
In-Data vs. Near-Data Processing:
The Case for Processing in Resistive CAM

Leonid Yavits, Roman Kaplan and Ran Ginosar

ABSTRACT

Near-data in-storage processing research has been gaining
momentum in recent years. Typical processing-in-storage
architecture places a single or several processing cores inside
the storage and allows data processing without transferring it
to the host CPU. Since this approach replicates von Neumann
architecture inside storage, it is exposed to the problems
faced by von Neumann architecture, especially the bandwidth
wall. We present a novel processing-in-storage system based
on Resistive Content Addressable Memory (RCAM). RCAM
functions simultaneously as a storage and a massively
parallel associative processor. RCAM processing-in-storage
resolves the bandwidth wall faced by conventional
processing-in-storage architectures by keeping the
computing inside the storage arrays, thus implementing in-
data, rather than near-data, processing. We show that RCAM
based processing-in-storage architecture may outperform
existing in-storage designs and accelerator based designs.
RCAM processing-in-storage implementation of K-means
achieves speedup of 4.6—68 relative to CPU, GPU and
FPGA based solutions. For K-Nearest Neighbors, RCAM
processing-in-storage achieves speedup of 17.9—17,470 and
for Smith-Waterman sequence alignment it reaches speedup
of almost 5 over a GPU cluster based solution.

Keywords
Near-data Processing; Associative Processing; Processing-

in-storage; Processing-in-Memory; RRAM; CAM;
Memristors.

1. INTRODUCTION
In von Neumann architecture, execution time comprises

data processing time TCPU (divided by scaling factor SCPU)
and data transfer time TMEM which is a function of memory
bandwidth ��:

����� =
����
����

+ ����(��) (1)

Historically, TCPU scales much faster than TMEM. Further
scaling of TCPU by increasing SCPU through improving the
instruction level parallelism or adding more cores has a
diminishing effect on overall execution time.

The premise of near-data processing is reducing TMEM by
cutting the physical distance and increasing the bandwidth
between CPU and memory. Since inception, near-data
processing mainly meant processing in memory (PIM). To
process datasets larger than memory footprint, processing

units are placed near storage, achieving “processing-in-
storage.”

We believe that near-data processing-in-storage is
inherently limited because it is largely based on replicating
the von Neumann architecture near data storage. Hence it
potentially faces some of von Neumann architecture
problems, such as the bandwidth wall.

This work presents a novel resistive CAM (RCAM)-based
processing-in-storage architecture with in-data rather than
near-data processing-in-storage. The RCAM processing-in-
storage system simultaneously functions as data storage and
a massively parallel SIMD accelerator that performs the
computations in-situ, resulting in increased performance
through more complete utilization of the internal storage
bandwidth, and reduced energy consumption.

RCAM processing can be implemented in different
hierarchies of resistive storage and memory. While it can be
implemented in the mass storage, cost-wise a better place for
RCAM processing-in-storage could be an intermediate
storage hierarchy between the main memory and mass
storage, for example a storage class memory.

This paper makes the following contributions:
 We present a RCAM architecture offering storage

with in-data processing capabilities.
 We develop a RCAM processing-in-storage based

implementation of several algorithms in the fields of
machine learning and bioinformatics.

 We show that RCAM processing-in-storage
implementations can outperform near-data or other
(CPU, GPU or FPGA based) implementations both in
performance and in power efficiency.

The rest of this paper is organized as follows. Section 2
presents the motivation and related work. Section 3
introduces the architecture of RCAM processing-in-storage
system. Section 4 reviews the principles of associative
processing. Section 5 explores RCAM programming, and
applications. Section 6 presents simulation setup and
comparative performance of several big data algorithms.
Section 7 offers conclusions.

2. Background and Motivation
Near-data processing research has gained momentum

recently. Typical processing-in-storage architecture places a
single or several processing cores inside the storage and
allows data processing without transferring it to the host
processor. The concept of near-data processing-in-storage is

illustrated in Figure 1a. A comprehensive review of near-data
processing can be found in [8].

