingly, the pdf of the speech expansion

coefficient under H1 satisfies

p (a, α |H1) =
a

πλx
exp

(

−a2

λx

)

. (6.17)

The combined risk under the QSA cost function is independent of the signal phase nor

the estimation phase. Therefore, we define âj =
∣

∣

∣
X̂j

∣

∣

∣
as the estimated amplitude under
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ηj . Substituting the QSA cost function into (6.14) we have

âj = arg min
â

{

q b1j

∫ ∞

0

∫ 2π

0

(a− â)2 p (a, α |H1) p (Y | a, α)dα da

+ (1 − q) b0j (Gf R− â)2 p (Y |H0)
}

, (6.18)

and by constraining the derivative according to â to equal zero, we obtain

âj [b1j Λ (Y ) + b0j ] = b1j Λ (Y )

∫ ∞

0

∫ 2π

0

a p (a, α |H1) p (Y | a, α)dα da/p (Y |H1)+b0j Gf R

(6.19)

where Λ (Y ) is the generalized likelihood ratio defined by [33]

Λ (Y ) ,
q

(1 − q)

p (Y |H1)

p (Y |H0)

=
q

(1 − q)

eυ

1 + ξ
. (6.20)

Note that given the a priori speech presence probability, the generalized likelihood ratio

is a function of the a priori and a posteriori SNRs, Λ(ξ, γ). Using [33] we observe that

∫ ∞

0

∫ 2π

0

a p (a, α |H1) p (Y | a, α) dα da/p (Y |H1)

=

√
π υ

2γ
exp

(

−υ
2

) [

(1 + υ) I0

(υ

2

)

+ υ I1

(υ

2

)]

R

, GSTSA (ξ, γ)R , (6.21)

where Iν (·) denotes the modified Bessel function of order ν.

Let

φj (ξ, γ) , b1j Λ (ξ, γ) + b0j . (6.22)

Then, by using the phase of the noisy signal [33] we obtain from (6.19) and (6.21) the

optimal estimation under the decision ηj , j ∈ {0, 1}:

X̂j = [b1j Λ (ξ, γ)GSTSA (ξ, γ) + b0j Gf ]φj (ξ, γ)−1 Y

, Gj (ξ, γ)Y . (6.23)

For evaluating the optimal decision rule we need to compute the risk rij(Y ). Under H1
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we obtain

r1j (Y ) =
b1j

π

exp
(

− γ
1+ξ

)

1 + ξ

{

G2
j γ +

ξ

1 + ξ
(1 + υ) −Gj

√
π υ exp

(

−υ
2

)

×
[

(1 + υ) I0

(υ

2

)

+ υ I1

(υ

2

)]}

=
b1j

π

exp
(

− γ
1+ξ

)

1 + ξ

{

G2
j γ +

ξ

1 + ξ
(1 + υ) − 2γ Gj GSTSA

}

, (6.24)

(see proof in the Appendix) where Gj holds for Gj(ξ, γ), the gain function under the

QSA cost function and the decision ηj which is defined in (6.23), and GSTSA holds for

GSTSA(ξ, γ) which is defined in (6.21).

For deriving the risk under H0, r0j (Y ), we observe p (XR, XI |H0) = δ (XR, XI).

Consequently,

r0j (Y ) = b0j

∫ ∫ ∞

−∞

{

[Gj (ξ, γ) −Gf ]
2 |Y |2

}

p (XR, XI |H0) p (Y |XR, XI) dXR dXI

=
b0j

π
[Gj (ξ, γ) −Gf ]

2 γ e−γ . (6.25)

Substituting (6.24) and (6.25) into (6.13), we obtain the optimal decision rule under

the QSA cost function:

Λ (ξ, γ)

{

b10 G
2
0 −G2

1 +
ξ

(1 + ξ) γ
(1 + υ) (b10 − 1) + 2 (G1 − b10 G0)GSTSA

}

η1

≷
η0

b01 (G1 −Gf)
2 − (G0 −Gf )

2 . (6.26)

To conclude the above results, simultaneous detection and estimation from noisy ob-

servations requires (i) calculating the gain factor under any of the decisions using (6.23),

and (ii) finding the optimal decision ηj using (6.26). The corresponding signal estimate

is obtained by applying the gain Gj to the noisy observation.

Figure 6.2 demonstrates attenuation curves under QSA cost function as a function of

the instantaneous SNR defined by γ − 1, for several a priori SNRs, using the parameters

q = 0.8, (as proposed in [33]) Gf = −25 dB and cost parameters b01 = 5 and b10 = 1.1.

The gains G1 (dashed line), G0 (dotted line) and the total detection and estimation

system gain (solid line) are compared to the STSA gain under signal presence uncertainty

of Ephraim and Malah [33] (dashed-dotted line). The a priori SNRs range from −15 dB

to 15 dB. Not only that the cost parameters shape the STSA gain curve, when combined
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with the detector the proposed method provides a significant non-continuous modification

of the standard STSA estimator. For example, for a priori SNRs of ξ = −5 and ξ = 15

dB, as shown in Figure 6.2(b) and (d) respectively, as long as the instantaneous SNR

is higher than about −2 dB (for ξ = −5 dB) or −5 dB (for ξ = 15 dB), the detector

decision is η1, while for lower instantaneous SNRs, the detector decision is η0. Note that

if an ideal detector for the speech coefficients would be available, a more significantly

non-continuous gain would be desired to block the noise-only coefficients. However, in

the proposed simultaneous detection and estimation approach the detector is not ideal

but optimized to minimize the combined risk and the non-continuity of the system gain

depends on the chosen cost parameters as well as on the gain floor. As shown in our

experimental results, this non-continues gain function may yield greater noise reduction

with slightly higher level of musicality, while not degrading speech quality.

It is of interest to examine the asymptotic behavior of the estimator (6.23) under

each of the decisions. When the cost parameter associated with false alarm is much

smaller than the generalized likelihood ratio, i.e., b01 << Λ (ξ, γ), the spectral gain of

the estimator under the decision η1 is G1 (ξ, γ) ∼= GSTSA (ξ, γ), which is optimal when

the signal is surely present. However, if b01 >> Λ (ξ, γ), the spectral gain under η1 needs

to compensate the possibility of a high-cost false-decision made by the detector and thus

G1 (ξ, γ) ∼= Gf . On the other hand, if the cost parameter associated with missed detection

is small and we have b10 << Λ (ξ, γ)−1, then G0 (ξ, γ) ∼= Gf (i.e., estimation where speech

is surely absent) but under b10 >> Λ (ξ, γ)−1, in order to overcome the high cost related

to missed detection, we have G0 (ξ, γ) ∼= GSTSA (ξ).

Recall that
Λ (ξ, γ)

1 + Λ (ξ, γ)
= p (H1 | Y ) (6.27)

is the a posteriori probability for speech presence [33], it can be shown that the proposed

estimator (6.23) generalizes the well-known STSA estimator. For the case of bij = 1 ∀i, j
we have

X̂0 = [ p (H1 | Y )GSTSA (ξ, γ) + (1 − p (H1 | Y ))Gf ]Y

= X̂1 . (6.28)

In that case the detection operation is not required since the estimation is independent of
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Figure 6.2: Gain curves of G1 (dashed line), G0 (dotted line) and the total detection and

estimation system gain curve (solid line), compared with the STSA gain under signal presence

uncertainty (dashed-dotted line). The a priori SNRs are (a) ξ = −15 dB, (b) ξ = −5 dB,

(c) ξ = 5 dB and (d) ξ = 15 dB.
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the decision rule. If we also set Gf to zero, the estimation reduces to the STSA suppression

rule under signal presence uncertainty [33].

The simultaneous detection and estimation approach requires the calculation of two

gain functions, G0(ξ, γ) and G1(ξ, γ), and the decision rule. However, as can be seen from

(6.23), both G0(ξ, γ) and G1(ξ, γ) are linear functions of GSTSA(ξ, γ) and the generalized

likelihood ratio Λ(ξ, γ). In addition, the decision rule (6.26) requires the calculation of a

second-order polynomial. Therefor, the additional complexity of the simultaneous detec-

tion and estimation approach is insignificant compared to the STSA estimator [33], which

also requires the calculation of the gain function GSTSA(ξ, γ) (6.21) and the generalized

likelihood function (6.31).

6.5 Relation to spectral subtraction

The general formulation of the spectral subtraction approach assumes a spectral estimator

which can be written as [29, 30]

X̂ℓk = max
{

(|Yℓk|τ − µE [|Dℓk|τ ])
1

τ , βE [|Dℓk|τ ]
1

τ

} Yℓk

|Yℓk|
(6.29)

where E [|Dℓk|τ ] is the τ -order moment of the noise spectral coefficient, µ ≥ 1 represents

an over-subtraction factor, and 0 < β << 1 represents spectral floor factor. Boll [30]

considered τ = 1 while Berouti et al. [29] used τ = 2. McAulay and Malpass [32] showed

that under a Gaussian statistical model, spectral subtraction with τ = 2, µ = 1 and β = 0

yields a maximum-likelihood estimator for the speech spectral variance.

The spectral subtraction scheme (6.29) classifies high-energy time-frequency bins as

active speech bins, and only in these bins the signal is estimated. Low-energy bins below

a given threshold are classified as noise-only bins, and set to some background noise level

for reducing the residual musical noise. Consequently, low-energy bins that contain the

speech signal are not detected, while noise peaks are detected as speech bins. When

the over-subtraction factor µ is increased, fewer noise peaks are detected as speech and

therefore the residual musical noise is reduced at the expanse of deterioration of speech

quality. The spectral floor βE [|Dℓk|τ ]1/τ
“fills-in” the valleys of the residual noise, which

yields a more natural noise with less annoying musicality [29]. However, a large β reduces
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the background noise suppression. Further reduction of the musical noise may be achieved

by local smoothing of the noisy spectral values prior to noise subtraction. As a result, noise

peaks are attenuated and the spectral estimation error can be reduced [30]. However, as

the speech signal is highly nonstationary, its intelligibility may be dramatically decreased

when the smoothing parameter increases.

The classical spectral subtraction approach heuristically combines a detector and an

estimator for the speech spectral coefficients while the parameters µ, β and the smoothing

length control the trade-off between the residual musical noise and the speech quality. In

the proposed simultaneous detection and estimation approach, the detector is optimally

designed jointly with the estimator. The residual noise musicality is controlled by both the

spectral gain floor Gf which bounds the attenuation and the false-alarm cost parameter

b01. A high-valued false-alarm cost parameter (with relation to the generalized likelihood

ratio) reduces the estimation gain under η1, which compensates for a false-detection.

The amount of speech distortion is affected by the missed detection parameter b10, which

increases the estimation gain under η0. Since the decision rule depends on both parameters

as well as on the gain floor, it is the combination of the three parameters that control the

trade-offs between noise reduction and speech distortion.

The different behaviors of the spectral subtraction and the simultaneous detection

and estimation approach are illustrated in Figures 6.3 and 6.4. The signals in the time

domain are shown in Figure 6.3. The clean signal is a sinusoidal wave which is active only

in a specific time interval and the noisy signal contains white Gaussian noise with SNR

of 5 dB. The noisy signal is transformed into the STFT domain using half-overlapping

Hamming windows of 256 taps. The signal enhanced by spectral subtraction with τ = 2,

µ = 1 and β = 0.2 is shown in Figure 6.3(c) and the signal enhanced by using the

proposed algorithm is shown in Figure 6.3(d) with b01 = 3, b10 = 5, Gf = −20 dB

and q = 0.8. The a priori SNR needed for the simultaneous detection and estimation

approach is estimated using the decision-directed approach as will be defined in (6.30),

with a weighting factor α = 0.92 and ξmin = −20 dB as the lower bound for the a

priori SNR, while the variance of the background noise coefficients is evaluated from the

noise signal (for both algorithms). The amplitudes of the signals in the STFT domain

(at the specific frequency band of the desired signal’s frequency) are shown in Figure
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Figure 6.3: Signals in the time domain. (a) Clean sinusoidal signal; (b) noisy signal; (c) enhanced

signal obtained by using the spectral-subtraction estimator; (d) enhanced signal obtained by

using the detection and estimation approach.
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Figure 6.4: Amplitudes of the STFT coefficients along the time-trajectory corresponding to the

frequency of the sinusoidal signal: noisy signal (dotted line), spectral subtraction (dashed line),

and simultaneous detection and estimation (solid line).
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6.4. It can be seen that when the desired signal is absent, high-energy noise components

are falsely detected by the spectral subtraction algorithm which potentially results in

an annoying musical noise. The detection and estimation algorithm results in a higher

attenuation of the noise peaks and smoother and more natural background noise while

not increasing the audible distortion in the enhanced signal. Furthermore, it may seem

from Figure 6.4 that when the desired signal is active and the instantaneous SNR is high,

both algorithms imply similar results. However, in time frames where the desired signal

is present, the spectral subtraction approach results in higher residual noise in frequencies

where the signal is absent or of low SNR. Therefore, the enhanced signal using the spectral

subtraction approach is inferior to the enhanced signal using the detection and estimation

approach even in time intervals where the signal is present, as can be seen from Figures

6.3(c) and (d).

6.6 A priori SNR estimation

Speech enhancement in the STFT domain generally relies on an estimation-only approach

under signal presence uncertainty e.g., [32, 33, 38]. The a priori SNR is often estimated

by using the decision-directed approach [33]. Accordingly, in each time-frequency bin we

compute

ξ̂ℓk = max
{

αG2
(

ξ̂ℓ−1,k, γℓ−1,k

)

γℓ−1,k (1 − α) (γℓk − 1) , ξmin

}

(6.30)

where α (0 ≤ α ≤ 1) is a weighting factor that controls the trade-off between noise

reduction and transient distortion introduced into the signal, and ξmin is a lower bound

for the a priori SNR which is necessary for reducing the residual musical noise in the

enhanced signal [33, 70]. Since the a priori SNR is defined under the assumption that

Hℓk
1 is true, it is proposed in [38] to replace the gain G in (6.30) by GH1

which represents

the spectral gain when the signal is surely present (i.e., q = 1). Increasing the value

of α results in a greater reduction of the musical noise phenomena, at the expense of

further attenuation of transient speech components (e.g., speech onsets) [70]. By using

the proposed approach with high cost for false speech detection, the musical noise can be

reduced without increasing the value of α, which enables rapid changes in the a priori

SNR estimate. The lower bound for the a priori SNR is related to the spectral gain floor
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Gf since both imply a lower bound on the spectral gain. The latter parameter is used to

evaluate both the optimal detector and estimator while taking into account the desired

residual noise level.

The decision-directed estimator is widely used, but is not suitable for transient noise

environments, since a high-energy noise burst may yield an instantaneous increase in

the a posteriori SNR and a corresponding increase in ξ̂ℓk as can be seen from (6.30).

The spectral gain would then be higher than the desired value, and the transient noise

component would not be sufficiently attenuated. Let λ̂s
dℓk

denote the estimated spectral

variance of the stationary noise component and let λ̂t
dℓk

denote the estimated spectral

variance of the transient component. The former may be practically estimated by using

the improved minima-controlled recursive averaging (IMCRA) algorithm [38, 71] or by

using the minimum-statistics approach [72], while λt
dℓk

may be evaluated based on a

training phase as assumed in [140]. The total variance of the noise component is λ̂dℓk
=

λ̂s
dℓk

+ λ̂t
dℓk

. Note that λt
dℓk

= 0 in time-frequency bins where the transient noise is inactive.

Since the a priori SNR is highly dependent on the noise variance, we first estimate the

speech spectral variance by

λ̂xℓk
= max

{

αG2
H1

(

ξ̂ℓ−1,k, γℓ−1,k

)

|Yℓ−1,k|2 (1 − α)
(

|Yℓk|2 − λ̂dℓk

)

, λmin

}

(6.31)

where λmin = ξmin λ̂
s
dℓk

. Then, the a priori SNR is evaluated by ξ̂ℓk = λ̂xℓk
/λ̂dℓk

. It is

straightforward to show that in a stationary noise environment the proposed a priori

SNR estimator reduces to the decision-directed estimator (6.30), with GH1
substituting

G. However, under the presence of a transient noise component, the proposed method

yields a lower a priori SNR estimate, which enables higher attenuation of the high-energy

transient noisy component. Furthermore, to allow further reduction of the transient noise

component to the level of the residual stationary noise, we modify the gain floor by

G̃f = Gf λ̂
s
dℓk
/λ̂dℓk

as proposed in [141].

The different behaviors under transient noise conditions of the proposed modified

decision-directed a priori SNR estimator and the decision-directed estimator as proposed

in [38] are illustrated in Figures 6.5 and 6.6. Figure 6.5 shows the signals in the time do-

main: the analyzed signal contains a sinusoidal wave which is active in only two specific

segments. The noisy signal contains both additive white Gaussian noise with 5 dB SNR
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Figure 6.5: Signals in the time domain. (a) Clean sinusoidal signal; (b) noisy signal with both

stationary and transient components; (c) enhanced signal obtained by using the STSA and the

decision-directed estimators; (d) enhanced signal obtained by using the STSA and the modified

a priori SNR estimators ;(e) enhanced signal obtained by using the detection and estimation

approach and the modified a priori SNR estimator.
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Figure 6.6: Amplitudes of the STFT coefficients along time-trajectory corresponding to the

frequency of the sinusoidal signal: noisy signal (light solid line), STSA with decision-directed

estimation (dotted line), STSA with the modified a priori SNR estimator (dashed-dotted line)

and simultaneous detection and estimation with the modified a priori SNR estimator (dark solid

line).
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and high-energy transient noise components. The signal enhanced by using the decision-

directed estimator and the STSA suppression rule is shown in Figure 6.5(c). The signal

enhanced by using the modified a priori SNR estimator and the STSA suppression rule is

shown in Figure 6.5(d), and the result obtained by using the proposed modified a priori

SNR estimation with the detection and estimation approach is shown in Figure 6.5(d) (us-

ing the same parameters as in the previous section). Both the decision-directed estimator

and the modified a priori SNR estimator are applied with α = 0.98 and ξmin = −20 dB.