Processing-in-storage research mainly focuses on
processing data in NAND flash based solid state disk (SSD).
Boboila et al. [10] proposed Active Flash, a processing in
solid-state storage that expedites data analysis by migrating
the data to the flash device. The authors explored energy and
performance trade-offs of their processing-in-storage
architecture. Bae et al. [7] introduced the notion of Intelligent
SSDs, exploring the design considerations and examining
their potential benefits in data mining applications.
Continuing the work on Intelligent SSD, Jo et al. [31] studied
optimal ways of combining CPU, GPU and SSD for efficient
processing of data-intensive algorithms. Cho et al. [12] cited
the lack of parallel processing abilities in earlier in-SSD
processing architectures and proposed integrating a GPU,
providing API sets based on the MapReduce framework.
Kang et al. [33] introduced the Smart SSD model, which
combines in-SSD processing with a powerful host system,
and constructed a Smart SSD prototype. De et al. [17]
introduced the FPGA-based Minerva, which executed
application-specific operations in the NVM controller. Jun et
al. [32] introduced and constructed BlueDBM, combining a
flash based storage with in-store processing capability and a
low latency high-throughput inter-controller network, and
explored its performance benefits. Cho et al. [13] explored
some of the questions which are also addressed by this paper.
The authors made a case for Intelligent SSD by discussing the
bandwidth trends and quantifying the potential benefits of
processing-in-storage across a range of applications.

While processing-in-storage research is relatively young,
the wider concept of near-data processing, focusing mainly
on processing in memory (PIM) has been thoroughly
researched. The concept of mixing memory and logic has
been around since 1960s. The DAPP, STARAN, CM-2, and
GAPP computer architectures [51] used large number of PUs
positioned in proximity to memory arrays to implement a
massively parallel SIMD computer.

[47] suggested replacing the last level cache and the vector
co-processor of a conventional high-performance CPU by an
associative processor, which is a PIM accelerator, combining
data storage and massively parallel SIMD processing
capabilities.

While embedding processing with conventional 2D
DRAM chips is less practical, recent advancement in 3D
memory and logic stacking technology may remove this
obstacle. Citing severe bandwidth limitations in conventional
computer architecture as datasets continue to grow, Ahn et al.
[1] introduced Tesseract, a 3D Processing in Memory
accelerator for large-scale graph processing. In another work,
Ahn et al. [2] developed a hybrid memory cube based
framework that automatically decides whether to execute
PIM operations in memory or processors depending on the
locality of data. Nair, Sura et al. [58][44] introduced the
Active Memory Cube, a heterogeneous computing system
including general-purpose host processors and specially

designed in-memory processors that would be integrated in a
logic layer within 3D DRAM memory. In another work, Gao
et al. [43] developed hardware and software of a 3D stack
memory and near-data processing architecture for in-memory
analytics frameworks, including MapReduce, graph
processing, and deep neural networks. Azarkhish et al. [6]
developed Smart Memory Cube and designed a high
bandwidth interconnect to serve the bandwidth demand of
PIM architecture. Zhang et al. [64] explored PIM
implemented via 3D die stacking. Akin et al. [3] addressed
the issue of data reorganization in 3D stacked near-data
processing architecture, introducing HAMLeT, a mechanism
for host interference, bandwidth allocation, and in-memory
coherence. Farmahini-Farahani et al. [22] proposed NDA, a
near-DRAM acceleration architecture that processes data
using accelerators 3D-stacked on DRAM devices.

Recently, emerging memory technologies such as resistive
memory have become a focus of PIM research. Somnath et
al. [50] developed MBARC, a resistive crossbar in-memory
LUT-based processing architecture. Chi et al. [11] introduced
PRIME, a PIM accelerator of neural network applications.
[48] introduced a resistive CAM based massively parallel
accelerator. Shafiee et al. [56] developed ISAAC, an in-situ
accelerator of neural network, where memristor crossbar
arrays are used to perform dot-product operations in an
analog manner.

Figure 1: (a) Near-Data Processing in Flash Based Storage; (b)
2D Near-Data Processing in RRAM Based Storage; (b) 3D Near-
Data Processing; (d) In-Data Processing in RCAM Based
Storage.

We believe that near-data processing-in-storage is
inherently limited because it is based on replicating the von
Neumann architecture in a storage. Hence it potentially faces
some of von Neumann architecture problems, such as the
bandwidth wall. We define the computation throughput of an
in-storage processor as follows:

�ℎ����ℎ�������������� =
����������� [����]

������� [���]
 (2)

For processing-in-storage systems to reach optimal
performance, the peak computation throughput of an in-
storage processor should match the internal bandwidth of that
storage. The upper bound of such bandwidth is defined by the
maximum bandwidth of flash arrays, and ranges from few
hundred MB/s to few GB/s depending on the number of
parallel flash channels [49].

Early works on in-SSD processing report the computation
throughput of several MB/s to a few hundred MB/s
depending on workload (for example, 7MB/s to 350MB/s in
[10]). However, as the number of flash channels in SSD
grows, so does the effective internal SSD bandwidth. A
conventional response to the growing internal bandwidth is
increasing parallelism by adding more in-SSD processing
cores. One example of such increased parallelism is placing
a processing core in each flash channel [31]. However, with
the advancement of non-charge based memory technologies,
there is a growing consensus that resistive memory has a
potential to replace flash in future SSDs [4]. With bandwidth
and latency characteristics similar to DRAM [14], resistive
memory may significantly increase the upper bound of the
internal SSD bandwidth. This may lead to the following two
scenarios. First, increasing the parallelism by adding more in-
SSD processing cores will become inefficient and may
eventually cause a reduction in performance [63]. Second,
internal storage bandwidth is likely to become limited by the
internal communication bus/network (Figure 1b) due to the
surge in inter-core communication [63]. Both scenarios
repeat the problems faced by manycore von Neumann
architectures in the “macro” world.

As suggested in [8], the compute throughput to internal
SSD bandwidth balance can be regained through new system-
on-chip and die stacking technologies that enable network-
on-chip integration, a more efficient network software stack,
and potentially new opportunities for near-data processing-
customized interconnect designs.

The concept of 3D near-data processing architecture is
illustrated in Figure 1c. 3D stacking of RRAM and a parallel
in-SSD processor, with some ultra-wide vertical
communication capabilities, has the potential to realize the
bandwidth upside of the future NVM. This is certainly a valid
potential direction of the near-data processing architecture
development.

In this paper, we propose a new processing-in-storage
architecture that increases the compute throughput to match
the potentially ultra-high internal bandwidth of the storage
arrays. This architecture progresses from random addressable

to content addressable (associative) storage (Figure 1d). This
architecture enables massively parallel SIMD processing of
the data inside the storage arrays. The processing is
associative, making the dedicated in-storage processors
redundant. There is no data transfer outside the storage arrays
through a bandwidth limited internal SSD communication
bus/network. We refer to the RCAM processing-in-storage as
in-data rather than near-data processing architecture. The
inherent performance (read/write access time and bandwidth)
of the resistive memory can be utilized to the full extent,
enabling very high computation throughput while reducing
the energy consumption (mainly due to the lack of data
movement inside the SSD).

The main reason to prefer in-data RCAM processing-in-
storage over 3D stacked near-data processing is the per-bit
connectivity of memory and processing: In RCAM, each
memory bit is directly connected to processing transistors,
whereas in 3D stacked near-data processing, the data must
pass through memory interface circuits and through 3D
vertical interconnects, typically much fewer in numbers than
the number of bits. In RCAM processing-in-storage, the bulk
of data ideally never leaves the memory. The computation is
performed within the confines of the memory array. This
potentially holds a significant performance and energy
efficiency advantage: Using DRAM as an example, there is
typically a reduction in available bandwidth of six orders of
magnitude between the sense amplifiers and the CPU edge
[8]. In addition, the cost of access in terms of energy increases
from hundreds of femtojoules to tens of picojoules over a
span of the same distance [8].

The use of STT-MRAM and Resistive Ternary CAM for
data intensive computing was pioneered by Guo et al.
[27][28][29]. Guo et al. used the associative capabilities of
CAM and Ternary CAM mainly for search operations, while
the computing is largely done in a CPU. Their work targeted
a different architecture, replacing RAM by resistive CAM or
ternary CAM in NVDIMM rather than in mass storage.
Adopting associative processing architectures such as
Goodyear Aerospace’s STARAN or MPP to processing-in-
storage is also suggested in [8].

3. Architecture
Resistive memories store information by modulating the

resistance of nanoscale storage elements. They are
nonvolatile, free of leakage power, and emerge as potential
alternatives to charge-based memories, including NAND
flash. The metal-oxide resistive random access memory
(RRAM) is considered as one of the potential technologies to
replace next-generation nonvolatile memories [4]. Its main
features are high reliability and fast access speed. A test-chip
of 32GB device with two RRAM-based memory layers and a
CMOS logic layer underneath has been demonstrated [38].
While RRAM [4] employs one transistor and one memristor
(1T1R) cell, RCAM processing-in-storage uses 2T2R cells
[36] and appropriate peripheral circuits [48] to support
associative storage and processing. A number of alternative

resistive CAM and ternary CAM cell designs have been
proposed [5][21][41][42][61].