Clearly, in stationary noise intervals, and where the SNR is high, similar results are ob-

tained by both a priori SNR estimators. However, the proposed modified a priori SNR

estimator obtain higher attenuation of the transient noise, whether it is incorporated with

the STSA or the simultaneous detection and estimation approach. Figure 6.6 shows the

amplitudes of the STFT coefficients of the noisy and enhanced signals at the frequency

band which contains the desired sinusoidal component. Accordingly, the modified a priori

SNR estimator enables a greater reduction of the background noise, particularly transient

noise components. Moreover, it can be seen that using the simultaneous detection and es-

timation yields better attenuation of both the stationary and background noise compared

to the STSA estimator, even while using the same a priori SNR estimator.

6.7 Experimental results

In our experimental study, we first evaluate the detection and estimation approach com-

pared with the STSA suppression rule under a stationary noise environment. Then, we

consider the problem of hands-free communication in an emergency car, and demonstrate

the advantage of the modified a priori SNR estimator together with the simultaneous

detection and estimation approach under transient noise environment. Speech signals are

taken from the TIMIT database [142], sampled at 16 kHz and degraded by additive noise.

The test signals include 16 speech utterances from 16 different speakers, half male half

female. The noisy signals are transformed into the STFT domain using half-overlapping

Hamming windows of 32 msec length, and the background-noise spectrum is estimated

by using the IMCRA algorithm (for all the considered enhancement algorithms) [38, 71].

The performance evaluation in our study includes objective quality measures, a subjec-
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Table 6.1: Segmental SNR and Log Spectral Distortion Obtained by Using Either the Simul-

taneous Detection and Estimation Approach or the STSA Estimator in Stationary Noise Envi-

ronment.

Input SNR Input Signal Detection & Estimation STSA (α = 0.98) STSA (α = 0.92)

dB SegSNR LSD SegSNR LSD SegSNR LSD SegSNR LSD

-5 -6.801 20.897 1.255 7.462 0.085 9.556 -0.684 10.875

0 -3.797 16.405 4.136 5.242 3.169 6.386 2.692 7.391

5 0.013 12.130 5.98 3.887 5.266 4.238 5.110 4.747

10 4.380 8.194 6.27 3.143 5.93 3.167 6.014 3.157

tive study of spectrograms and informal listening tests. The first quality measure is the

segmental SNR defined by [143]

SegSNR =
1

|L|
∑

ℓ∈L

T
{

10 log10

∑K−1
n=0 x

2 (n+ ℓK/2)
∑K−1

n=0 [x (n+ ℓK/2) − x̂ (n+ ℓK/2)]2

}

, (6.32)

where L represents the set of frames which contain speech, |L| denotes the number of

elements in L, K = 512 is the number of samples per frame and the operator T confines

the SNR at each frame to a perceptually meaningful range between −10 dB and 35 dB.

The second quality measure is log-spectral distortion (LSD) which is defined by

LSD =
1

L

L−1
∑

ℓ=0







1

K/2 + 1

K/2
∑

k=0

[

10 log10 CXℓk − 10 log10 CX̂ℓk

]2







1

2

, (6.33)

where CX , max {|X|2, ǫ} is a spectral power clipped such that the log-spectrum dynamic

range is confined to about 50 dB, that is, ǫ = 10−50/10 ·maxℓ,k {|Xℓk|2}. The third quality

measure (used in Section 6.7-B) is the perceptual evaluation of speech quality (PESQ)

score [144].

6.7.1 Comparison with the STSA estimator

In this section, the suppression rule results from the proposed simultaneous detection and

estimation approach is compared to the STSA estimation [33] for stationary white Gaus-

sian noise with SNRs in the range [−5, 10] dB. For both algorithms the a priori SNR is

estimated by the decision-directed approach (6.30) with ξmin = −15 dB, and the a priori
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speech presence probability is qℓk = 0.8, as proposed in [33]. For the STSA estimator

a decision-directed estimation [38] with α = 0.98 reduces the residual musical noise but

generally implies transient distortion of the speech signal [33, 70]. However, the inherent

detector obtained by the simultaneous detection and estimation approach may improve

the residual noise reduction and therefore a lower weighting factor α may be used to allow

lower speech distortion. Indeed, we have found out that for the simultaneous detection

and estimation approach α = 0.92 implies better results, while for the STSA algorithm,

better results are achieved with α = 0.98. The cost parameters for the simultaneous

detection and estimation should be chosen according to the system specification, i.e.,

whether the quality of the speech signal or the amount of noise reduction is of higher

importance. Table 6.1 summarizes the average segmental SNR and LSD for these two

enhancement algorithms, with cost parameters b01 = 10 and b10 = 2, and Gf = −15 dB

for the simultaneous detection and estimation algorithm. The results for the STSA algo-

rithm are presented for α = 0.98 as well as for α = 0.92 (note that for the STSA estimator

Gf = 0 is considered as originally proposed). It shows that the simultaneous detection

and estimation yields improved segmental SNR and LSD, while a greater improvement is

achieved for lower input SNR. Informal subjective listening tests and inspection of spec-

trograms demonstrate improved speech quality with higher attenuation of the background

noise. However, since the weighting factor used for the a priori SNR estimate is lower,

and the gain function is discontinuous, the residual noise resulting from the simultaneous

detection and estimation algorithm is slightly more musical than that resulting from the

STSA algorithm (examples are available online [145]).

6.7.2 Speech enhancement under nonstationary noise environ-

ment

In this section, we demonstrate the potential advantage of the simultaneous detection and

estimation approach with the proposed a priori SNR estimator under transient noise. We

consider a hands-free communication in an emergency car (police car, ambulance etc.)

where the engine noise is assumed quasi-stationary. However, activating the emergency

siren significantly degrades the perceptual quality and intelligibility of the speech signal,
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Table 6.2: Segmental SNR, Log Spectral Distortion and PESQ Score Under Transient Noise.

SegSNR LSD PESQ

Input Signal -6.703 6.587 2.017

OM-LSA -4.94 5.338 2.141

STSA 4.502 3.580 2.839

Detection and estimation

b01 = b10 = 1.5 5.761 3.236 3.072

Detection and estimation

b01 = b10 = 5 6.506 3.141 3.071

since its energy is much higher than that of the speech signal. The sound generation in a

siren is nonlinear, which produces harmonics not present in the original signal (siren source

signal), as can be seen in Figure 6.7(b). However, using the available siren source signal,

a reliable indicator in the time-frequency domain for the presence of siren noise, and an

estimate for the variance of the transient noise, λt
dℓk

, may be designed in a training phase.

Note that standard echo-cancellation algorithms are not suitable for eliminating noise

generated by nonlinear systems and nonlinear algorithms may be required (e.g., [146,147]).

The proposed approach is compared with the STSA algorithm [33] and the OM-LSA

algorithm [38]. The speech presence probability required for the OM-LSA estimator as

well as for the simultaneous detection and estimation approach is estimated as proposed

in [38], while for the STSA estimator q̂ℓk = 0.8 is used as originally proposed in [33].

However, since the a priori SNR estimate has a major importance under transient noise,

the proposed modified decision-directed estimator is applied both for the simultaneous

detection and estimation approach and for the STSA algorithm with ξmin = −20 dB.

For the simultaneous detection and estimation algorithm α = 0.92 is used while for the

STSA algorithm α = 0.98 (as shown in Section 6.7.1 to be more appropriate for the STSA

estimator). For the OM-LSA algorithm, the decision-directed estimator with α = 0.92

is implemented as specified in [38] and the gain floor is Gf = −20 dB. Figure 6.7 shows

waveforms and spectrograms of a clean signal, noisy signal and enhanced signals. The

noisy signal contains engine car noise with 0 dB SNR and additional siren noise with −1 dB

SNR, such that the total SNR is about −3 dB. The speech enhanced by using the OM-LSA
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Figure 6.7: Speech spectrograms (in dB) and waveforms. (a) Clean speech signal: ”Draw every

outer line first, then fill in the interior”; (b) speech degraded by engine car noise and siren noise

with SNR of −3 dB; (c) speech enhanced by using the OM-LSA estimator; (d) speech enhanced

by using the STSA estimator (together with the modified a priori SNR estimator); (e) speech

enhanced by using the simultaneous detection and estimation approach with b01 = b10 = 1.5;

(f) speech enhanced by using the simultaneous detection and estimation approach with b01 =

b10 = 5.
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algorithm and the STSA algorithm are shown in Figures 6.7(c) and (d), respectively. The

signal enhanced by using the simultaneous detection and estimation approach is shown

in Figures 6.7(e) and (f) with b01 = b10 = 1.5 and b01 = b10 = 5, respectively, and a gain

floor of Gf = −20 dB. It can be seen that compared with the decision-directed-based

OM-LSA algorithm, the modified a priori SNR estimator substantially contributes to the

transient noise reduction, whether it is integrated with the simultaneous detection and

estimation approach or with the STSA algorithm. However, the simultaneous detection

and estimation approach which is combined with adapted speech presence probability and

gain floor yields greater reduction of transient noise without affecting the quality of the

enhanced speech signal. Averaged quality measures for the whole set of tested utterances

are summarized in Table 6.2, for the same noise conditions. The results demonstrate

improved speech quality obtained by using the modified a priori SNR estimator either

while combined with the STSA or the simultaneous detection and estimation approach,

applying the detection and estimation approach introduced additional improvement to the

enhanced signal. Subjective listening tests confirm that the speech quality improvement

achieved by using the proposed method is perceptually substantial (audio files are available

online [145]).

6.8 Conclusions

We have presented a novel formulation of the single-channel speech enhancement problem

in the time-frequency domain. Our formulation relies on coupled operations of detection

and estimation in the STFT domain, and a cost function that combines both the esti-

mation and detection errors. A detector for the speech coefficients and a corresponding

estimator for their values are jointly designed to minimize a combined Bayes risk. In

addition, cost parameters enable to control the trade-off between speech quality, noise

reduction and residual musical noise. The proposed method generalizes the traditional

spectral enhancement approach which considers estimation-only under signal presence

uncertainty. In addition we propose a modified decision-directed a priori SNR estimator

which is adapted to transient noise environment. Experimental results show greater noise

reduction with improved speech quality when compared with the STSA suppression rules
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under stationary noise. Furthermore, it is demonstrated that under transient noise envi-

ronment, greater reduction of transient noise components may be achieved by exploiting

reliable information for the a priori SNR estimation with simultaneous detection and

estimation approach.

6.A Risk derivation

In this appendix we derive the risk r1j (Y ) . Under {H1, ηj} we obtain

r1j (Y ) = b1j

∫ ∞

0

∫ 2π

0

(a−Gj R)2 p (a, α |H1) p (Y | a, α) dα da , (6.34)

and the multiplication of the two pdf’s implies

p (a, α |H1) p (Y | a, α) =
a

π2λxλd
exp

{

−
(

γ +
a2

λ
− 2Ra cos (α− θ)

λd

)}

, (6.35)

where λ , (1/λx + 1/λd)
−1. Integrating (6.34) with regard to the phase variable we

obtain [148, eq. 3.339, 8.406.3]

∫ 2π

0

exp

{

2Ra cos (α− θ)

λd

}

dα = 2π J0

(

i
2R

λd
a

)

, (6.36)

where J0 (·) denotes the Bessel function of order zero. Note that in this appendix i ,
√
−1.

Using [149, eq. 13.3.1, 2] we have

∫ ∞

0

a exp

(

−a
2

λ

)

J0

(

i
2R

λd

a

)

da =
λ

2
eυ , (6.37)

and
∫ ∞

0

a2 exp

(

−a
2

λ

)

J0

(

i
2R

λd

a

)

da =
λ1.5Γ (1.5)

2Γ (1)
1F1 (1.5; 1; υ) , (6.38)

where Γ (·) denotes the Gamma function with Γ (1) = 1 and Γ (1.5) =
√
π/2, and

1F1 (a; b; x) is the confluent hypergeometric function [150, eq. A.1.31.c]

1F1 (1.5; 1; υ) = e
υ
2

[

(1 + υ) I0

(υ

2

)

+ υ I1

(υ

2

)]

. (6.39)

Using [149, eq. 13.3.2], [150, eq. A.1.19.c] we obtain

∫ ∞

0

a3 exp

(

−a
2

λ

)

J0

(

i
2R

λd
a

)

da =
λ2Γ (2)

2Γ (1)
1F1 (2; 1; υ)

=
λ2

2
(1 + υ) eυ (6.40)
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Substituting (6.35)–(6.40) into (6.34) yields

r1j (Y ) =
b1j

π

exp
(

− γ
1+ξ

)

1 + ξ

{

G2
j γ +

ξ

1 + ξ
(1 + υ) −Gj

√
π υ exp

(

−υ
2

)

[

(1 + υ) I0

(υ

2

)

+ υ I1

(υ

2

)]}

=
b1j

π

exp
(

− γ
1+ξ

)

1 + ξ

{

G2
j γ +

ξ

1 + ξ
(1 + υ) − 2γ Gj GSTSA

}

. (6.41)
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6.B Enhancement of Speech Signals Under Multi-

ple Hypotheses Using an Indicator for Transient

Noise Presence3

In this appendix, we formulate a speech enhancement problem under multiple hypothe-

ses, assuming an indicator or detector for the transient noise presence is available in the

short-time Fourier transform (STFT) domain. Hypothetical presence of speech or tran-

sient noise is considered in the observed spectral coefficients, and cost parameters control

the trade-off between speech distortion and residual transient noise. An optimal esti-

mator, which minimizes the mean-square error of the log-spectral amplitude, is derived,

while taking into account the probability of erroneous detection. Experimental results

demonstrate the improved performance in transient noise suppression, compared to using

the optimally-modified log-spectral amplitude estimator.

6.B.1 Introduction

Enhancement of speech signals is of great interest in many voice communication systems,

whenever the source signal is corrupted by noise. In a highly non-stationary noise en-

vironments, noise transients may be extremely annoying and significantly degrade the

perceived quality and performances of subsequent coding or speech recognition systems.

Existing speech enhancement algorithms, e.g., [32, 33, 38], are generally inadequate for

eliminating non-stationary noise components.

In some applications, an indicator for the transient noise activity may be available,

e.g., a siren noise in an emergency car, lens-motor noise of a digital video camera or a

keyboard typing noise in a computer-based communication system. The transient spectral

variances can be estimated in such cases from training signals. However, applying a

standard estimator to the spectral coefficients may result in removal of critical speech

components in case of falsely detecting the speech components, or under-suppression of

transient noise in case of miss detecting the noise transients.

In this appendix, we formulate a speech enhancement problem under multiple hypothe-

3This appendix is based on [140].
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ses, assuming some indicator or detector for the presence of noise transients in the STFT

domain is available. Cost parameters control the trade-off between speech distortion and

residual transient noise. We derive an optimal signal estimator that employs the avail-

able detector and show that the resulting estimator generalizes the optimally-modified

log-spectral amplitude (OM-LSA) estimator [38]. Experimental results demonstrate the

improved performance obtained by the proposed algorithm, compared to using the OM-

LSA.

This appendix is organized as follows. In Section 6.B.2 we formulate the problem of

spectral enhancement under multiple hypotheses. In Section 6.B.3 we derive the optimal

estimator. In Section 6.B.4 we provide some experimental results and conclude in Section

6.B.5.

6.B.2 Problem formulation

Let x (n), ds (n) and dt (n) denote speech and two uncorrelated additive interference sig-

nals, respectively, and let

y (n) = x (n) + ds (n) + dt (n) (6.42)

be the observed signal. We assume that ds (n) is a quasi-stationary background noise while

dt (n) is a highly non-stationary transient signal. The speech signal and the transient noise

are not always present in the STFT domain, so we have four hypotheses for the noisy

coefficients:

Hℓk
1s : Yℓk = Xℓk +Ds

ℓk ,

Hℓk
1t : Yℓk = Xℓk +Ds

ℓk +Dt
ℓk ,

Hℓk
0s : Yℓk = Ds

ℓk ,

Hℓk
0t : Yℓk = Ds

ℓk +Dt
ℓk , (6.43)

where ℓ denotes the time frame index and k denotes the frequency-bin index.

In many speech enhancement applications, an indicator for the transient source may

be available, e.g., siren noise in an emergency car, keyboard typing in computer-based

communication system and a lens-motor noise in a digital video camera. In such cases, a
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priori information based on a training phase may yield a reliable detector for the transient

noise. However, false detection of transient noise components when signal components are

present may significantly degrade the speech quality and intelligibility. Furthermore, miss

detection of transient noise components may result in a residual transient noise, which is

perceptually annoying.

Let ηℓk
j , j ∈ {0, 1} denote the detector decision in the time-frequency bin (ℓ, k), i.e., a

transient component is classified as a speech component under η1 and as a noise component

under η0
4. Let C10 denote the false-alarm cost with relation to the noise transient, i.e.,

cost of making a decision η0 when a noise transient is inactive or is not dominant w.r.t

the speech component, and let the miss detection cost C01 be defined similarly. Let

d (x, y) , (log |x| − log |y|)2 (6.44)

denote the squared log-amplitude distortion function, let Aℓk , |Xℓk| and let Rℓk , |Yℓk|.
Considering a realistic detector, we introduce the following criterion for the estimation of

the speech expansion coefficient under the decision ηℓk
j :

Âℓk = arg min
Â

{

C1jp
(

Hℓk
1s ∪Hℓk

1t | ηℓk
j , Yℓk

)

× E
[

d
(

Xℓk, Â
)

| Yℓk, H
ℓk
1s ∪Hℓk

1t

]

+ C0jp
(

Hℓk
0t ∪Hℓk

0s | ηℓk
j , Yℓk

)

d
(

GminRℓk, Â
)}

(6.45)

where the costs of perfect detection C00 and C11 are normalized to one. That is, under

speech presence we aim at minimizing the MSE of the LSA. Otherwise, a constant atten-

uation Gmin << 1 is imposed for maintaining naturalness of the residual noise [38]. The

cost parameters control the trade-off between speech distortion, consequent upon false

detection of noise transients, and residual transient noise, resulting from miss detection

of transient noise components.