3.1 RCAM processing-in-storage system

The top-level view of RCAM processing-in-storage
system and its possible positions within memory hierarchy is
presented in Figure 2.

Figure 2: RCAM Position in Memory Hierarchy.

RCAM processing-in-storage comprises a multitude of
RCAM arrays, possible divided into multiple ICs, with a
central microcontroller. The mass storage may be
implemented by RCAM rather than RRAM or flash. This will
enable massively parallel in-mass storage processing
however this option comes at relatively high cost since
RCAM is less dense than RRAM. Another candidate is an
additional memory hierarchy between the main memory and
mass flash or RRAM storage, similarly to a storage class
memory. Such option could provide a better performance-
cost trade-off.

3.2 RCAM Array

RCAM array is the heart of RCAM processing-in-storage
architecture, presented in Figure 3. It comprises a resistive
memory crossbar, in which each memory line is also a
baseline processing unit (PU), and a peripheral circuitry. The
latter includes a microcontroller, key and mask registers, tag
logic, and two optional circuits: a tag counter or reduction
tree and a daisy-chain interconnect. The basic RCAM cell is
created by virtually pairing two RRAM cells (memristors),
holding complementary values � and ��.

The resistive (memristor based) CAM is a scalable and
highly dense alternative to CMOS CAM. Memristors are
two-terminal devices, where the resistance of the device is
changed by the electrical current or voltage. The resistance of

the memristor is bounded by a minimum resistance ��� (low
resistive state, logic ‘1’) and a maximum resistance ����
(high resistive state, logic ‘0’).

The key register (Figure 3a) contains a key data word to be
written or compared against. The mask register defines the
active fields for write, compare and read operations, enabling
bit selectivity. The tag marks the rows that are matched by
the compare operation and are to be affected by the
successive parallel write. A daisy-chain like bitwise
interconnect allows PUs to intercommunicate, all PUs in
parallel. The tag counter is a reduction (adding) tree, enabling
logarithmic summation of tag bits. This operation is useful
whenever a vector needs to be reduced to a scalar.

The RCAM compare operation is implemented as follows.
The Match/Word line is precharged and the key is set on Bit
and Bit-not lines. In the columns that are ignored during
comparison, the Bit and Bit-not lines are kept floating. If all
unmasked bits in a row match the key (i.e., when Bit line ‘1’
is applied to an ��� memristor and Bit-not line ‘0’ is applied
to an ���� memristor, or vice versa), the Match/Word line
remains high and ‘1’ is sampled into the corresponding TAG
bit. If at least one bit is mismatched, the Match/Word line
discharges through an ��� memristor and ‘0’ is sampled into
the TAG.

Write operation is performed in two phases. First, the
� ≥ ��� voltage (where ��� is a threshold voltage required
to switch to the "on" state) is asserted to applicable Bit lines
(to write ‘1’s) and Bit-not lines (to write ‘0’s). Second, the
� ≤ ���� voltage (where ���� is a threshold voltage to
switch to the "off" state) is asserted to Bit-not lines (to
complement the ‘1’s) and Bit lines (to complement ‘0’s). The
write affects only the tagged rows.

Figure 3: RCAM Array: (a) Resistive Crossbar and (b)
Peripheral Circuitry

Memristor sub-nanosecond switching time [59] allows
GHz RCAM processing-in-storage operation. The energy
consumption during compare may be less than 1fJ per bit.
The write energy is in the range of 0.1pJ to 3pJ per bit [62],
which may be prohibitively high for simultaneous parallel
writing of the entire RCAM storage; the energy consumption
is addressed in Section 6.

Another factor which potentially limits RCAM processing-
in-storage system is endurance (the number of program/write
cycles that can be applied to a memristor before it becomes
unreliable). Resistive memory endurance is shown at about
10�� [62], which may suffice for only about one month.
However, studies predict that the endurance of resistive
memories may grow to the 10�� − 10�� range [21][45],
extending RCAM processing-in-storage system endurance to
a number of years.

3.3 Tag and Match Circuits

The tag logic is presented in Figure 4. It comprises a pre-
charge circuit, a Match line sense amplifier, a tag flip-flop, a
multiplexor (implementing the daisy-chain TAG
connectivity), a first_match circuit and an if_match circuit.
The Match line is pre-charged during compare. The tag
register latches the result of compare. The First_match circuit
implements ‘match first,’ a frequent associative operation, by
keeping only first match and resetting the remaining tags.
If_match, another frequent associative operation, returns ‘1’
if a parallel compare operation results in at least one match.

Figure 4. TAG Logic: (a) TAG, (b) First_match, (c) If_match.

3.4 System Architecture and RCAM scaling

Conceptually, RCAM may comprise hundreds of millions
of rows, each serving as a processing unit (PU). Due to
thermal limitations, the entire array may be divided into
multiple ICs (Figure 5a).

The RCAM processing-in-storage system uses a
microcontroller (Figure 5b). It issues instructions, sets the
key and mask registers, handles control sequences and
executes read requests. In addition, the microcontroller
contains the RCAM buffer, which stores the reduction tree
outputs. The microcontroller may also perform some baseline
processing, such as normalization of the reduction tree
results. Presently, RCAM software, including both
associative operations (SIMD array instructions) and
sequential instructions executed on the microcontroller, is
manually encoded at assembly language level.

The scaling of conventional near-data processing
architectures may be limited, similarly to high-performance
parallel von Neumann architectures. When growing internal

bandwidth of the storage arrays is met by increasing number
of in-storage processing cores, the storage array to in-storage
processor communication bottleneck worsens. As a result,
the performance of processing-in-storage system may
saturate or even diminish.

RCAM processing-in-storage provides much better
scalability. Its inherent parallelism allows increasing the
performance of many workloads almost linearly as the
datasets grow along with storage size. Since the bulk of data
is never transferred outside the storage arrays through a
bandwidth-limited communication interface, the
performance limit is pushed further away.

Figure 5: RCAM processing-in-storage system is composed (a)
of separate multiple ICs and (b) a microcontroller.

4. Associative Processing
RCAM is a non-von Neumann associative in-storage

processor. Most computations may be structured as series of
Boolean functions, and Boolean functions can be
implemented on RCAM using truth table executions. The
data are stored in the RCAM array, one data element per
RCAM row (PU). The truth table entries, embedded in the
microcode, are broadcast entry-by-entry by the RCAM
microcontroller.

The input part of each truth table entry is matched against
the entire RCAM content (the entire data set). The matching
RCAM rows are tagged, and the corresponding truth table
output values are written into the designated fields of the
tagged rows. For an �-bit argument �, any Boolean function
�(�) has 2� possible output values. Therefore, a naïve
associative computing operation would incur �(2�) cycles,

regardless of the data set size. More efficiently, arithmetic
operations can be performed on RCAM in a word-parallel,
bit-serial manner, reducing time complexity from �(2�) to
�(�). For instance, vector addition may be performed as
follows [24]. Suppose that two �-bit RCAM columns hold
vectors A and B. The sum of A+B is written onto another �-
bit column S (Figure 6a). A one-bit column C holds the carry
bit. The operation is carried out as � single-bit additions (3):

�[:] | �[:]� = �[:]� + �[:]� + �[:] , � = 0,… ,� − 1 (3)

where � is the bit index, ‘:’ means all elements of the vector,
and c and s are, respectively, the carry and sum bits. The
single-bit addition is carried out in a series of steps. In each
step, one entry of the truth table (a three bit input pattern,
Figure 6c) is matched against the contents of the
�[:]�, �[:]�, �[:] bit columns and the matching rows (PUs) are
tagged; the logic result (two-bit output of the truth table,
Figure 6c) is written into the �[:] and ��[:] bits of all tagged
rows. During that operation, all but three input bit columns
and two output bit columns of the associative array are
masked out in each step. Overall, eight steps of one compare
and one write operation are performed to complete a single-
bit addition over all rows, regardless of the number of rows.

A snapshot of such vector addition, for � = 4, for the zero
bit of the vector elements and the 2nd entry of the truth table
is shown in Figure 6. During compare (Figure 6a), the input
pattern ‘001’ is compared against bit columns c, a0 and b0, for
all vector elements in parallel. The matching rows (two in this
example) are tagged. During write (Figure 6b), the output
pattern ‘01’ is written in bit columns c and s0 accordingly.
Only the tagged rows are affected by write.

Figure 6: Vector addition in RCAM example, for two 4-bit
vectors, snapshot at zero bit, 2nd entry of the truth table: (a)
Compare, (b) Write, (c) Full Adder Truth Table.

A fixed-point � bit addition and subtraction take �(�)
cycles. Fixed point multiplication and division in RCAM
processing-in-storage architecture require �(��) cycles.
Single precision floating point multiplication takes 4,400
cycles [47], regardless of the data set size.