6.B.3 Optimal estimation under a given detection

In this section we derive an optimal estimator for the speech signal under multiple hy-

potheses.

4Note that the detector is used for discriminating between transient speech components and transient

noise components, and therefore not employed when transients are absent.
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Spectral Estimation

We first reduce the problem into two basic hypotheses, Hℓk
1 and Hℓk

0 . Under Hℓk
1 , the

speech component is assumed present and more dominant than the noise component.

This hypothesis includes Hℓk
1s as well as Hℓk

1t given that |Xℓk| ≥ β |Dt
ℓk|, where β > 0 is

a predefined threshold parameter. The hypothesis Hℓk
0 includes the cases Hℓk

0s , H
ℓk
0t and

also Hℓk
1t with |Xℓk| < β |Dt

ℓk|. Under Hℓk
1 we estimate the speech in the MMSE-LSA

sense, and under Hℓk
0 we impose a constant attenuation to the noisy component. Note

that ideally under Hℓk
1t an estimate for the speech component would be desired. However,

if the noise transient is much more dominant we would better apply the constant low

attenuation to the noisy component to avoid a strong residual noisy transient.

Let pij , p
(

ηℓk
j |Hℓk

i

)

. We are interested in detecting the interfering transient noise

so p01 is the probability of a false alarm and p10 is the probability of miss detection. We

assume that given any transient in the noisy coefficients, the detection error probability

is independent of the observation and the signal-to-noise ratio (SNR). Therefore,

p
(

ηℓk
j |Hℓk

i , Yℓk

)

= pij (6.46)

and

p
(

Hℓk
i | ηℓk

j , Yℓk

)

= pij p
(

Hℓk
i | Yℓk

)

/p
(

ηℓk
j | Yℓk

)

. (6.47)

This assumption can be easily relaxed by employing a time-frequency dependent proba-

bility pℓk
ij . Considering the two basic hypotheses and substituting (6.47) into (6.45) we

obtain

Âℓk = arg min
Â

{

p1jC1jp
(

Hℓk
1 | Yℓk

)

×
∫

d
(

Xℓk, Â
)

p
(

Xℓk | Yℓk, H
ℓk
1

)

dXℓk

+ p0jC0jp
(

Hℓk
0 | Yℓk

)

d
(

GminRℓk, Â
)}

, (6.48)

which yields

log Âℓk

[

p1jC1jp
(

Hℓk
1 | Yℓk

)

+ p0jC0jp
(

Hℓk
0 | Yℓk

)]

=

p1jC1jp
(

Hℓk
1 | Yℓk

)

E
{

log |Xℓk| | Yℓk, H
ℓk
1

}

+p0jC0jp
(

Hℓk
0 | Yℓk

)

log (GminRℓk) . (6.49)
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Let ξℓk and γℓk denote the a priori and a posteriori SNRs, respectively5, let υℓk ,

ξℓkγℓk/ (1 + ξℓk) and let

Λ (ξℓk, γℓk) ,
p
(

Hℓk
1

)

p
(

Hℓk
0

)

p
(

Yℓk |Hℓk
1

)

p
(

Yℓk |Hℓk
0

)

=
p
(

Hℓk
1

)

p
(

Hℓk
0

)

eυℓk

1 + ξℓk
(6.50)

denote the generalized likelihood ratio [33]. Accordingly,

p
(

Hℓk
1 | Yℓk

)

= Λ (ξℓk, γℓk) / (1 + Λ (ξℓk, γℓk)) . (6.51)

Let

φj (ξℓk, γℓk) = p1jC1jΛ (ξℓk, γℓk) + p0jC0j (6.52)

and let

GLSA (ξ, γ) ,
ξ

1 + ξ
exp

(

1

2

∫ ∞

ϑ

e−t

t
dt

)

(6.53)

denote the LSA gain function [34]. Then, combining the magnitude estimate Âℓk with

the phase of the noisy spectral coefficient Yℓk we obtain an optimal estimate under the

decision ηℓk
j :

X̂ℓk =
[

G
p0jC0j

min GLSA (ξℓk, γℓk)
p1jC1jΛ

]φ−1

j

Yℓk

, Gηj
(ξℓk, γℓk) Yℓk , (6.54)

where Λ and φj hold for Λ (ξℓk, γℓk) and φj (ξℓk, γℓk), respectively.

In case of a decision η1 (i.e., transient component is classified as speech), the miss-

detection cost C01 as well as the probabilities p01 and p11 control the trade-off between

the attenuation associated with the hypothesis H1 and the constant attenuation under

speech absence, Gmin. Under a decision η0, the trade-off is controlled by the false-alarm

cost and the probabilities p00 and p10.

Note that in case p0j = p1j and C0j = C1j for j ∈ {0, 1}, the estimator (6.54) reduces

to the OM-LSA estimator [38] under any of the detector decisions, since in that case the

decision made by the detector does not contribute any statistical information.

5Note that the noise variance depends on whether a transient component is present or not. This will

be specified in the next subsection.
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Figure 6.8: Gain curves for p(H1) = 0.8, C01 = 5, C10 = 3, Gmin = −15 dB and false-detection

and miss-detection probabilities of p01 = p10 = 0.1.

Figure 6.8 shows attenuation curves as a function of the instantaneous SNR, γ − 1,

for different a priori SNRs. The detection-dependent gains Gη0
(dashed-dotted line) and

Gη1
(dotted line) are compared to the LSA gain (dashed line) and the OM-LSA gain

(solid line) [34, 38]. It shows that the cost parameters with the error probabilities of the

detector shape the attenuation curve under any of the decisions made by the detector to

compensate for any erroneous detection.

A priori and a posteriori SNR estimation

The spectrum of the background noise, λs,ℓk , E
{

|Ds
ℓk|2
}

, can be estimated by using the

minima-controlled recursive averaging algorithm [71]. The a priori signal-to-stationary

noise ratio ξs
ℓk , λx,ℓk/λs,ℓk, where λx,ℓk , E

{

|Xℓk|2
}

, is practically estimated using the

decision-directed approach [33, 38]. Given that a transient noise is present, the transient

noise spectrum may be estimated from a training phase. Therefore, under η0 we may

estimate the a priori and a posteriori SNRs by using λ̂s,ℓk + λ̂t,ℓk as the estimate for

the noise spectrum [141], where λt,ℓk is defined similarly to λs,ℓk. However, in case of an
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erroneous detection, this approach may significantly distort the speech component, since

both the a priori and a posteriori SNRs would be much smaller than their desired values.

Therefore, we propose to smooth the noisy spectra

ζℓk = µζℓ−1,k + (1 − µ) |Yℓk|2 , (6.55)

with 0 < µ < 1. Accordingly, under a decision ηℓk
0 we update the estimates such that

ηℓk
1 : ξ̂ℓk = ξ̂s

ℓk , γ̂ℓk = γ̂s
ℓk ,

ηℓk
0 : ξ̂ℓk = ξ̂s

ℓk

λ̂s
d,ℓk

ζℓk
, γ̂ℓk = γ̂s

ℓk

λ̂s
d,ℓk

ζℓk
. (6.56)

As a result, the outcome of falsely detecting transient noise is less destructive since ζℓk

would be much smaller than λs,ℓk + λt,ℓk. However, in case of a perfect detection, ζℓk is

a reliable estimator for the noise spectrum given that µ is sufficiently small. In addition,

under the existence of a high energy transient component we would like to further atten-

uate the noisy component to the level of the residual background noise. Therefore, under

ηℓk
0 we update G̃min = Gmin

√

λ̂s,ℓk/ζℓk.

6.B.4 Experimental results

In this section, we demonstrate the application of the proposed algorithm to speech en-

hancement in a computer-based communication system. The background office noise is

slowly-varying while possible keyboard typing interference may exist. Since the keyboard

signal is available to the computer, a reliable detector for the transient-like keyboard noise

is assumed to be available based on a training phase but still, erroneous detections are

reasonable. The speech signals are sampled at 16 kHz and degraded by a stationary back-

ground noise with 15 dB SNR and a keyboard typing noise such that the total SNR is

0.8 dB. The STFT is applied to the noisy signal with Hamming windows of 32 msec length

and 75% overlap. The transient noise detector is assumed to have an error probability of

10% and the miss-detection and false-detection costs are set to 1.2. The weighting factor

for the noisy spectra is µ = 0.5.

Figure 6.9 demonstrates the spectrograms and waveforms of a signal enhanced by using

the proposed algorithm, compared to using the OM-LSA algorithm. It can be seen that
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Figure 6.9: Speech spectrograms and waveforms. (a) Clean signal (”Draw any outer line first”);

(b) noisy signal (office noise including keyboard typing noise, SNR=0.8 dB ); (c) speech enhanced

by using the OM-LSA estimator; (d) speech enhanced by using the proposed algorithm.
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Table 6.3: Segmental SNR and Log Spectral Distortion Obtained Using the OM-LSA and the

Proposed Algorithm.

Method SegSNR [dB] LSD [dB] PESQ

Noisy speech -2.23 7.69 1.07

OM-LSA -1.31 6.77 0.97

Proposed Alg. 5.41 1.67 2.87

using our approach, the transient noise is significantly attenuated, while the OM-LSA is

unable to eliminate the keyboard transients.

The objective evaluation includes three quality measures: segmental SNR (SegSNR),

log-spectral distortion (LSD) and perceptual evaluation of speech quality (PESQ) score.

The results are summarized in Table 6.3. It can be seen that the proposed detection and

estimation approach significantly improves speech quality compared to using the OM-LSA

algorithm. Informal listening tests confirm that the annoying keyboard typing noise is

dramatically reduced and the speech quality is significantly improved.

6.B.5 Conclusions

We have introduced a new approach for a single-channel speech enhancement in a highly

non-stationary noise environment where a reliable detector for interfering transients is

available. The speech expansion coefficients are estimated under multiple-hypotheses

in the MMSE-LSA sense while considering possible erroneous detection. The proposed

algorithm generalizes the OM-LSA estimator and enables greater suppression of transient

noise components.
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Chapter 7

Single-Sensor Audio Source

Separation Using Classification and

Estimation Approach and GARCH

Modeling1

In this chapter, we propose a new algorithm for single-sensor blind source separation of

speech and music signals, which is based on generalized autoregressive conditional het-

eroscedasticity (GARCH) modeling of the speech signals and Gaussian mixture modeling

(GMM) of the music signals. The separation of the speech from the music signal is ob-

tained by a classification and estimation approach, which enables to control the trade-off

between residual interference and signal distortion. Experimental results demonstrate

that for mixtures of speech and piano music signals, an improved source separation can

be achieved compared to using Gaussian mixture model for both signals. The trade-off

between signal distortion and residual interference is controlled by adjusting some cost

parameters, which are shown to determine the missed and false detection rates in the

proposed classification and estimation approach.

1This chapter is based on [151].

139
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7.1 Introduction

Separation of mixed audio signals received by a single microphone has been a challenging

problem for many years. Examples of applications include separation of speakers [85,86],

separation of different musical sources (e.g., different musical instruments) [85, 87, 88],

separation of speech or singing voice from background music [89–92], and signal enhance-

ment in nonstationary noise environments [35,62,93–95]. In case the signals are received

by multiple microphones, spatial filtering may be employed as well as mutual information

between the received signals, e.g., see [96] and references therein. However, for the un-

derdetermined case of several sources which are recorded by a single microphone, some a

priori information is necessary to enable reasonable separation performance. Existing al-

gorithms for single-sensor audio source separation generally deal with two main problems.

The first is to obtain appropriate statistical models for the mixed signals, i.e., codebook,

and the second problem is the design of a separation algorithm.

In [94, 95] speech and nonstationary noise signals are assumed to evolve as mixtures

of autoregressive (AR) processes in the time domain. The a priori statistical information

(codebook), which in this case includes the sets of AR prediction coefficients, is obtained

by using a training phase. In [87,88,90] the acoustic signals are modeled by Gaussian mix-

ture models (GMMs), and in [35, 62] the acoustic signals are modeled by hidden Markov

models (HMMs) with AR sub-sources. The trained codebooks provide statistical infor-

mation about the distinct signals, which enables source separation from signal mixtures.

The desired signal may be reconstructed based on the assumed model by minimizing the

mean-square error (mse) [35,88,90], or by a maximum a posteriori (MAP) approach [62].

However, in case of several sources received by a single sensor, separation performances

are far from being perfect. Falsely assigning an interfering component to the desired sig-

nal may cause an annoying residual interference, while falsely attenuating components of

the desired signal may result in signal distortion and perceptual degradation.

GMM and AR-based codebooks are generally insufficient for source separation of sta-

tistically rich signals such as speech signals since they only allow a finite set of probability

density functions (pdf’s) [92, 152]. Recently, generalized autoregressive conditional het-

eroscedasticity (GARCH) models have been proposed for modeling speech signals for
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speech enhancement [23, 24, 127, 133], speech recognition [26], and voice activity detec-

tion [27] applications. The GARCH model takes into account the correlation between

successive spectral variances and specifies a time-varying conditional variance (volatility)

as a function of past spectral variances and squared-absolute values. As a result, the spec-

tral variances may smoothly change along time and the pdf is much less restricted [1,5,25].

In this chapter, we propose a novel approach for single-sensor audio source separation

of speech and music signals. We consider both problems of codebook design and the

ability to control the trade-off between the residual interference and the distortion of the

desired signal. Accordingly, the proposed approach includes a new codebook for speech

signals, as well as a new separation algorithm which relies on a simultaneous classification

and estimation method. The codebook is based on GARCH modeling of speech signals

and Gaussian mixture modeling of music signals. We apply the models to distinctive

frequency subbands, and define a specific state for the case that the signal is absent in the

observed subband. The proposed separation algorithm relies on integrating a classifier and

an estimator while reconstructing each signal. The classifier attempts at classifying the

observed signal into the appropriate hypotheses of each of the signals, and the estimator

output is based on the classification. Two methods are proposed for classification and

estimation. One is based on simultaneous operations of classification and estimation while

minimizing a combined Bayes risk. The second method employs a given (non-optimal)

classifier, and applies an estimator which is optimally designed to yield a controlled level of

residual interference and signal distortion. The GARCH model for the speech signal with

several states of parameters enables smooth (diagonal) covariance matrices with possible

state switching. Experimental results demonstrate that for mixtures of speech and piano

signals it is more advantageous to model the speech signal by GARCH than GMM, and

the codebook generated by the GARCH model yields significantly improved separation

performance. In addition, the classification and estimation approach, together with the

signal absence state, enables the user to control the trade-off between distortion of the

desired signal caused by missed detection, and amount of residual interference resulting

from false detection.

This chapter is organized as follows. In Section 7.2, we briefly review codebook-

based methods for single-channel audio source separation. We formulate the simultaneous
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classification and estimation problem for mixtures of signals and derive an optimal solution

for the classifier and the combined estimator. Furthermore, we show that a constrained

optimization with a given classifier yields the same estimator. In Section 7.3, we define

the GARCH codebook which is considered for speech signals and review the recursive

conditional variance estimation. In Section 7.4, we describe the implementation of the

proposed algorithm, and in Section 7.5 we provide some experimental results for audio

separation of speech and music signals.

7.2 Codebook-Based Separation

Separation of a mixture of signals observed via a single sensor is an ill posed problem.

Some a priori information about the mixed signals is generally necessary to enable rea-

sonable reconstructions. Benaroya et al. [87–89] proposed a GMM for the signals’ code-

book in the short-time Fourier transform (STFT) domain, and in [35,62,94,95] mixtures

of AR models are considered in the time domain. In each case, a set of clean similar

signals is used to train the codebooks prior to the separation step. Although the AR pro-

cesses are defined in the time domain, for process of length N with prediction coefficients

{1, a1, ..., ap} and innovation variance σ2, the covariance matrix is σ2(ATA)−1, where A is

an N ×N lower triangular Toeplitz matrix with [1 a1 ... ap 0 ... 0]T as the first column. If

the frame length N tends to infinity, the covariance matrix become circulant and hence

diagonalized by the Fourier transform [35, 95]. Accordingly, each set of AR coefficients,

together with the excitation variance, corresponds to a specific covariance matrix in the

STFT domain similarly to the GMM. Therefore, under any of these models, each framed

signal is considered as generated from some specific distribution, which is related to the

codebook with some probability, and separation is applied on a frame-by-frame basis.

We now start with brief introduction of existing codebooks and separation algorithms.

Let s1, s2 ∈ CN denote the vectors of the STFT expansion coefficients of signals s1(n)

and s2(n), respectively, for some specific frame index. Let q1 and q2 denote the active

states of the codebooks corresponding to signals s1 and s2, respectively, with known a

priori probabilities p1 (i) , p (q1 = i), i = 1, ..., m1 and p2 (j) , p (q2 = j), j = 1, ..., m2,

and
∑

i p1 (i) =
∑

j p2 (j) = 1. Given that q1 = i and q2 = j, s1 and s2 are assumed
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conditionally zero-mean complex-valued Gaussian random vectors (see, e.g., [153, p. 89])

with known diagonal covariance matrices, i.e., s1 ∼ CN
(

0,Σ
(i)
1

)

and s2 ∼ CN
(

0,Σ
(j)
2

)

.