5. Programming and applications

5.1 Programming RCAM processing-in-storage

In RCAM processing-in-storage, the host is responsible for
running the OS and sequential code, and RCAM implements
parallel SIMD kernels. The host transfers execution

parameters such as dataset addresses, and triggers RCAM
kernel execution.

We analyze applications to find highly parallelizable data
intensive SIMD phases. We divide the application into
sequential (run by the host) and in-storage kernels (executed
on RCAM). The code intended to run on RCAM is translated
into associative primitives.

The host invokes the RCAM to perform its code fraction.
It sends the workload parameters to RCAM and starts
execution. Once RCAM execution completes, the host can
access the RCAM output.

There is no hardware support for data coherence between
the host CPU and RCAM storage. RCAM has no access to
the host main memory or on-chip cache. Therefore, the
datasets on which RCAM operates must reside in RCAM and
should not be left in the host memory. To avoid
inconsistencies between the RCAM and host CPU memory,
RCAM storage is inaccessible to the host CPU during the
RCAM operation.

5.2 Applications

In this section, we discuss the implementation of several
compute-intensive workloads from different application
fields. The first is sparse matrix multiplication, frequently
used in machine learning, for example in linear Support
Vector Machine classification and regression. Another is K-
means, a clustering algorithm for classification. The third
algorithm is K-Nearest Neighbors (KNN), another
classification and regression kernel. Last, we present the
Smith-Waterman sequence alignment, a basic tool in
bioinformatics. All these algorithms, performed in RCAM
processing-in-storage architecture in our work, are compared
with CPU and accelerator-based implementations.

Somewhat less ambitious applications include data
intensive searches such as string matching, addressed by
several near-storage or in-SSD architectures [33][49].
Clearly, whereas the complexity of reading data out of
storage for performing search by in-SSD cores is of linear
time complexity, performing search in RCAM processing-in-
storage architecture is closer to constant time complexity, and
is not shown here.

5.2.1 Sparse Matrix-Vector Multiplication

Sparse matrix by dense vector multiplication (SpMDV or
SpMV) is typically constrained by memory bandwidth
limitations, and hence the efficient implementation of SpMV
is critical to large scale linear algebra applications.

We propose a fully associative algorithm for SpMV
execution in RCAM processing-in-storage architecture.
Revised versions of this algorithm can be used for dense
matrix multiplication and sparse matrix by sparse matrix [46]
or sparse vector multiplication.

Figure 7 presents the algorithm of RCAM SpMV. Matrix
A is assumed to be stored in RCAM in Compressed Sparse
Row (CSR) format, where each nonzero element �� is stored
alongside its column index ��.

The algorithm includes three parts. The first part,
broadcast, consists of a loop going over the elements of
vector �. In a first cycle, the index of an element of �, ��, is
compared against the column index field of the entire matrix
� (in parallel for all nonzero elements of �, using the
compare command). All index-matching rows holding
nonzero elements of matrix � are tagged.

Algorithm 1 SpMV

//Let A, B, C denote matrix A and vectors B and C.

//Each RCAM row holds a non-zero element of A (��, ��)

 // Broadcast

1: For each �� ∈ {�������� �� �}:

 // Compare �� with all column indices of A, ��

2: Compare �� to all ��

 // Write �� into all matching rows

3: Write ��

 // Associatively multiply the entire A by B

4: �� ← �� ∗ �� // �� is a matrix

 // Reduction: all rows of A in parallel, each row is tallied
5: For each (non-zero) row � of �:

6: �� ← ���������(���)
 // � has non-zero elements where � has non-zero rows

Figure 7: RCAM based SpMV pseudocode.

In the second cycle, �� is written simultaneously into all
tagged rows, alongside the index-matched elements of matrix
�. The loop is repeated for all elements of vector �. Upon
completion, each nonzero pair of elements of � and �
required to calculate the product vector C is aligned (stored
in the same row) in the RCAM.

The second part (step 4) is the associative multiplication of
the ��, �� pairs, performed in parallel for all pairs. The
number of multiplications performed simultaneously equals
the number of nonzero elements in �.

The third part sums the products along each row of � (steps
5, 6) using the reduction tree.

RCAM SpMV has the computational complexity of
�(��� + ���) where �� and �� are the number of columns
and rows, respectively.