Based on a given codebook, it is proposed in [88] and [95] to first find the active pair

of states {i, j} = {q1 = i, q2 = j} using a MAP criterion:

{

î, ĵ
}

= arg max
i,j

p (x | i, j) p (i, j) (7.1)

where x = s1+s2, p (· | i, j) = p (· | q1 = i, q2 = j), and for statistically independent signals

p (i, j) = p1 (i) p2 (j). Subsequently, conditioned on these states (i.e., classification), the

desired signal may be reconstructed in the mmse sense by

ŝ1 = E
{

s1 |x, î, ĵ
}

= Σ
(î)
1

(

Σ
(î)
1 + Σ

(ĵ)
2

)−1

x

, Wîĵ x (7.2)

and similarly2 ŝ2 = Wĵ î x. Alternatively [35, 88, 90], the desired signal may be recon-

structed in the mmse sense directly from

ŝ1 = E {s1 |x}

=
∑

i,j

p (i, j |x)Wij x . (7.3)

Note that in case of additional uncorrelated stationary noise in the mixed signal, i.e.,

x = s1 + s2 + d with d ∼ CN (0,Σ), the covariance matrix of the noise signal is added to

the covariance matrix of the interfering signal, and then the signal estimators remain in

the same forms. Furthermore, without loss of generality, we may restrict ourselves to the

problem of restoring the signal s1 from the observed signal x.

In the following subsections, we introduce two related methods for separation. In

Section 7.2.1 we formulate the problem of source separation as a simultaneous classification

and estimation problem in the sense of statistical decision theory. A classifier is aimed at

finding the appropriate states within the codebooks, and the estimator tries to estimate

the desired signal based on the given classification. Coupled classifier and estimator jointly

2Note that in this chapter the index i always refers to the signal s1 and the index j refers to the other

signal s2. Therefore, Wji = Σ
(j)
2

(

Σ
(i)
1 + Σ

(j)
2

)

−1

.



144 CHAPTER 7. SINGLE-SENSOR AUDIO SOURCE SEPARATION

minimize a combined Bayes risk, which penalizes for both classification and estimation

errors. Relying on the fact that audio signals are generally sparse in the STFT domain,

we define additional specific states for the codebook which represent signal absence, and

consider false detection of the desired signal and missed detection. The false detection

results in under-attenuation of the interfering signal. On the other hand, missed detection

of the desired signal may result in removal of desired components and excessive distortion

of the separated signals. To allow the user a control over the residual interference and

the signal distortion, we introduce cost parameters which are related to missed detection

and false detection of the desired signal.

In Section 7.2.2, we introduce a slightly different formulation of optimal estimation

under a given classifier. An independent (given) classifier may be applied, for example, by

using the MAP classifier (7.1). Based on this classification, the signal estimation is derived

by solving a constrained optimization with respect to the level of residual interference and

signal distortion. We denote this approach as joint classification and estimation. We show

that in case of degenerated simultaneous classification and estimation formulation, closely

related solutions can be derived under both approaches.

7.2.1 Simultaneous Classification and Estimation

Simultaneous detection and estimation formulation was first proposed by Middleton et

al. [115,116]. This scheme assumes coupled operations of detection and estimation which

jointly minimize a combined Bayes risk. Recently, a similar approach has been proposed

for speech enhancement in nonstationary noise environments [136]. It was shown that ap-

plying simultaneous operations of speech detection and estimation in the STFT domain

improves the enhanced signal compared to using an estimation only approach. Further-

more, the contribution of the detector is more significant when the interfering signal is

highly nonstationary. In this subsection we develop a simultaneous classification and

estimation approach for a codebook-based single-channel audio source separation. By

introducing cost parameters for classification errors the trade-off between residual inter-

ference and signal distortion may be controlled.

Let η denote a classifier for the mixed signal, where ηij indicates that the mixed signal
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x is classified to be associated with the pair of states {i, j} . Let

C īj̄
ij (s, ŝ) , bīj̄ij ‖s− ŝ‖2

2 (7.4)

denote the combined cost of classification and estimation, where we use a squared-error

distortion, and bīj̄ij > 0 are parameters which impose a penalty for making a decision that

{i, j} is the active pair while actually s1 was generated with covariance matrix Σ
(̄i)
1 and s2

with covariance matrix Σ
(j̄)
2 (i.e., q1 = ī and q2 = j̄). The combined risk of classification

and estimation is then given by

R =
∑

i,j

∑

ī,j̄

∫ ∫

C īj̄
ij (s1, ŝ1) p (x | s1, ī, j̄) p (s1 | ī, j̄) p (̄i, j̄) p (ηij |x) ds1 dx . (7.5)

The simultaneous classification and estimation is aimed at finding the optimal esti-

mator and classifier which jointly minimize the combined risk:

min
ηij ,̂s1

{R} . (7.6)

To derive a solution to (7.6) we first note that the signal s1 is independent of the value

of q2, hence p (s1 | ī, j̄) = p (s1 | ī). Similarly, x given s1 is independent of the value of q1.

Accordingly, rīj̄
ij (x, ŝ1) which is defined by

rīj̄
ij (x, ŝ1) =

∫

C īj̄
ij (s1, ŝ1) p (x | s1, j̄) p (s1 | ī) ds1 (7.7)

denotes the average risk related to a decision ηij when the true pair is {̄i, j̄}. The combined

risk (7.5) can be written as

R =
∑

i,j

∫

p (ηij |x)
∑

ī,j̄

p (̄i, j̄) rīj̄
ij (x, ŝ1) dx . (7.8)

The classifier’s decision for a given observation is nonrandom. Therefore, given the ob-

served signal x, the optimal estimator under a decision ηij made by the classifier [i.e.,

p(ηij |x) = 1 for a particular pair {i, j}] is obtained by

ŝ1,ij = arg min
ŝ1

∑

ī,j̄

p (̄i, j̄) rīj̄
ij (x, ŝ1) . (7.9)

Substituting (7.7) into (7.9) and setting the derivative to be equal to zero, we obtain

the optimal estimate under ηij :

ŝ1,ij =

∑

īj̄ b
īj̄
ij p (x | ī, j̄) p (̄i, j̄)Wīj̄ x

∑

īj̄ b
īj̄
ij p (x | ī, j̄) p (̄i, j̄)

, Gij x . (7.10)
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The derivation of (7.10) is given in Appendix 7.A. Note that in case the parameters

bīj̄ij are all equal, then the estimator (7.10) reduces to the mmse estimator (7.3) and the

estimation does not depend on the classification rule.

The average risk rīj̄
ij (x, ŝ1) is a function of the observed mixed signal and the optimal

estimate under ηij. Let 1 denote a column vector of ones. Then, by substituting (7.10)

into (7.7), we obtain (see Appendix 7.B)

rīj̄
ij (x, ŝ1) = bīj̄ij p (x | ī, j̄)

[

xH
(

W 2
īj̄ − 2Wīj̄Gij

)

x + 1T Σ
(j̄)
2 Wīj̄1

]

. (7.11)

From (7.6) and (7.8), the optimal classification rule ηij (x) is obtained by minimizing the

weighted average risks over all pairs of states:

min
ij

∑

ī,j̄

p (̄i, j̄) rīj̄
ij (x, ŝ1) . (7.12)

If we consider the degenerated case of equal parameters bīj̄ij , then the averaged risk

rīj̄
ij (x, ŝ1) does not depend on i, j and therefore there is no specific pair which mini-

mizes (7.12). However, as already mentioned above, in this case there is no need for a

classification since the estimator does not depend on the decision rule.

To summarize, minimizing the combined Bayes risk is obtained by first evaluating the

optimal gain matrix Gij under each pair {i, j} using (7.10), and subsequently the optimal

classifier chooses the appropriate pair (and the appropriate gain matrix) using (7.11) and

(7.12). The combined solution guaranties minimum combined Bayes risk [116].

The selection of the parameters bīj̄ij is application dependent, since these parameters

determine the penalty for choosing each set of states compared to all other sets. Recall

we would like to define specific states for signal absence, we consider from now on that

the signal states are q1 ∈ {0, 1, ..., m1} and q2 ∈ {0, 1, ..., m2} where q1 = 0 and q2 = 0 are

the signal absence states. Accordingly, we define separable parameters bīj̄ij = bīi b
j̄
j , where

b0i with i 6= 0 is related to the cost of false detection and bī0 with ī 6= 0 is related to the

cost of missed detection of the desired signal. Specifically, we define

bīi =



















b1,m i = 0, ī 6= 0

b1,f i 6= 0, ī = 0

1 o.w.

(7.13)
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with b1,m, b1,f > 0, and for signal s2, b
j̄
j is defined similarly (with parameters b2,m and

b2,f). By using this definition, we practically assume equal parameters (i.e., one) for all

cases except for missed detection and false detection. As can be seen from (7.11)–(7.12),

higher b2,m (or b2,f) results in larger average risk which corresponds to this decision, and

therefore, lower chances for the optimal detector to take this decision. However, as can be

seen from (7.10), the high valued parameter raises the contribution of the corresponding

state on the system estimate. If a parameter is smaller than one, than the chances of

the detector to take this decision are higher, but, as the estimator (7.10) compensates

for wrong decisions, this contribution on the system estimate would be low. Missing to

detect the desired signal results, in general, in removal of desired signal components and

therefore distort the desired signal estimate. On the other hand, false detection may

result in residual interference. By affecting both the decision rule and the corresponding

estimation, these parameters help to control the trade-off between residual interference

when the desired signal is absent (resulting from false detection) and the distortion of the

desired signal caused by missed detection.

The computational complexity of the simultaneous classification and estimation ap-

proach is higher than that associated with the sequential MAP classification and mmse

estimation (7.1)–(7.2), or the mmse estimator (7.3). However, the estimator (7.10) is

optimal, not only when combined with the optimal classifier (7.12), but also when com-

bined with any given classifier [116]. Therefore, this estimator may be combined with a

sub-optimal classifier [e.g., the MAP classifier given by (7.1)] to reduce the computational

requirements, while still using parameters which compensate for false classification. In the

following subsection we discuss this option of employing a non-ideal classifier and show

that the same estimator (7.10) can be obtained by solving a constrained optimization

problem. In this problem formulation it is shown that the cost parameters may also have

the interpretation of Lagrange multipliers.

7.2.2 Joint Classification and Estimation

The application of a given classifier (e.g., a MAP classifier) followed by an estimator

is shown in Figure 7.1. We denote this scheme as joint classification and estimation.
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Classifierx = s1 + s2
ηij

Estimator ŝ1,ij

Figure 7.1: A cascade classification and estimation scheme.

In order to simplify the derivation, we assume in this subsection only signal absence or

presence states i, j ∈ {0, 1} (i.e., m1 = m2 = 1) where i = 0 and i = 1 represent presence

and respectively absence of s1, and j similarly specifies the state of s2. The classifier

is generally not ideal and may suffer from miss and false detections. Therefore, under

false decision that the signal is absent when actually the signal is present, we may want

to control the distortion level, while under false detection of signal components we wish

to control the level of residual interference. Under the two hypotheses, the mean signal

distortion is defined by

ε̄2
d(x) , p (q1 = 1 |x)E

{

‖s1 − ŝ1‖2
2 | q1 = 1,x

}

(7.14)

and the mean residual interference is defined by

ε̄2
r(x) , p (q1 = 0 |x)E

{

‖s1 − ŝ1‖2
2 | q1 = 0,x

}

. (7.15)

Therefore, for a decision that signal is absent (i.e., η0j) we have the following problem

ŝ1,0j = arg min
ŝ1

p (q1 = 0 |x)E
{

‖s1 − ŝ1‖2
2 | q1 = 0,x

}

s.t. ε̄2
d(x) ≤ σ2

d , (7.16)

while for a signal-presence decision (η1j) we have

ŝ1,1j = arg min
ŝ1

p (q1 = 1 |x)E
{

‖s1 − ŝ1‖2
2 | q1 = 1,x

}

s.t. ε̄2
r(x) ≤ σ2

r (7.17)

where σ2
d and σ2

r are bounds for the mean distortion and mean residual interference,

respectively. The optimal estimator can be obtained by using a method similar to [57,104].

Under η0j the Lagrangian is defined by (e.g., [154]):

Ld (ŝ1, µd) = p (q1 = 0 |x)E
{

‖s1 − ŝ1‖2
2 | q1 = 0,x

}

+ µd

(

ε̄2
d(x) − σ2

d

)

(7.18)
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and

µd

(

ε̄2
d(x) − σ2

d

)

= 0 for µd ≥ 0 . (7.19)

Under η1j the Lagrangian Lr (ŝ1, µr) is defined similarly using µr and ε̄2
r(x). Then, ŝ1,0j (or

ŝ1,1j) is a stationary feasible point if it satisfies the gradient equation of the appropriate

Lagrangian [i.e., Ld (ŝ1, µd) or Lr (ŝ1, µr)]. From ▽ŝ1
Ld (ŝ1, µd) = 0 we have3

ŝ1,0j =
p (q1 = 0 |x)E {s | q1 = 0,x} + µd p (q1 = 1 |x)E {s | q1 = 1,x}

p (q1 = 0 |x) + µd p (q1 = 1 |x)

=
p (q1 = 0 |x)

∑

j̄ p (j̄ | q1 = 0,x)E {s | q1 = 0, j̄,x}
∑

j̄ p (q1 = 0, j̄ |x) + µd

∑

j̄ p (q1 = 1, j̄ |x)

+
µd p (q1 = 1 |x)

∑

j̄ p (j̄ | q1 = 1,x)E {s | q1 = 1, j̄,x}
∑

j̄ p (q1 = 0, j̄ |x) + µd

∑

j̄ p (q1 = 1, j̄ |x)

=

∑

j̄ p (q1 = 0, j̄ |x)W0j̄x + µd

∑

j̄ p (q1 = 1, j̄ |x)W1j̄x
∑

j̄ p (q1 = 0, j̄ |x) + µd

∑

j̄ p (q1 = 1, j̄ |x)

=

∑

īj̄ µ̃
ī
d p (̄i, j̄ |x)Wīj̄x

∑

īj̄ µ̃
ī
d p (̄i, j̄ |x)

(7.20)

where

µ̃ī
d =







µd ī = 1

1 ī = 0
. (7.21)

Similarly, under signal-presence decision we have

ŝ1,1j =

∑

īj̄ µ̃
ī
r p (̄i, j̄ |x)Wīj̄x

∑

īj̄ µ̃
ī
r p (̄i, j̄ |x)

(7.22)

with

µ̃ī
r =







µr ī = 0

1 ī = 1
. (7.23)

Therefore, in general we can write

ŝ1,ij =

∑

īj̄ µ
ī
ip (̄i, j̄ |x)Wīj̄x

∑

īj̄ µ
ī
ip (̄i, j̄ |x)

(7.24)

with

µī
i =



















µd i = 0, ī = 1

µr i = 1, ī = 0

1 o.w.

(7.25)

3Note that as shown in [57,104], there is no closed form solution for the value of the Lagrange multiplier.

Instead it is used as a non-negative parameter.
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and the estimator (7.24) is the same as (7.10) with bj̄j = 1, b1,m = µd, and b1,f = µr in

(7.13). Therefore, we can identify the parameters bīj̄ij as non-negative Lagrange multipliers

of a constrained optimization problem. In addition, if b1,m (or b1,f) equals zero, then the

corresponding Lagrange multiplier also reduces to zero and the constraint in (7.16) [or

(7.17)] is inapplicable. Therefore, the problem reduces to a standard conditional mmse

problem, which results in the estimator (7.2) which assumes a perfect classifier.

The main difference between the problem formulations in Sections 7.2.1 and 7.2.2

is that the former defines a classifier and a coupled estimator which are designed to

minimize a combined Bayes risk, while the latter assumes a given classifier, and formulates

a constrained optimization problem in order to find the optimal estimator for the given

classification rule.

7.3 GMM Vs. GARCH Codebook

In this section, we introduce a new codebook for mixtures of speech and music signals.

GMM was used in [88–90] for generating codebooks for speech signals as well as for music

signals in the STFT domain, under the assumption of diagonal covariance matrices. The

covariance matrices and the a priori state probabilities are estimated by either maximizing

the log-likelihood of the trained signal using expectation-maximization algorithm [62,155] ,

or by using the k-means vector quantization algorithm [62,156]. Using a finite-state model

with predetermined densities as in the case of GMM, mixture of AR models or HMM with

AR sub-sources, the diagonal vector of the covariance matrices can take values only from

a specific subspace of RN
+ spanned by the given codewords. This limitation for the pdf’s

may restrict the usage of these models for statistically rich signals such as speech [92].

GARCH is a statistical model which explicitly parameterizes a time-varying condi-

tional variance using past variances and squared absolute values, while considering volatil-

ity clustering and excess kurtosis (i.e., heavy-tailed distribution) [1]. Expansion coeffi-

cients of speech signals in the STFT domain, are clustered in the sense that successive mag-

nitudes at a fixed frequency bin are highly correlated [25]. GARCH model has been found

useful for modeling speech signals in speech enhancement applications [24], [127, 133],

speech recognition [26], and voice activity detection [27]. It has been shown [127] that
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spectral variance estimation resulting from this model is a generalization of the decision-

directed estimator [33] with improved tracking of the speech spectral volatility. Therefore,

we propose in this work to use GMM for modeling the music signal (say s2) and GARCH

model with several states for the speech signal (say s1).

According to the GMM formalism, p2(j) is the a priori probability for the active state

q2 = j, where conditioning on q2 = j, the vector in the STFT domain s2 ∼ CN
(

0,Σ
(j)
2

)

.

For defining the GARCH modeling we first let s1(ℓ) denote the ℓth frame of s1 in the

STFT domain. We assume that s1(ℓ) is a mixture of GARCH processes of order (1, 1).

Then, given that q1 (ℓ) = iℓ is the active state at frame ℓ, s1 (ℓ) has a complex-normal pdf

with zero mean and a diagonal covariance matrix Σ
(iℓ)
1 = diag

{

λ
(iℓ)
ℓ|ℓ−1

}

. The conditional

variance vector λ
(iℓ)
ℓ|ℓ−1 is the vector of variances at frame ℓ conditioning on the information

up to frame ℓ−1. This conditional variance is a linear function of the previous conditional

variance and squared absolute value:

λ
(iℓ)
ℓ|ℓ−1 = λ

(iℓ)
min 1 + α(iℓ)s1 (ℓ− 1) ⊙ s∗1 (ℓ− 1)

+ β(iℓ)
(

λ
(iℓ−1)

ℓ−1|ℓ−2 − λ
(iℓ−1)
min 1

)

(7.26)

where ⊙ denotes a term-by-term vector multiplication, ∗ denotes complex conjugate,

and λ
(iℓ)
min > 0 and α(iℓ), β(iℓ) ≥ 0 for iℓ = 0, 1, ..., m1 are sufficient conditions for the

positivity of the conditional variance [127,133]. In addition, α(iℓ) + β(iℓ) < 1 for all iℓ is a

sufficient condition for a finite unconditional variance4 [5]. The conditional density results

from (7.26) is time varying and depends on all past values (through previous conditional

variances) and also on the regime path up to the current time. While λ
(i)
min set the lower

bounds for the conditional variances in each state, the parameters α(i) and β(i) set the

volatility level and the autoregression behavior of the conditional variances. Note that

this model is a degenerated case of the Markov-switching GARCH (MS-GARCH) model

[7, 8, 127]. In the MS-GARCH model the sequence of states is a first-order Markov chain

with state transition probabilities p (q1 (ℓ) = iℓ | q1 (ℓ− 1) = iℓ−1). However, to reduce the

model complexity and to allow a simpler online estimation procedure under the presence

of a highly nonstationary interfering signal, we assume here that the state transition

probabilities equal the a priori state probabilities, i.e., p (q1 (ℓ) = iℓ | q1 (ℓ− 1) = iℓ−1) =

4For necessary and sufficient condition see [121].
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p1 (iℓ), similarly to the assumption used in [88] for the GMM approach.

It can be seen from (7.26) that the vector of conditional variances λ
(iℓ)
ℓ|ℓ−1 may take

any values in RN
+ with lower bound λ

(iℓ)
min for each entry. However, even if the active

state is known, the covariance matrix Σ
(iℓ)
1 (or the vector of conditional variances λ

(iℓ)
ℓ|ℓ−1)

is unknown and should be reconstructed recursively using all previous signal values and

active states. Moreover, since both s1 and the Markov chain are random processes, the

vector of conditional variances is also a random process which follows (7.26). As we only

have a mixed observation, we may estimate this random process of conditional variances

based on the recursive estimation algorithm proposed in [127]. Assume that we have an

estimate for the set of conditional variances at frame ℓ based on information up to frame

ℓ − 1, Λ̂ℓ ,
{

λ̂
(iℓ)
ℓ|ℓ−1

}

iℓ
, then, following the model definition an mmse estimate of the

next-frame conditional variance follows

λ̂
(iℓ+1)

ℓ+1|ℓ = E
{

λ
(q1(ℓ+1))
ℓ+1|ℓ | q1 (ℓ+ 1) = iℓ+1, Λ̂ℓ,x (ℓ)

}

= λ
(iℓ+1)
min 1 + α(iℓ+1)E

{

s1 (ℓ) ⊙ s∗1 (ℓ) | Λ̂ℓ,x (ℓ)
}

+ β(iℓ+1)
(

E
{

λ
(q1(ℓ))
ℓ|ℓ−1 | Λ̂ℓ,x (ℓ)

}

− E
{

λ
(q1(ℓ))
min | Λ̂ℓ,x (ℓ)

}

1
)

(7.27)

for iℓ+1 = 0, 1, ..., m1. Using

λ̂
(iℓ,jℓ)
ℓ|ℓ , E

{

s1 (ℓ) ⊙ s∗1 (ℓ) | iℓ, jℓ, Λ̂ℓ,x (ℓ)
}

= Σ̂
(iℓ)
1

(

Σ̂
(iℓ)
1 + Σ

(jℓ)
2

)−1
[

Σ
(jℓ)
2 1+Σ̂

(iℓ)
1

(

Σ̂
(iℓ)
1 + Σ

(jℓ)
2

)−1

x (ℓ) ⊙ x∗ (ℓ)

]

(7.28)

we obtain

E
{

s1 (ℓ) ⊙ s∗1 (ℓ) | Λ̂ℓ,x (ℓ)
}

=
∑

iℓ,jℓ

p
(

iℓ, jℓ | Λ̂ℓ,x (ℓ)
)

E
{

s1 (ℓ) ⊙ s∗1 (ℓ) | iℓ, jℓ, Λ̂ℓ,x (ℓ)
}

=
∑

iℓ,jℓ

p
(

iℓ, jℓ | Λ̂ℓ,x (ℓ)
)

λ̂
(iℓ,jℓ)
ℓ|ℓ (7.29)

E
{

λ
(q1(ℓ))
ℓ|ℓ−1 | Λ̂ℓ,x (ℓ)

}

=
∑

iℓ,jℓ

p
(

iℓ, jℓ | Λ̂ℓ

)

E
{

λ
(q1(ℓ))
ℓ|ℓ−1 | q1 (ℓ) = iℓ, Λ̂ℓ,x (ℓ)

}

≈
∑

iℓ,jℓ

p
(

iℓ, jℓ | Λ̂ℓ

)

λ̂
(iℓ)
ℓ|ℓ−1 (7.30)

and

E
{

λ
(q1(ℓ))
min | Λ̂ℓ,x (ℓ)

}

=
∑

iℓ,jℓ

p
(

iℓ, jℓ | Λ̂ℓ

)

λ
(iℓ)
min . (7.31)
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A detailed recursive estimation algorithm is given in [127]. The model parameters, i.e.,

{λ(iℓ)
min, α

(iℓ), β(iℓ)}m1

iℓ=0, can be estimated from a training set using a maximum-likelihood

approach [5, 7, 127] or may be evaluated as proposed in [133] such that each state would

represent a different level of the optional dynamic range of the signals’ energy. By using

the recursive estimation algorithm, we evaluate for each time frame ℓ and for each state

iℓ an estimate of the spectral covariance matrix Σ̂
(iℓ)
1 which is required for the separation

algorithm. Hence, the sets
{

Σ̂
(iℓ)
1

}

iℓ
and {p1 (iℓ)}iℓ

together with the GMM for the back-

ground music signal may be employed by the classification and estimation procedure to

obtain an estimate for each signal. Note that for the GMM, each state defines a specific

pdf which is known a priori while for the mixing GARCH model the covariance matrices

in each state are time-varying and are recursively reconstructed.

7.4 Implementation of the Algorithm

The existing GMM-, AR- and HMM-based algorithms, generally estimate each frame

of the signal in the STFT domain using a vector formulation. However, many spec-

tral enhancement algorithms for speech signals treat each frequency bin separately, e.g.,

[33,34,38]. The application of subband-based audio processing algorithms have been pro-

posed for automatic speech recognition, e.g., [157, 158], speech enhancement [133], and

also for single-channel source separation [152]. Instead of applying a statistical model for

the whole frame, each subband is assumed to follow a different statistical model. Con-

sidering the GARCH modeling, the parameters λ
(i)
min specify the lower bounds for the

conditional variances under each state. Since speech signals are generally characterized

by lower energy levels in higher frequency-bands, it is advantageous to apply different

model parameters in different subbands, as proposed in [133].

For the implementation of the proposed algorithm we assume K < N linearly-spaced

frequency subbands for each frame with independent model parameters. Moreover, the

sparsity of the expansion coefficients in the STFT domain (of both speech and music

signals) implies that in a specific time-frame the signal may be present in some of the

frequency subbands and absent (or of negligible energy) in others. Therefore, we define

a specific state for signal absence in each subband k ∈ {1, ..., K}, q1 = 0 and q2 = 0.
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For these states the pdf is assumed to be a zero-mean complex Gaussian with σ2
min,k I

covariance matrix. Note that in the GMM case, each state corresponds to a specific

predetermined Gaussian density while in the GARCH case, by setting α(0) = β(0) = 0

and λ
(0)
min = σ2

min,k for the kth subband, the covariance under q1 = 0 is also time invariant

and equals σ2
min,k I. In our experimental study independent models are assumed for each

subband and therefore the model training and both the conditional variance estimation

(in case of speech signal) and the separation algorithm are applied independently in

each subband. However, in general, some overlap may be considered between adjacent

subbands to allow some dependency between adjacent bands, as well as cross-band state

probabilities, as proposed in [152].

Prior to source separation, both the GMM and GARCH models need to be estimated

using a set of training signals. In case of GMM, for each state j 6= 0 we need to estimate

(for each subband independently) the diagonal vector of the covariance matrix Σ
(j)
2 , and

the state probability p2(j). For the GARCH modeling, the state probabilities are also

required, however, only three scalars are needed to represent the covariance matrix for

any i 6= 0 : λ
(i)
min, α

(i), and β(i). In our application, the GMM is trained by using the

k-means vector quantization algorithm [62,156]. This model is sensitive to the similarity

between the training signals and the desired signal in the mixture, and to achieve good

representation, the spectral shapes in the trained and mixed signals need to be closely

related, as applied, e.g., in [88,89,95]. For training the GARCH model we use the method

proposed in [133]. Accordingly, the training signals are used only to calculate the peak

energy in each of the subbands. Then, we set λ
(0)
min = σ2

min,k, and α(0) = β(0) = 0. For the

speech presence states, i ∈ {1, ..., m1}, the parameters are chosen as follows. The lower

bounds λ
(i)
min are log-spaced in the dynamic range, i.e., between λ

(0)
min and the peak energy.

The parameters β(i) are experimentally set to 0.8 and α(i) are evaluated for each subband

independently such that the stationary variance in the subband, under an immutable

state, would be equal to the lower bound for the next state (see [133] for details). This

approach yields reasonable results since it enables to represent the whole dynamic range

of the signals energy while the conditional variance is updated each frame by using past

observation and past conditional variance. In addition, since only the peak energy is

required for each subband, this approach has relatively low sensitivity to the training set
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Figure 7.2: Block diagram of the proposed algorithm.

and only the peak energy levels need to be similar to that of the test set.

A block diagram of the proposed separation algorithm is shown in Figure 7.2 when

considering a single band (in practice, a similar process is applied in each subband inde-

pendently). The observed signal is first transformed into the STFT domain. Then, two

steps are applied for each frame ℓ. First, the GARCH conditional covariance matrices
{

Σ̂
(iℓ)
1 = diag

(

λ̂
(iℓ)
ℓ|ℓ−1

)}

iℓ
are updated using (7.28) for any pair {iℓ, jℓ}, and then prop-

agated one frame ahead using (7.27) to yield the conditional variance estimate for the

next frame. Second, using the sets {Σ̂(iℓ)
1 } and {Σ(j)

2 } the simultaneous classification and

estimation method is applied yielding each of the estimates ŝ1(ℓ) and ŝ2(ℓ). Finally, the

desired signals are obtained by inverse transforming the signal into the time domain.

Considering a simultaneous classification and estimation approach, as proposed in Sec-

tion 7.2.1, the interrelations between the classifier and the estimator are employed such

that the classification rule is calculated by using the set of gain matrices {Gij}, and the

classifier’s output, ηij , specifies the gain matrix to be used. However, a cascade of classifi-

cation and estimation (as considered in Section 7.2.2) may be applied as the classification

and estimation block to enable a sub-optimal solution with lower computational cost.

In fact, the computational complexity of this sub-optimal method is comparable to that

of the mmse estimator (7.3) since the a posteriori probabilities required for the MAP

classifier are used also in the estimation step.
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7.5 Experimental Results

In this section we present experimental results for evaluating the performance of the

proposed algorithm. In Section 7.5.1 we describe the experimental setup in our evalua-

tion, and the objective quality measures. Then, in Section 7.5.2 we present experimental

results. The experimental results are focused on (i) evaluating the performance of the

proposed codebook compared to using a GMM-only model (while using mmse estimation

for both codebooks), and (ii) evaluating the performance of the proposed simultaneous

classification and estimation approach in the sense of signal distortion and residual inter-

ference.

7.5.1 Experimental setup and quality measures

In our experimental study, we consider speech signals mixed with piano music of about

the same level. In the test set of our experimental study, speech signals are taken from the

TIMIT database [142] and include 8 different utterances by 8 different speakers, half male

and half female. The speech signals are mixed with two different piano compositions (Für

Elise by L. van Beethoven and Romance O’ Blue by W. A. Mozart) to yield 16 different

mixed signals. For each of the piano signals, the first 10 seconds are used to create the

mixing signals while the rest of each composition (about 4 min each) is used for training

the model. For training the models to speech signals, a set of signals which are not on

the test set was used, with half male and half female (about 30 sec length). All signals

in the experiment are normalized to the same energy level, and sampled at 16 kHz and

transformed into the STFT domain using half-overlapping Hamming window of 32 msec

length. The GMM parameters (for the piano model) are trained using the k-means vector

quantization algorithm and the GARCH parameters are estimated using only the signal’s

peak energy in each subband, as described in Section 7.4. For each of the sources, K = 10

linearly spaced subbands are considered and for the signal-absence state the covariance

matrix is set to σ2
min,kI, where σ2

min,k is 40 dB less than the higher averaged energy in the

kth subband. Furthermore, in each subband, only frames in which the energy is within

40 dB of the peak energy (in the same subband) are considered for training the GMM.

The proposed algorithm is compared with the mmse estimator proposed in [88]. The
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latter algorithm assumes a single-band GMM’s for both signals (i.e., with K = 1) and

is referred to in the following as the GMM-based algorithm. This model is trained using

the same training sets using the k-means algorithm. For each of the algorithms 4, 8 and

16 states are considered for the GMM, while the GARCH model is trained with up to 8

states per subband (excluding the signal absence state).

The performance evaluation in our study includes objective quality measures, a subjec-

tive study of waveforms and spectrograms, and informal listening tests. The first quality

measure is the segmental SNR (in the time domain) which is defined in dB by [143]

SegSNR =
1

|H1|
∑

ℓ∈H1

T
{

10 log10

∑N−1
n=0 s

2 (n + ℓN/2)
∑N−1

n=0 [s (n+ ℓN/2) − ŝ (n+ ℓN/2)]2

}

, (7.32)

where H1 represents the set of frames which contain the desired signal, |H1| denotes the

number of elements in H1, N = 512 is the number of samples per frame and the operator

T confines the SNR in each frame to a perceptually meaningful range between −10 dB

and 35 dB. The second quality measure is log-spectral distortion (LSD) which is defined

in dB by [41]

LSD =
1

L

L−1
∑

ℓ=0







1

N/2 + 1

N/2
∑

f=0

[10 log10 Cs (ℓ, f) − 10 log10 Cŝ (ℓ, f)]2







1

2

, (7.33)

where s (ℓ, f) denotes the fth element of the spectral vector s (ℓ) (i.e., f denotes

the frequency-bin index), Cx , max {|x|2, ǫ} is a spectral power clipped such that

the log-spectrum dynamic range is confined to about 50 dB, that is, ǫ = 10−50/10 ×
maxℓ,f {|s(ℓ, f)|2}. Although the Segmental SNR and the LSD are common measures for

speech enhancement, for the application of source separation it was proposed in [159,160]

to measure the signal to interference ratio (SIR). For source s1 we may write

ŝ1 = ζ1s1 + ζ2s2 + d . (7.34)

Accordingly, the Segmental SIR for ŝ1 is defined in dB as follows:

SegSIR =
∑

ℓ

T
{

10 log10

ζ1(ℓ)
2
∑N−1

n=0 s
2
1 (n+ ℓN/2)

ζ2(ℓ)2
∑N−1

n=0 s
2
2 (n+ ℓN/2)

}

, (7.35)

where the parameters ζ1(ℓ) and ζ2(ℓ) are calculated for each segment as specified in [159].
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The above mentioned measures attempt to evaluate the averaged performance of the

algorithm. The proposed classification and estimation approach enables one to control

the trade-off between the level of residual interference resulting from false detection of the

desired signal, and signal distortion resulting mainly from missed detection. To measure

this trade-off while applying the algorithm on a subband basis, we propose to measure the

distortion of the estimated signal and the amount of interference reduction. Now let H1

and H0 denote the sets of (subband) frames which contain the desired signal and in which

the desired signal is absent, respectively. The signal distortion, denoted as LSDH1
, is

evaluated using the LSD formulation (7.33) and averaged only over H1. The interference

reduction is evaluated in dB by [161]:

IRH0
= 10 log10

∑

ℓ∈H0
‖ŝ1(ℓ)‖2

∑

ℓ∈H0
‖s2(ℓ)‖2 . (7.36)

7.5.2 Simulation results

For evaluating the contribution of the proposed codebook (i.e., GARCH model for speech

and GMM for music), the results obtained by using the proposed model are first compared

with the results obtained by using the GMM-based algorithm. Since the GMM-based algo-

rithm employs an mmse estimator, the proposed algorithm was applied in this experiment

using constant cost parameters. As shown in Section 7.2.1, this also yields mmse estima-

tion. Figure 7.3 shows quality measures as a function of the number of GARCH states5.