5.2.2 K-Means

K-means is an unsupervised learning algorithm for
clustering unclassified samples. It aims

to partition � samples into K clusters, where each

observation belongs to the cluster with the nearest mean.
The K-means algorithm pseudocode, as implemented in

storage, is presented in Figure 8. The algorithm minimizes
the Euclidean distances between the samples and the cluster
centers (the means), as follows. Prior to execution, the means
are initialized by randomly choosing � samples and the
minimum Euclidean distance of all samples is initialized to
the highest possible value.

The algorithm consists of two K iterations loops,
assignment and update. The assignment loop finds the closest
mean of each sample. The update loop recalculates the new
mean coordinates. These two loops may be repeated until the
mean coordinates convergence.

In the assignment loop, each sample is assigned to the
cluster whose mean yields the minimal Euclidean distance. In
each iteration of lines 3-6 of Figure 8, the distance over a
single attribute is associatively calculated in parallel for all
dataset samples. Next, in lines 7-9, the minimal Euclidean
distance and the cluster assignment are updated in parallel for
all samples � ∈ �. Note that lines 2-9 are always executed in
parallel on the entire storage, in a SIMD-like style.

In the update loop, for each mean index �����, all samples
assigned to this mean are tagged (line 11). Then, for each
attribute and for all tagged rows, the sum of coordinates is
calculated in parallel using the Reduction Tree (line 13),
followed by counting the number of samples assigned to the
mean (line 14) and finally calculating the new mean
coordinates by the microcontroller (line 15).

Note that the key computational steps are parallelized, and
in the update loop parallelism is made possible by
associativity.

5.2.3 K-Nearest Neighbors (KNN)

K-nearest neighbors (KNN) is frequently used for
classification. It computes the distances between an
(unclassified) input query vector and a dataset of classified

Algorithm 2 K-Means Implementation in RCAM

// �: the group of samples

// Every � ∈ � is stored in a separate RCAM row

//Assignment: assign each sample with a cluster

// Each of the k means is a tuple: (�����, ����)

1: For each ����� ∈ [1, �]:

 Do-all � ∈ �:

2: Write ���� coordinates to ���� columns

3: For each ���� ∈ {������ ����������}:

4: �������� ← ����� − ��������

5: ���������� ← (��������)
�

6: ��������_���� ← ��������_���� + ����������

7: Tag rows with ��������_���� < ���_������

8: Write ���_������ ← ��������_����

9: Write ���������_���� ← �����

// Update: calculate new mean coordinates

10: For each ����� ∈ [1, �]:
11: Tag rows with ���������_���� == �����

12: For each ���� ∈ {������ ����������}:
13: ������� ← ���������(�����)
14: �������_���� ← ���������(����ℎ_�����)
15: �������� ← �������/�������_����

Figure 8: K-Means Pseudocode for a single iteration of the
algorithm.

samples. Each sample consists of multiple attributes (features
or dimensions). The query vector classification is usually
determined by the majority vote of � nearest database
samples, hence the name �-nearest neighbors. Distance is
most commonly Euclidean, although Manhattan or Hamming
distance might occasionally be used.

In a von Neumann machine, the required computational
effort is proportional to dataset size and is the main cause for
limited performance on large datasets. In contrast, in-data
implementation of KNN is not limited by dataset size and can
therefore provide high performance on very large datasets.

KNN algorithm pseudocode on RCAM is presented in
Figure 9. This implementation calculates the Euclidean
distance between the query vector and the dataset samples,
followed by serially selecting the K closest samples. The
algorithm comprises two steps. The first step computes the
Euclidean distance (squared) between the query vector and
each dataset sample. In each iteration of the first step (lines
1-4 in Figure 9), deltas of one attribute are calculated in
parallel for all samples (line 2), squared (line 3) and added to
the final distance ������ (line 4). The number of iterations in
the first loop equals the number of attributes M.

The second step (lines 5-9) iteratively finds the K dataset
samples that are closest to the query vector (the nearest
neighbors), one by one.

Every iteration tags the minimal unmarked Euclidean
distance (lines 6-7), reads the tagged sample class (line 8) and
increments a histogram counter for that class (line 9,

performed by the mirocontroller). Overall the loop is iterated
K times.

5.2.4 Smith-Waterman DNA Sequence Alignment

Searching for similarities in pairs of protein and DNA
sequences (also called Pairwise Alignment) has become a
routine procedure in Molecular Biology and it is a crucial
operation in many bioinformatics tools. The Smith-
Waterman algorithm (S-W) [57] provides an optimal solution
for the pairwise sequence alignment problem. However, the
optimality comes with a high computational cost, requiring a
number of operations proportional to the product of the two
sequences. The algorithm allows for some parallelism, but
requires serial steps proportional to the length of the longest
sequence of the two compared.