These results are shown for 4-, 8- or 16-state GMM used for the music signal. For com-

parison, the results obtained by using the GMM-based algorithm are shown with 4, 8, and

16 states (for both signals). Note that for each algorithm, different number of subbands

is considered, and different statistical model. However, the signal estimate in both cases

is in the sense of mmse. It can be seen that employing a GARCH model for the speech

signal significantly improves the separation results, and sometimes even using a single-

state GARCH model outperforms the GMM modeling with up to 16 states. Moreover,

it can be seen that excluding the SegSIR measure for speech signals, the performances

are improved monotonically with the growth of the number of GARCH states (except

5The improvements in SegSNR and SegSIR are obtained by subtracting the initial values calculated

for the mixed signals from those calculated for the processed signals.
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Figure 7.3: Quality measures for mmse estimation as functions of the number of GARCH states.

The results (with different numbers of GMM states for the music signal) are compared with the

GMM-based algorithm. Left column: results for speech signals; right column: results for music

signals. Rows (from top to bottom): SegSNR improvement, LSD, and SegSIR improvement.
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Figure 7.4: Trade-off between residual interference and signal distortion resulting from changing

the false detection and missed detection parameters; (a) residual music signal and (b) speech

signal distortion.

for some cases with 8-state GMM). However, the significant improvement is obtained by

using up to 5 states for the GARCH model with 4- or 16- state GMM for the music.

Informal listening tests verify that increasing the number of GARCH states from one to

3 or 5, significantly improves the reconstructed signals and particularly the perceptual

quality of the speech signal. Using three (or more) states for the speech model results in

improved signals’ quality compared to using the GMM for both the speech and the music

signals. The GMM-based algorithm preserves mainly low frequencies of the music signal

and the residual speech components sound somewhat scrappy. The proposed approach

results in a more natural music signal which consists of higher range of frequencies. The

residual speech signal also sounds more natural.

Next, we verify the performance of the proposed simultaneous classification and es-

timation method. As this method enables one to control the trade-off between residual

interference and signal distortion, we examine the influence of the cost parameters on

these measures. The proposed algorithm was applied to the test set with different cost

parameters. Figure 7.4 shows the trade-off between signal distortion and the reduction

of the residual interference while examining the estimated speech signals. The averaged

interfering reduction, IRH0
, (in this case the reduction of the residual music) and the av-
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Table 7.1: Averaged Quality Measures for the Estimated Speech Signals Using 3-state GARCH

Model and 8-state GMM.

Parameters SegSNR SegSIR
IRH0

LSDH1

[b1,m, b1,f, b2,m, b2,f] improvement improvement

[1, 1, 1, 1] 3.67 11.67 -10.34 2.45

[10−2, 102, 102, 10−2] 3.80 13.83 -15.39 3.59

[102, 10−2, 10−2, 102] 3.54 11.00 -9.55 2.04

[10−1, 101, 101, 10−1] 3.76 17.73 -11.73 3.06

[102, 10−2, 102, 10−2] 3.68 11.44 -9.88 2.16

Table 7.2: Averaged Quality Measures for the Estimated Music Signals Using 3-state GARCH

Model and 8-state GMM.

Parameters SegSNR SegSIR
IRH0

LSDH1

[b1,m, b1,f, b2,m, b2,f] improvement improvement

[1, 1, 1, 1] 4.91 9.81 -7.27 3.04

[10−2, 102, 102, 10−2] 5.46 9.77 -5.95 3.35

[102, 10−2, 10−2, 102] 4.72 10.05 -8.91 2.84

[10−1, 101, 101, 10−1] 5.21 9.75 -6.27 3.25

[102, 10−2, 102, 10−2] 4.89 9.98 -7.47 2.91
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Figure 7.5: Original and mixed signals. (a) Speech signal: ”Draw every outer line first, then fill

in the interior”; (b) piano signal (Für Elise); (c) mixed signal.
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Figure 7.6: Separation of speech and music signals. (a) speech signal reconstructed by us-

ing the GMM-based algorithm (SegSNR improvement = 0.76, LSD = 3.77, SegSIR improve-

ment = 1.29); (b) speech signal reconstructed using the proposed approach (SegSNR improve-

ment = 2.46, LSD = 3.56, SegSIR improvement = 8.61); (c) piano signal reconstructed by using

the GMM algorithm (SegSNR improvement = -2.77, LSD = 4.34, SegSIR improvement = 2.50);

(d) piano signal reconstructed using the proposed approach (SegSNR improvement = 0.32,

LSD = 3.19, SegSIR improvement = 4.79).
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eraged speech distortion, LSDH1
, are shown as functions of the false detection parameter

for the speech signal, b1,f, and for some values of the missed detection parameter. These

results are evaluated using 3-state GARCH model and 8-state GMM, and the simulta-

neous classification and estimation method. It is shown that when the false detection

parameter increases, the level of residual interference decreases and the signal distortion

increases. Therefore, for a specific application these parameters may be chosen to achieve

a desired trade-off between signal distortion and residual interference.

In Tables 7.1 and 7.2, we provide quality measures for both types of signals using

different sets of parameters. This test was conducted also for the whole test set using the

simultaneous classification and estimation approach. It can be seen that by using different

parameters, improved performance may be achieved compared to using equal parameters

(i.e., using mmse estimation). However, as expected, different parameters would be needed

to achieve the best performances in the sense of different quality measures. Specifically, in

case of speech signals, the higher interference-reduction is achieved with the parameters

(from the tested sets of parameters) which corresponds to the highest distortion. On

the other hand, the lowest distortion is obtained with the lowest amount of interference

reduction.

Figures 7.5 and 7.6 demonstrate the separation of a specific mixture of speech and

piano signals. The speech waveform, the piano waveform and their mixture are shown in

Figure 7.5, and Figure 7.6 shows the separated signals resulting from an 8-state GMM-

based algorithm and from the proposed simultaneous classification and separation ap-

proach (using 3-state GARCH model for the speech signal, 8-state GMM for the piano

signal, b1,m = b2,f = 5, and b1,f = b2,m = 15). It can be seen that for this particular mix-

ture, by estimating the speech signal the proposed algorithm results in higher attenuation

of the piano signal, and the estimation of the piano signal preserves more energy of the

desired signal, especially at its second half.

7.6 Conclusions

We have proposed a new approach for single-channel audio source separation of acoustic

signals, which is based on classifying the mixed signal into codebooks, and estimating the
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subsources. Unlike other classical methods which apply estimation alone, or distinctive

operations of classification and estimation, in our method both operations are designed

simultaneously, or the estimator is designed to allow a compensation for erroneous classi-

fication. In addition, a new codebook is proposed for speech signals in the STFT domain

based on the GARCH model. Accordingly, less restrictive pdf’s are enabled in the STFT

domain compared to GMM or AR-based model. Experimental results show that for mix-

ture of speech and music (piano) signals, applying the proposed codebook significantly

improves the separation results compared to using GMM for both signals, even when

using a smaller number of states. In addition, applying a simultaneous classification and

estimation approach enables one to control the trade-off between signal distortion and

residual interference.

The proposed classification and estimation method may be advantageously utilized for

other codebooks and for different types of signals. However, the selection of the optimal

parameters in the general case may be codebook- as well as application-dependent and

may be a subject for further research. Furthermore, the GARCH modeling for speech

signals may be combined with various statistical models for the music signals other than

GMM, such as mixture of AR or HMM with AR subsources.

7.A Derivation of (7.10)

By setting the derivative of
∑

ī,j̄ p (̄i, j̄) rīj̄
ij (x, ŝ1) in (7.9) to zero we obtain

0 =
∑

īj̄

bīj̄ijp (̄ij̄)

[

ŝ1,ij

∫

p (x | s1, j̄) p (s1 | ī) ds1

−
∫

s1 p (x | s1, j̄) p (s1 | ī) ds1

]

(7.37)

where

p (x | s1, j̄) p (s1 | ī) = p (x | s1, ī, j̄) p (s1 | ī, j̄)

= p (x | ī, j̄) p (s1 |x,̄i, j̄) . (7.38)
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Substituting (7.38) into (7.37) we obtain

0 =
∑

īj̄

bīj̄ijp (̄ij̄) [̂s1,ijp (x | ī, j̄)

− p (x | ī, j̄)E {s1 |x,̄i, j̄}] (7.39)

and accordingly

ŝ1,ij =

∑

īj̄ b
īj̄
ij p (x | ī, j̄) p (̄i, j̄)Wīj̄ x

∑

īj̄ b
īj̄
ij p (x | ī, j̄) p (̄i, j̄)

. (7.40)

7.B Derivation of (7.11)

The average risk is given by

rīj̄
ij (x, ŝ1) =

∫

C īj̄
ij (s1, ŝ1) p (x | s1, j̄) p (s1 | ī) ds1 (7.41)

=

∫

bīj̄ij ‖s1 − ŝ1‖2
2 p (x, s1 | ī, j̄) ds1 .

To simplify the notation, we assume in this appendix that the active states of both

signals are known, so we may omit the indices {̄i, j̄}. Furthermore, we use s to denote

s1 and we assume diagonal covariance matrices Σ1 = diag{σ2
1(1), σ2

1(2), ..., σ2
1(N)} and

Σ2 = diag{σ2
2(1), σ2

2(2), ..., σ2
2(N)}. Following these notations we obtain

∫

‖s‖2
2 p (x, s) ds =

∑

f

{
∫

|s(f)|2 p (x(f), s(f)) ds(f)

×
∏

f ′ 6=f

∫

p (x(f ′), s(f ′)) ds(f ′)

}

(7.42)

where in this appendix s(f) and x(f) denote the fth elements of vectors s and x, respec-

tively (i.e., f denotes the frequency-bin index). Let λ(f) , (σ2
1(f)−1 + σ2

2(f)−1)
−1

, let

ξ(f) , σ2
1(f)/σ2

2(f), let γ(f) , |x(f)|2 /σ2
2(f), and let υ(f) , ξ(f)γ(f)/ (1 + ξ(f)). By

integrating over both the real and imaginary parts of s(f) and using [148, eq. 3.462.2] we

obtain
∫

|s(f)|2 p (x(f), s(f))ds(f) =
ξ(f) (1 + υ(f))

π (1 + ξ(f))2
exp

{

− γ(f)

1 + ξ(f)

}

(7.43)

and
∫

p (x(f ′), s(f ′)) ds(f ′) = p (x(f ′))

=
exp

{

− γ(f ′)
1+ξ(f ′)

}

π σ2
2(f

′) (1 + ξ(f ′))
. (7.44)
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Let Ξ , diag{ξ(1), ξ(2), ..., ξ(N)} and V , diag{υ(1), υ(2), ..., υ(N)}. Substituting (7.43)

and (7.44) into (7.42) we obtain

∫

‖s‖2
2 p (x, s) ds =

∑

f

{

ξ(f) (1 + υ(f))

π (1 + ξ(f))2
exp

(

− γ(f)

1 + ξ(f)

)

×
∏

f ′ 6=f

1

π σ2
2(f

′) (1 + ξ(f ′))
exp

(

− γ(f ′)

1 + ξ(f ′)

)}

=
1T Σ1 (I + V ) (I + Ξ)−1 1

πN |Σ2 (I + Ξ)| exp
{

−xH (Σ1 + Σ2)
−1 x

}

. (7.45)

Let subscripts R and I denote the real and imaginary parts of a complex-valued vari-

able, respectively, and let gij(f) denote the fth diagonal element of matrix Gij. Then,

using [148, eq. 3.462.2] we obtain

∫

(

ŝHs + sH ŝ
)

p (x, s) ds = 2

∫

(

ŝT
RsR + sT

I ŝI

)

p (x, s) ds

= 2
∑

f

{

gij(f)

∫

[xR(f)sR(f) + xI(f)sI(f)] p (x(f), s(f)) ds(f)

×
∏

f ′ 6=f

∫

p (x(f ′), s(f ′)) ds(f ′)

}

= 2
∑

f

gij(f) υ(f) σ2
2(f)

π

∏

f ′ 6=f

exp
{

− γ(f ′)
1+ξ(f ′)

}

π σ2
2(f

′) (1 + ξ(f ′))

= 2
1TGijΣ2V 1

πN |Σ2 (I + Ξ)| exp
{

−xH (Σ1 + Σ2)
−1 x

}

. (7.46)

Finally,

∫

p (x, s) ds = p (x)

=
exp

{

−xH (Σ1 + Σ2)
−1 x

}

πN |Σ1 + Σ2|
. (7.47)

Substituting (7.45)–(7.47) into (7.42) and using W = Ξ (I + Ξ)−1, we obtain

rij (x, ŝ1) = bīj̄ij p (x)
[

xH
(

W 2 − 2WGij

)

x + 1T Σ2W1
]

=
bij

πN |Σ1 + Σ2|
exp

{

−xH (Σ1 + Σ2)
−1 x

}

×
[

xH
(

W 2 − 2WGij

)

x + 1T Σ2W1
]

. (7.48)



Chapter 8

Dual-Microphone Speech

Dereverberation Using GARCH

Modeling1

In this chapter, we develop a dual-microphone speech dereverberation algorithm for noisy

environments, which is aimed at suppressing late reverberation and background noise.

The spectral variance of the late reverberation is obtained with adaptively-estimated

direct path compensation. A Markov-switching generalized autoregressive conditional

heteroscedasticity (GARCH) model is used to estimate the spectral variance of the desired

signal, which includes the direct sound and early reverberation. Experimental results

demonstrate the advantage of the proposed algorithm compared to a decision-directed-

based algorithm.

8.1 Introduction

In many speech communication systems the received signal is degraded by reverberation,

as well as background noise. The reverberant signal consists of a direct sound, early re-

verberation, and late reverberation. Early reflections mainly contribute to coloration and

tend to improve the intelligibility, whereas late reverberation causes a noise-like perception

and degrades the fidelity and intelligibility of the speech signal.

1This chapter is based on [162].
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Speech dereverberation algorithms can be divided into two classes. Algorithms in

the first class are based on estimating and inverting the room impulse response (RIR),

e.g., [163]. In the second class, algorithms try to suppress reverberation without estimating

the RIR, e.g., [82]. Recently, Habets et al. [83] proposed a dual-microphone dereverber-

ation system which is aimed at suppressing late reverberation that results from the tail

of the RIR by applying a spectral enhancement approach. A direct path compensation

(DPC) is applied to the late reverberant spectral variance estimate to enable better at-

tenuation of the late reverberation with less distortion of the desired signal. However, the

parameter of the DPC was evaluated directly from the RIR which is unknown in practice.

In addition, the a priori signal to noise ratio (SNR) required for the spectral enhancement

is estimated by using the traditional decision-directed approach. Recently, the general-

ized autoregressive conditional heteroscedasticity (GARCH) model with Markov regimes

has been shown to be useful for speech enhancement applications [127, 133]. The model

takes into account the strong correlation of successive spectral magnitudes, and is more

appropriate than the decision-directed approach for speech spectral variance estimation

in noisy environments.

In this chapter, we develop an improved dual-microphone speech dereverberation algo-

rithm which relies on a Markov-switching GARCH (MS-GARCH) modeling of the desired

early speech component, which consists of the direct sound and early reverberation. The

model is applied to distinctive frequency subbands and specifies the volatility clustering

of successive spectral coefficients, while a speech-absence state is used for evaluating the

speech presence probability. Furthermore, an adaptive approach is developed to esti-

mate the parameter for the DPC directly from the observed signals. Experimental results

show that using the MS-GARCH modeling rather than the decision-directed approach,

improved results can be obtained. Furthermore, by using the proposed algorithm, the

performance obtained with blindly estimated DPC parameter is comparable to that ob-

tained with an optimal DPC parameter that is calculated from the actual RIR, which is

unknown in practice.

The chapter is organized as follows. In Section 8.2, we formulate the speech dere-

verberation problem and briefly review the algorithm proposed in [83]. In Section 8.3,

we derive an adaptive estimator for the DPC parameter. In Section 8.4 we describe the
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MS-GARCH model which is used for the desired signal, and in Section 8.5 we present

some experimental results which demonstrate the improved performance of the proposed

algorithm.

8.2 Dual-microphone dereverberation

Consider an M−microphone array located in a reverberant environment. Let am (n) =

[am,0 (n) , ..., am,L−1 (n)]T denote the RIR at time n from the source signal s (n) to the mth

microphone, and let dm (n) denote the noise component received at the mth microphone.

The observed signals are then given by

zm (n) = aT
m (n) s (n) + dm (n) (8.1)

where s (n) = [s (n) , ..., s (n− L+ 1)]T . The RIR, am (n), can be divided into the direct

path and early reflections, denoted by ad
m (n), and late reflections, denoted by ar

m (n).

Accordingly,

am,j (n) =







ad
m,j (n) 0 ≤ j < tr

ar
m,j (n) tr ≤ j < L

, (8.2)

where tr is the time where the late reverberation starts (about 40 to 80 ms). Hence, the

reverberant signal can be divided into two signals

aT
m (n) s (n) = xm (n) + rm (n) , (8.3)

where xm (n) is the desired early speech component, and rm (n) denotes the late rever-

berant component. Applying the short-time Fourier transform (STFT) to the observed

signals, we have

Zm (ℓ, k) = Xm (ℓ, k) +Rm (ℓ, k) +Dm (ℓ, k) , (8.4)

where ℓ represents the frame index, and k the frequency bin index. At the output of a

delay and sum beamformer (DSB) which is steered towards the desired source, we have

the time-frequency signal

Y (ℓ, k) = X (ℓ, k) +R (ℓ, k) +D (ℓ, k) . (8.5)

Habets et al. [83] proposed a dual microphone dereverberation algorithm which is

aimed at estimating the early speech component. In the system, shown in Figure 8.1, it is
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+ 1
2

LRSVE

NE

Post-Filter
Z1(ℓ, k)

Z2(ℓ, k)

Y (ℓ, k)

λ̂r(ℓ, k)

λ̂d(ℓ, k)

X̂(ℓ, k)

Figure 8.1: Dual microphone speech dereverberation system.

assumed that the arrival times of the direct speech signals are aligned. The lower branch is

a late reverberant spectral variance estimator (LRSVE), λ̂r (ℓ, k), while the upper branch

includes a beamformer, a background noise estimator (NE), λ̂d (ℓ, k), and a post-filter.

The spectral variance of the noise signal, λd (ℓ, k), can be estimated, e.g., using [71]. The

a priori SNR

ξ (ℓ, k) =
λx (ℓ, k)

λr (ℓ, k) + λd (ℓ, k)
(8.6)

is estimated using the decision-directed approach [33].

The desired spectral coefficients are estimated by minimizing the mean square error of

the log-spectral amplitude (LSA) [34] by assuming two hypotheses, speech presence (H1)

and absence (H0). The resulting optimally-modified LSA estimator is given by [38]

X̂ (ℓ, k) = GH1
(ℓ, k)p(ℓ,k)GH0

(ℓ, k)1−p(ℓ,k) Y (ℓ, k) , (8.7)

where GH1
(ℓ, k) is the LSA gain under speech presence [34] and

GH0
(ℓ, k) = Gmin

λ̂d (ℓ, k)

λ̂d (ℓ, k) + λ̂r (ℓ, k)
(8.8)

to allow reduction of the late reverberant signal down to the noise floor [83]. In the next

subsection we derive an adaptive estimator for the late reverberant spectral variance, and

in Section 8.4 we formulate the MS-GARCH modeling applied for the desired signal. The

speech presence probability p (ℓ, k) is discussed in Section 8.4.2.
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8.3 Late reverberant spectral estimation

The spectral variance of the late reverberation at each microphone, λr,m(ℓ, k), can be ob-

tained based on Polack’s statistical reverberation model of the RIR [83], using an estimate

of the spectral variance of the reverberant signal, λb,m(ℓ, k) = E
{

|Xm(ℓ, k) +Rm(ℓ, k)|2
}

.

Let T60(k) denote the reverberation time of the room in the kth frequency band, let

δ(k) = 3 ln(10)/T60(k), let R denote the frame rate of the STFT, and let α(k) =

exp{−2δ(k)R/fs}. Then, the spectral variance of the late reverberant signal λr(ℓ, k)

at the output of the DSB is estimated by

λ̂r (ℓ, k) =
1

2

2
∑

m=1

α(k)
tr
R λ̂b,m

(

ℓ− tr
R
, k

)

. (8.9)

However, to avoid over-estimation of λr(ℓ, k) when the source-microphone distance is

smaller than the critical distance (i.e., the energy of the direct path is larger than the

energy of all reflections) it was proposed to compensate the over estimation of the spectral

variance of the reverberant signal using

λ̂′b,m(ℓ) =
κm(ℓ)

1 + κm(ℓ)
α(k)λ̂′b,m(ℓ− 1, k) +

1

1 + κm(ℓ)
λ̂b,m(ℓ, k) , (8.10)

where κm(ℓ) is a compensation parameter which is related to the direct and reverber-

ant energy at the mth microphone. The compensated estimate λ̂′b,m(ℓ) is then used in

(8.9) as the spectral variance estimate of the reverberant signal. It was shown in [83]

that applying this DPC prevents over-estimation of the late reverberant spectral variance

and improves the quality of the output signal. However, the DPC parameter, κm, was

calculated directly from the presumably known RIR. Here, we propose to estimate the

parameter κm adaptively. In case κm is too large the spectral variance λ̂′b,m(ℓ, k) could

become larger than λ̂b,m(ℓ, k), which indicates that over-estimation can occur and that

the value of κm should be decreased. Furthermore, during the free-decay, which occurs

after an offset of the source signal, λ̂′b,m(ℓ, k) should be equal to λ̂b,m(ℓ, k). Estimation

of κm could therefore be performed after a speech offset. Unfortunately, the detection

of speech offsets is rather difficult. However, we can conclude that κm should at least

fulfill the following conditions: (i) λ̂b,m(ℓ, k) ≥ λ̂′b,m(ℓ, k), (ii) when speech is present and

λ̂b,m(ℓ, k) < λ̂′b,m(ℓ, k) the value of κm can be increased, (iii) when λ̂b,m(ℓ, k) > λ̂′b,m(ℓ, k)
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the value of κm can be decreased slowly, and (iv) when λ̂b,m(ℓ, k) = λ̂′b,m(ℓ, k) the value

of κm is assumed to be correct. Therefore, we can update κm(ℓ) when speech is present

using

κ̂m(ℓ+ 1) = max

{

κ̂m(ℓ) + µκ

(

∑

k λ̂
′
b,m(ℓ, k)

∑

k λ̂b,m(ℓ, k)
− 1

)

, 0

}

, (8.11)

where µκ (0 < µκ < 1) denotes the step-size.

8.4 Modeling early reverberation using GARCH

Speech signals are characterized by time-varying energy levels and volatility. The spectral

coefficients of the speech signal can be effectively characterized using an MS-GARCH

model [127,133]. The GARCH parameters specify the volatility of the spectral coefficients,

and the Markovian regimes allow the model to switch between different sets of GARCH

parameters. Let qℓ ∈ {0, ..., Q} denote the active state of a first-order Markov chain

at frame ℓ with known state-transition probabilities. Let λx,qℓ
(ℓ, k | ℓ− 1) denote the

conditional spectral variance of the desired signal X (ℓ, k) conditioned on qℓ and on all

information up to previous frame, and let {V (ℓ, k)} be iid complex Gaussian random

variables with zero-mean and unit variance. We assume that the spectral coefficients of

the desired signal follow an MS-GARCH model [127], i.e., given qℓ

X (ℓ, k) =
√

λx,qℓ
(ℓ, k | ℓ− 1)V (ℓ, k) (8.12)

where

λx,qℓ
(ℓ, k | ℓ− 1) = λmin,qℓ

+ αqℓ
|X (ℓ− 1, k)|2

+ βqℓ

[

λx,qℓ−1
(ℓ− 1, k | ℓ− 2) − λmin,qℓ−1

]

(8.13)

with λmin,qℓ
> 0 and αqℓ

, βqℓ
≥ 0 for qℓ = 0, ..., Q. As can be seen from (8.12) and (8.13),

the conditional spectral variances of successive frames at a specific frequency bin are

strongly correlated. However, given the sequence of the conditional spectral variances and

the active states, the spectral coefficients {X (ℓ, k)} are statistically independent. It was

shown that the spectral variance estimation resulting from this model is a generalization
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of the decision-directed estimator with improved tracking of the speech spectral volatility

[127].

8.4.1 Spectral variance estimation

Let Yℓ = {Y (l, k) | l ≤ ℓ} denote the set of the observed spectral coefficients up to frame

ℓ. Given Yℓ the set of conditional spectral variances can be recursively estimated using a

propagation step

λ̂x,qℓ
(ℓ, k | ℓ− 1) = λmin,qℓ

+ αqℓ
E
{

|X (ℓ− 1, k)|2 | Yℓ−1, qℓ
}

+ βqℓ
E
{

λx (ℓ− 1, k | ℓ− 2) | Yℓ−1, qℓ
}

− βqℓ
E
{

λmin,qℓ−1
| Yℓ−1, qℓ

}

(8.14)

and an update step

E
{

|X (ℓ− 1, k)|2 | Yℓ−1, qℓ
}

=
∑

qℓ−1

p
(

qℓ−1 | Yℓ−1, qℓ
)

E
{

|X (ℓ− 1, k)|2 | Yℓ−1, qℓ−1

}

,
∑

qℓ−1

p
(

qℓ−1 | Yℓ−1, qℓ
)

λ̂x,qℓ−1
(ℓ− 1, k | ℓ− 1) . (8.15)

A detailed estimation algorithm is given in [127]. The estimate of the spectral variance

of the desired signal is then obtained by

λ̂x (ℓ, k) =
∑

qℓ

p
(

qℓ | Yℓ
)

λ̂x,qℓ
(ℓ, k | ℓ) . (8.16)

Note that although the spectral variance is specified for each frequency bin independently,

the Markovian state is frequency-independent. However, since different frequency bands

of speech signals are characterized by different energy level and volatility, it was proposed

in [133] to apply the model independently to distinctive subbands. Furthermore, a simple

model estimation approach was proposed such that each state represents different energy

level, and a specific state specifies signal absence. However, in our case the desired signal

contains early reverberation such that the spectral variance at speech offsets has smoother

decay than in case of a nonreverberant signal. Consequently, an immediate transition from

a state which represents high spectral energy to a state which represents very low energy

would not be expected. Therefore, the state transition probabilities are set such that the

probability for a progressive state-transition is much higher than the probability for an

immediate transition from the higher energy level to the lower.
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8.4.2 Speech presence probability

The posteriori speech presence probability, p (ℓ, k), required for (8.7) is originally cal-

culated [38] based on a Gaussian model from the a priori speech presence probability.

The latter is evaluated based on the time-frequency distribution of the a priori SNR,

ξ (ℓ, k). For a multi-sensor system, it was proposed in [83] to exploit the spatial infor-

mation and to use additional parameter Pspatial (ℓ, k) for the a priori probability which

is evaluated based on the spatial coherence between the microphone signals. In our case,

the multi-state model for the speech spectral coefficients inherently results in a condi-

tional probability for each state. Having a specific state for speech absence (say qℓ = 0),

we obtain a speech presence probability for each subband in each frame, p
(

qℓ 6= 0 | Yℓ
)

.

Accordingly, we define

Psb (ℓ, k) =



















ph p
(

qℓ 6= 0 | Yℓ
)

> Th

pl p
(

qℓ 6= 0 | Yℓ
)

< Tl

p
(

qℓ 6= 0 | Yℓ
)

otherwise

(8.17)

where pl ≤ Tl ≤ Th ≤ ph are constrain parameters for the subband speech presence prob-

ability. The subband probability, Psb (ℓ, k), is employed as an additional multiplicative

parameter for the evaluation of the a priori speech presence probability. Note that al-

though we do not use a specific index for the subband, p
(

qℓ 6= 0 | Yℓ
)

is calculated for

each subband independently, and therefore Psb (ℓ, k) includes also a frequency bin index.

8.5 Experimental results

In our experimental study, we consider synthetic RIRs which were generated using the

image method. The speech signals, sampled at 8 kHz, include male and female speakers,

each of 20 seconds. A moderate level of white Gaussian noise was added to each of the

microphone signals. The distance between the two microphones is 0.15 meter, and the

source-to-microphone distance was set to 0.5 and 1 meter (which are both smaller than

the critical distance). While applying the MS-GARCH model, the model parameters are

estimated from the noisy signal as proposed in [133].

Segmental signal to interference ratio (SegSIR) and log spectral distortion (LSD) are

used to evaluate the performance of the proposed algorithm, as well as informal listening
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Table 8.1: SegSIR and LSD obtained by using the decision-directed approach and the proposed

MS-GARCH-based approach. T60 = 0.5 sec and d=0.5 meter. In parentheses - results using

optimal DPC parameters.

d=0.5 m, SNR=15 dB d=0.5 m, SNR=20 dB

SegSIR [dB] LSD [dB] SegSIR [dB] LSD [dB]

Unprocessed 5.849 4.875 7.284 2.681

Decision-directed 8.359 1.995 8.745 1.744

(8.783) (1.825) (9.230) (1.535)

MS-GARCH 9.010 1.700 9.392 1.493

(9.265) (1.606) (9.715) (1.367)

tests and inspection of spectrograms. For the quality measures, the direct sound signal

was used as the reference signal. Figure 8.2 shows experimental results of the proposed

algorithm as a function of the number of GARCH states, and for several reverberation

times. The input SNR is 15 dB and the source to microphone distance is 0.5 m. It can

be seen that the performance improves monotonically with the growth of the number of

states, but, the most significant improvement is achieved by using up to 3 Markovian

states.

Tables 8.1 and 8.2 compare the performance of the proposed algorithm with that of

the original algorithm [83] which employs a decision-directed estimator for the a priori

SNR. The reverberation time is T60 = 0.5 sec, and the proposed algorithm was applied

with 3-state MS-GARCH model. In Table 8.1 the source to microphones distance is 0.5

meter and in Table 8.2 the distance is 1 meter. In both algorithms, the DPC parameters

κ1 and κ2 are blindly estimated adaptively, as proposed in Section 8.3, and the results

shown in parentheses are obtained using the optimal values which are evaluated from

the actual RIRs. It can be seen that the GARCH modeling is more advantageous than

the decision-directed approach, and the blindly estimated DPC parameters yield results

which are comparable to using the optimal value.

In Figure 8.3 spectrogram and waveform of a noisy signal are shown with input SNR



176 CHAPTER 8. SPEECH DEREVERBERATION USING GARCH MODELING

Table 8.2: SegSIR and LSD obtained by using the decision-directed approach and the proposed

MS-GARCH-based approach. T60 = 0.5 sec and d=1 meter. In parentheses - results using

optimal DPC parameters.

d=1 m, SNR=15 dB d=1 m, SNR=20 dB

SegSIR [dB] LSD [dB] SegSIR [dB] LSD [dB]

Unprocessed 2.295 6.379 2.864 4.578

Decision-directed 4.289 3.583 4.385 3.482

(4.452) (3.455) (4.578) (3.333)

MS-GARCH 4.551 3.521 4.654 3.442

(4.941) (3.390) (5.110) (3.298)

of 20 dB and a source to microphone distance of 1 m. The smearing caused by the late

reverberation and the background noise are reduced.

Wave files are available online at: http://siglab.technion.ac.il/˜

ari a/Audio demos.htm.

8.6 Conclusions

We have developed a dual-microphone speech dereverberation algorithm for noisy environ-

ments which is based on MS-GARCH modeling of the desired early speech component.

The spectral variance of the late reverberation is estimated from the observed signals

while compensating for the energy of the direct path. The algorithm blindly operates in

noisy and reverberant environments without any knowledge of the RIR, except for the

reverberation time, which can be obtained blindly using, e.g., [164]. It is shown that

compared to the original algorithm which employs the decision-directed estimator [83],

improved performance is obtained with little distortion to the desired signal.
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Chapter 9

Research Summary and Future

Directions

9.1 Research summary

In this thesis, we have introduced a new statistical model for nonstationary signals in

the joint time-frequency domain, which is based on complex-valued GARCH model with

Markov regimes. The model exploits the advantages of both the conditional heteroscedas-

ticity structure of GARCH models and the time-varying characteristics of hidden Markov

chains. We have developed conditions for finite second order moments and for asymptotic

stationarity of the model, as well as for other MS-GARCH formulations which are used

in econometrics. Moreover, we have developed recursive algorithms for the estimation of

the conditional variance, as well as for signal restoration in noisy environment. A new

formulation was proposed for the speech enhancement problem, based on simultaneous

operations of speech detection and estimation. Considering the problem of a single-sensor

audio source separation, we have generalized the simultaneous detection and estimation

formulation to a multi-hypotheses case and incorporated the proposed MS-GARCH model

for the speech signal. The result is a new algorithm for single-sensor audio source sepa-

ration which is based on classification and estimation and GARCH modeling.

The main contributions of the thesis chapters are as follows:

In Chapter 3, we developed a comprehensive approach for stationarity analysis of MS-

GARCH processes where finite-state-space Markov chains control the switching between

179



180 CHAPTER 9. RESEARCH SUMMARY AND FUTURE DIRECTIONS

regimes, and GARCH models of order (p, q) are active in each regime. In case of processes

with time-varying variances, conditions for asymptotic wide-sense stationarity are useful

to ensure the existence of a finite asymptotic second-order moment. These conditions also

show how some Markovian regimes can allow the conditional variance to grow over time

and still the process will have a finite second-order-moment. Necessary and sufficient

conditions for the asymptotic stationarity were obtained by constraining the spectral

radius of representative matrices, which were built from the model parameters. These

matrices also enabled derivation of compact expressions for the stationary variance of the

processes.

Next, in Chapter 4, we have proposed a statistical model for nonstationary processes

with time-varying volatility structure in the STFT domain such as speech signals. Ex-

ploiting the advantages of both the conditional heteroscedasticity structure of GARCH

models and the time-varying characteristics of hidden Markov chains, we modeled the

expansion coefficients as multivariate complex GARCH process with Markov-switching

regimes. The correlation between successive coefficients in the time-frequency domain

was taken into consideration by using the GARCH formulation which specifies the condi-

tional variance as a linear function of its past values and past squared innovations. The

time-varying structure of the conditional variance was determined by a hidden Markov

chain which allows a different GARCH formulation in each state. We developed a recur-

sive algorithm for estimating the signal and its conditional variance in the STFT domain

from noisy observations. The conditional variance is recursively estimated for any regime

by iterating propagation and update steps, while the evaluation of the regime conditional

probabilities is based on the recursive correlation of the process. Experimental results

demonstrated the improved performance of the proposed recursive algorithm compared

to using an estimator which assumes a stationary process, even when the number of as-

sumed regimes is smaller than the true number. When the number of assumed regimes

approaches the true one, the recursive estimator yields comparable restoration results

to those achievable by using the true model parameters. It was demonstrated that the

recursive estimation approach has relatively small performance degradation compared to

the theoretical estimation limit in the MMSE sense. Performance evaluation with real

speech signals demonstrated better variance estimation when using a multi-regime model,
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compared to using a single-regime model, and improved squared absolute value estimation

in a noisy environment compared to using the decision-directed approach.

Chapter 5 addressed the problem of noncausal estimation. We developed state smooth-

ing (i.e., noncausal state probability estimation) for MS-GARCH process, in which case

the conditional variances depend on both past observations and the regime path. The state

smoothing may be incorporated within the restoration algorithm to improve signal recon-

struction as it employs further information. In addition, state smoothing may improve

the probability evaluation for speech absence and therefore may result in improved VAD.

Our noncausal state probability solution generalized both the standard forward-backward

recursions and the stable backward recursion of HMP by capturing both the signal corre-

lation along time and its conditioning on the regime path. Accordingly, we showed that

the backward recursion requires two recursive steps for evaluating the conditional density

of the given future observations corresponding to all optional future paths. Although the

computational complexity of the generalized backward recursion grows exponentially with

the delay, it was shown that a small number of future observations contribute with the

most significant improvement to the state estimation.

In Chapter 6, a novel formulation of the single-channel speech enhancement problem

was developed. The formulation relies on coupled operations of detection and estimation

in the STFT domain, and a cost function that combines both the estimation and detec-

tion errors. A detector for the speech coefficients and a corresponding estimator for their

values were jointly designed to minimize a combined Bayes risk. In addition, cost param-

eters enable to control the trade-off between speech quality, noise reduction and residual

musical noise. The proposed method generalized the traditional spectral enhancement

approach which considers estimation-only under signal presence uncertainty. In addition

we have proposed a modified decision-directed a priori SNR estimator which is adapted

to transient noise environment. Experimental results showed greater noise reduction with

improved speech quality when compared with the STSA suppression rules under station-

ary noise. Furthermore, it was demonstrated that under transient noise environment,

greater reduction of transient noise components may be achieved by exploiting reliable

information for the a priori SNR estimation with simultaneous detection and estimation

approach.
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In Chapter 7, we have proposed a novel approach for a single-channel blind source

separation of acoustic signals. The approach was based on classifying the mixed signal

into appropriate sub-models related to a given codebook, and correspondingly estimate

each of the sources. Unlike other classical methods which apply estimation alone, or

distinctive operations of classification and estimation, in our method both operations

were designed simultaneously, or the estimator was designed to allow compensation for

erroneous classification. A new codebook was proposed for speech signals in the STFT

domain based on the GARCH model. Accordingly, less restrictive pdf’s are allowed in the

STFT domain compared to GMM or AR-based model. Experimental results showed that

for mixture of speech and music signals, applying the proposed codebook significantly

improves the separation results compared to using GMM for both signals, even when

using a smaller number of states. In addition, applying a simultaneous classification and

estimation approach enables one to control the missed and false detection rates and the

trade-off between signal distortion and residual interference.

Finally, in Chapter 8, we have developed a dual-microphone speech dereverberation al-

gorithm for noisy environments, which was based on MS-GARCH modeling of the desired

early speech component. The spectral variance of the late reverberation was estimated

from the observed signals while compensating for the energy of the direct path. The

algorithm blindly operates in noisy and reverberant environments without any knowledge

of the RIR, except for the reverberation time. It was shown that compared with the

original algorithm which employs the decision-directed estimator, improved performance

was obtained with little distortion to the desired signal.

9.2 Future research directions

In this thesis, we have proposed a complex-valued MS-GARCH model and developed

model-based algorithms for speech processing applications. Several directions may be

interesting for future research. Here we discuss some of the main issues. More specific

details are given in the conclusions of each chapter.

Multivariate GARCH model: The MS-GARCH model considered in this research

formulates the correlation along time of successive spectral variances. In addition, all
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frequencies in a specific subband share the same Markovian state and the same GARCH

parameters. However, given their conditional variances, spectral coefficients at a specific

frame are assumed statistically independent. A general formulation for a multivariate MS-

GARCH may parameterizes statistical dependency between different frequencies at the

same time-frame. Specifically, a single-state multivariate GARCH process Xt ∈ CN can

be formulated as a zero-mean process with Λt covariance matrix which is given by [165,166]

Λt = C +

q
∑

i=1

(

k
∑

j=1

AijXt−iX
H
t−iA

H
ij

)

+

p
∑

i=1

(

k
∑

j=1

BijΛt−iB
H
ij

)

. (9.1)

To guarantee positive definiteness of Λt, C should be positive definite and Aij and Bij

real valued matrices. This formulation allows non-diagonal covariance matrices such that

different frequencies are correlated by the model definition. Considering voiced speech

segments, modeling the correlation between different frequencies, such as between the

pitch frequency and its harmonies, may significantly improve the performance of model-

based algorithms.

Spectral variance estimation using speech detection: Integrating the simul-

taneous detection and estimation approach with MS-GARCH modeling for the spectral

coefficients may improve both the conditional variance restoration and the detection oper-

ation. Specifically, a speech-absence state in the MS-GARCH formulation gives important

information for speech presence. However, the spectral coefficients in some frequencies

may be of negligible energy even under a speech-present state. Since the conditional vari-

ances are reconstructed recursively, the uncertainty assumption requires incorporation of

a detection scheme within the propagation and update steps of the variance estimation to

improve conditional variance estimation. Furthermore, since the MS-GARCH is a multi-

state model, incorporation of a detection and estimation scheme requires generalization

of the later approach to a multi-hypotheses case.

Multichannel speech processing: The proposed MS-GARCH modeling as well

as the simultaneous detection and estimation approach may be employed for develop-

ing improved multichannel speech processing algorithms, such as multichannel speech

enhancement, beamforming, and relative transfer function (RTF) identification.

A major drawback of many existing multichannel postfiltering techniques is that highly

nonstationary noise components are not dealt with. The MS-GARCH model and the
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simultaneous detection and estimation approach for the speech coefficients may be in-

corporated within the postfiltering of a beamformer. Considering a generalized sidelobe

canceler scheme [167, 168], speech components are stronger at the beamformer output

than in the noise reference signals, while noise components are strongest at the reference

signals [107]. Accordingly, the beam-to-reference ratio may improve speech detection. In

the blocking branch of the beamformer, which is aimed to create the noise reference sig-

nals, integrating a reliable detector may yield better reduction of both the coherent and

incoherent noise at the beamformer output since the detection may improve the blocking

of the speech components from leaking into the noise reference signals. While the detec-

tion and estimation which are applied in the postfiltering should be designed for better

speech quality and perceptual intelligibility, the detection operation within the blocking

branch should be designed for maximum blocking of speech components.

The proposed statistical model may also be useful for designing an RTF identification

scheme that is adapted to speech signals. A detection and estimation scheme may be

utilized to overcome the uncertainty of speech presence in the time-frequency domain.

In time-frequency bins where speech components are detected, their PSD needs to be

estimated as well as the RTF. However, under speech absence, only the cross-PSD of

noise components may be estimated. Consequently, RTF identification performance as

well as the rate of convergence may be improved.
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 GARCH) generalized autoregressive של מודלי ה בתיאורימתמקדמחקר זה 

conditional heteroscedasticity ( ובמיוחד לעיבוד ספרתי של , ויישומיהם לעיבוד אותות

  .אותות דיבור

אותו  ARCH כהכללה של מודל  1986-  בBollerslevהוצג לראשונה על ידי  GARCHמודל 

תלויה ה)   מותניתשונות(מתאר באופן פרמטרי הפכפכות מודל זה . 1982-ב Engleפיתח 

. ערכים קודמים של התהליךמותנית ושל ריבועי הבעזרת ערכים קודמים של השונות , בזמן

שימושי מאד בתחום מדעי הכלכלה עבור ניתוח וחיזוי מידת ההשתנות של תהליכים המודל 

כגון הדגשת , וצע עבור יישומים לעיבוד אותות דיבורמודל זה ה, לאחרונה. בשווקים פיננסיים

אנו מציעים ניסוח חדשני ,  בעבודת מחקר זו.דיבורקיום ל וכן גלאי, זיהוי דובר, אותות דיבור

 עבור אותות שאינם )MS-GARCH ( מרוכב עם משטר מיתוג מרקוביGARCHלמודל 

 GARCHכונות מודל מודל זה מנצל הן את ת. תדר- במישור המשולב זמן, סטציונריים

 הזמנית של תהמתאר תהליך בעל שונות מותנית המשתנה בזמן והן את מאפייני הדינאמיו

תיאור סטטיסטי של  המוטיבציה העיקרית למחקר זה מבוססת על. שרשראות מרקוביות

הפחתת רעש , לדוגמה, כאשר דוגמאות ליישומים כוללות, תדר- אותות דיבור במישור זמן

הדגשת דיבור והפחתת הדהוד , ) טרנזיינטי-  הן רעש רקע והן רעש רגעי(במערכות תקשורת 

וכן הפרדת מקורות קול , מהדובריקרופון ממוקם הרחק במערכות תקשורת בהן המ

  .הנקלטים במיקרופון יחיד

-MSתהליך . MS-GARCHהתיזה מתחילה בניתוח סטציונריות אסימפטוטית של מודל 

GARCH)  כמו גם תהליךGARCH שהמומנט מסדר ןאינו סטציונרי מכיוו) מצב יחיד בעל 

במידה ותהליכים אלו הינם סטציונריים אסימפטוטית במובן , אולם. שני משתנה בזמן



ב 

תנאים מספיקים . אזי מובטח כי השונות של התהליך תהיה בעלת גבול סופי, הרחב

ואילו , Bollerslev פותחו על ידי GARCHוהכרחיים לסטציונריות אסימפטוטית של תהליך 

 קיימים בספרות ניתוחי סטציונריות רק עבור ניסוחים מנוונים MS-GARCHעבור מודלי 

בחלק מהמקרים פותחו תנאים שהינם הכרחיים  ,אלומנוונים  גם עבור ניסוחים .של המודל

אנו מציעים ניתוח , במחקר זה. אך לא בהכרח מספיקים לסטציונריות אסימפטוטית

 המנוסחים באופן מלא ומפתחים תנאים שהינם MS-GARCH לסטציונריות של מודלי

  .כפי שהוצעו בספרות,  כללייםסוחי מודלהכרחיים ומספיקים לסטציונריות של מספר ני

שונות זמן קצר מתאפיינים הן בחלקות של מקדמי אותות דיבור במישור התמרת פורייה ל

אפיינות גם תהליכי  מ אלושתי תכונות חשובות. המקדמים והן בפילוג בעל זנב עבה

GARCH.הוצע לאחרונה בתחום עיבוד אותות לנצל את מודל ,  תחת מוטיבציה זוGARCH 

בעבודות , אולם. יישומים של הדגשת דיבורתדר ל-מקדמי אותות דיבור במישור הזמןעבור 

אלו מניחים כי קיים גלאי למקדמי אות הדיבור ובנוסף מניחים כי פרמטרי המודל הינם 

הנחה זו מגבילה את השימוש במודל במקרה של שינוי דובר המתאפיין . מןקבועים בז

 עבור MS-GARCHאנו מציעים ניסוח חדש למודל . או אף בשינוי הברות, בפרמטרים שונים

מודל זה מתאים לייצוג אותות דיבור במישור . תהליכים אקראיים לא סטציונריים מרוכבים

 המרקובית החבויה מגדיר אוסף שונה של כל מצב בשרשרת. התמרת פורייה לזמן קצר

 או דובר/ ובכך מתאפשר ייצוג שונה עבור שינוי הברות וGARCH -פרמטרים עבור מודל ה

, כאשר בוחנים תהליכים כלכליים. שעשויים להתאפיין בשינוי מצב השרשרת המרקובית

 כלשהו בדרך כלל אין בעיית רעש במדידת התהליך ולכן ערכי התהליך הנתונים עד לזמן

, לעומת זאת.  של התהליך באינדקס הזמן הבאיקים בכדי לשחזר את השונות המותניתמספ

אין בידינו אלא מדידות רועשות של , ים בסביבה רועשתקלטכאשר מנתחים אותות דיבור הנ

לצורך . ערכי התהליך ולא את השונות המותניתולפיכך לא ניתן לשחזר במדויק את , התהליך

יתם רקורסיבי לשערוך השונות המותנית של התהליך על סמך מדידות כך פיתחנו אלגור

בדומה למסנן , האלגוריתם מבוסס על שני צעדים.  עצמואותרועשות וכן אלגוריתם לשערוך ה

Kalman .השונות המותנית מפועפעת צעד אחד קדימה בהתבסס על הגדרת , בשלב הראשון

, בנוסף. זרת המדידה הרועשת באותו הזמןהמודל ואילו בשלב השני מתבצע עדכון השונות בע

תחנו אלגוריתם לשערוך לא סיבתי של שרשרת המצבים המרקוביים מתוך מדידות יפ
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האלגוריתמים הללו נמצאו יעילים עבור שחזור מקדמי אותות דיבור ליישומים של . רועשות

התוצאות שהתקבלו טובות . הדגשת אותות דיבור בסביבה רועשת וכן להפחתת הד אקוסטי

  .יותר מאלו שהתקבלו בעזרת אלגוריתמים סטנדרטיים הקיימים בספרות

תכונה חשובה נוספת של אותות דיבור הינה דלילות מקדמי הייצוג במישור התמרת פורייה 

 ואגם בקטעי הזמן בהם ה, פרט לעובדה שהדיבור אינו קיים בחלק מקטעי הזמן. לזמן קצר

אלגוריתמים קיימים . ל האנרגיה נמצא בחלק קטן ממקדמי הייצוגהחלק הארי ש, קיים

 אותות דיבור מניחים בדרך כלל משערך למקדמי הייצוג וכן גלאי נפרד לקיום הדגשתל

ניתן לדחות אותו , הגלאי מחליט כי מקדם ייצוג מכיל רכיב רעש בלבדו במידה. המקדמים

 מבצעים שערוך המקדמים תחת אחריםאלגוריתמים , לחילופין. במוצא מערכת השחזור

מניחים הסתברות אפריורית לקיום מקדמי הייצוג של אות הדיבור , בגישה זו. חוסר ודאות

גישות של שילוב גלאי ומשערך . המקדמיםסטטיסטי של ותחת הנחה זו מבצעים שערוך 

מצומדים הפועלים יחדיו קיימות בספרות עבור עיבוד אותות והן עבור יישומים שונים 

הניסוח . אנו מציעים בעבודת מחקר זו ניסוח חדשני לבעיית הדגשת אות דיבור. קשורתבת

שתי . כללתמוכולל גלאי ומשערך הפועלים במקביל ואשר יחדיו ממזערים פונקצית מחיר 

 של מקדמי תהיעדרומייצגות קיום או  אשר היפותזות מוצעות עבור מקדמי אותות הדיבור

 מרכיב עבור המוכללת כוללתפונקצית המחיר . תדר-הזמן מקדם במישור עבור כלהייצוג 

הגלאי והמשערך הינם מצומדים . מרכיב נוסף עבור שגיאת הגלאיכן שגיאת השערוך ו

על סמך ניסוח זה אנו מפתחים אלגוריתם . ומתוכננים יחדיו כדי למזער את תוחלת המחיר

גוריתם המוצע הינו בעל האל. להדגשת אותות דיבור תוך שימוש בפונקציות מחיר מתאימות

היעילות הגדולה בניסוח , יחד עם זאת. ביצועים טובים יותר מאלגוריתם המבצע שערוך בלבד

תוך שמירת , במערכת הינה היכולת לשלב גלאי חיצוני עבור רעש טרנזיינטי המוצע

אנו מציגים תוצאות המראות .  זהיהאופטימליות של המשערך גם בהינתן גלאי לא אידיאל

 עבור רעש טרנזיינטי מאפשר הנחתה ניכרת יאידיאלוב האלגוריתם המוצע עם גלאי לא ששיל

  . זה תוך פגיעה קטנה בלבד ברכיבי אות הדיבור הרצויששל רע

 אשר נקלטו על ידי קול זו הינה הפרדת מקורות תזהבעיה מעניינת נוספת שנחקרה במסגרת 

דיבור עם /או שילוב של שירה, יםכלים מוזיקליים שונ, דוברים שונים (מיקרופון יחיד

ניתן לנצל את האינפורמציה , במידה ומספר מקורות נקלטים במספר מיקרופונים. )מוזיקה

סינון גישות של או להפעיל /ההדדית הקיימת באותות הנקלטים במיקרופונים השונים ו
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קורות גם כאשר מספר המ, בגישות אלו ניתן להגיע לעיתים לתוצאות משביעות רצון. מרחבי

 יש צורך כאשר מספר מקורות נקלטים במיקרופון יחיד, אולם. עולה על מספר המיקרופונים

אלגוריתמים . במידע אפריורי כלשהו על כל אחד מהמקורות כדי לאפשר הפרדה כלשהי

עבור כל אחד מהאותות ) מילון(מים לפתרון בעיה זו מניחים מודל סטטיסטי שונה קיי

 זה נלמד בעזרת ילוןמ. יסטית של כל אחד מהאותות הרצוייםומבצעים שערוך בגישה סטט

.  מבחינה סטטיסטית את האות הרצויייצגסדרת אימון המכילה אותות אשר אמורים ל

- או מודלים אוטו) GMM(מודלים קיימים מבוססים על עירוב של פילוגים גאוסיים 

מטריצת ,  הללובכל אחד מהמקרים. בעלי מספר סטים של מקדמי ייצוג) AR (רגרסיבים

 האפשרית עבור וקטור נתון של הסיגנל מוגבלת לתת מרחב הנפרש על ידי שונות המשותפתה

אנו מציעים אלגוריתם חדש , עבור בעיה זו של הפרדת מקורות.  הפילוגים המוגדרים במילון

מאחר ועבור כל .  והן על גישה המשלבת גילוי ושערוךGARCHהמבוסס על שימוש במודל 

ההפרדה מבוצעת למעשה על ידי שילוב של , תות קיים מודל בעל מספר היפותזותאחד מהאו

,  בין עיוות האותהפשרהשימוש בפרמטרי מחיר מאפשר למשתמש לשלוט על . מסווג ומשערך

הנגרם כתוצאה מאי גילוי מקדמי האות הרצוי לבין הפרעה שיורית הנגרמת כתוצאה מגילוי 

יותר מאשר בעזרת אלגוריתם קיים המניח טובה הפרדה בעזרת אלגוריתם זה מתקבלת . שגוי

  . בלבד והמבצע שערוך סטטיסטי בלבדGMMמודל 

  