S-W identifies the optimal alignment of two sequences by
computing a two-dimensional scoring matrix. Matchings
base-pairs score positively (e.g., +2), while mismatching
result in negative score (e.g., -1). The optimal alignment
score between two sequences is the highest score in the
matrix. The alignment may contain gaps in both sequences
which are penalized in the score calculation (negative scores).
According to the affine gap model [26], opening a gap is
harder than extending it, therefore the penalty for opening a
gap is larger. The S-W has two steps, scoring (to find the
maximal alignment score) and trace-back to construct the
alignment. The first step is the most computationally
demanding and is the focus of our work.

Figure 10a shows snapshot of the scoring matrix during
algorithm execution. Scores are represented by 32-bit
integers. In a parallel implementation, the matrix is filled
along the main diagonal and the entire anti-diagonal scores
are calculated in parallel, as the figure illustrates. Two anti-
diagonals are required to calculate the score of a new anti-
diagonal, therefore in each iteration only three anti-diagonals
are stored in memory. The data set may be distributed over a
large number of ICs, as in Figure 5. Figure 10b shows the
RCAM memory map of two neighboring ICs at the beginning
of an iteration. � and � contain the sequences, where each
base-pair takes 2-bit and resides in a separate row. � and �
are partial score results of the affine gap model.
��[0], ��[1] and ��[2] contain scoring matrix anti-
diagonals. Shift operations move data between rows inside a
RCAM IC and between daisy-chained ICs. Figure 10c shows
the RCAM memory map at the end of the iteration and the
mapping between RCAM and the scoring matrix.

Algorithm 3 KNN Implementation in RCAM

//K denotes the number of nearest neighbors.

//Every sample � ∈ � may be stored in several consecutive

RCAM rows; the code assumes one row per sample for

simplicity.

//Each sample is characterized by M attributes

//Calculate distance of each dataset sample from query

1: For each ���� ∈ [1,�]

 Do-all � ∈ �:

2: �������� ← ��������� − �����

3: ���������� ← (��������)
�

4: ������ ← ������������� + ����������

//Assume unique ������ values

//Find � closest samples

//Histogram of all classes maintained by microcontroller

//Start with all samples unmarked

5: Loop K times

6: Tag all unmarked samples

7: Tag and mark first row with min value of ������

8: Retrieve ����� of tagged row to microcontroller

9: On microcontroller: Histogram[�����]++

//Classification: Class with highest histogram

Figure 9: KNN Pseudocode.

6. Evaluation

6.1 Simulation Platform

We assume that RCAM is implemented in 28nm
technology. We simulate RCAM using the associative
processor simulator [47], with operating frequency of
500MHz. We have developed an in-house power simulator to
evaluate the power consumption of the RCAM. The latency
and energy figures used by both the timing and power
simulations are obtained using SPICE simulation and are
detailed in [48].

6.2 Sparse Matrix Vector Multiplication

To simulate sparse matrix multiplication, we have used the
21 square matrices from the UFL Sparse Matrix Collection
[15] (listed in Figure 11), having 327,000 - 37 million
nonzero elements. These matrices are also used for
performance study by Saule et al. [55]. Performance of
SpMV is presented in Figure 11(a), together with
performance on Intel Xeon Phi SE10P and NVidia K20 [55].
These Xeon Phi SE10P and K20 SpMV implementations
have �(����) computational complexity (���� is the
number of nonzero elements).

Figure 11: SpMV (a) Performance, (b) Power Consumption

It appears that these Xeon Phi SE10P and K20
implementations assume that matrices are preloaded to main
memory (DRAM). Therefore, the time and energy spent on
fetching those matrices from storage to main memory are not
included in the evaluation [55]. In contrast, RCAM
processing-in-storage architecture implements in-data
SpMV, thus saving latency and energy consumption of the
data transfer, and freeing the CPU and GPU to other tasks.

Power simulation of RCAM SpMV is based on upper-
bound energy figures from [62], applicable to 28nm, same
technology node as K20. The simulated power consumption
of the SpMV is presented in Figure 11(b). The SpMV power
efficiency of GPUs such as the 28nm NVidia GTX Titan is
around 0.1 GFLOP/s/W [19] (we assume that K20 power
efficiency is similar). The simulated SpMV RCAM power
efficiency is in the similar low range of 0.3-0.4 GFLOP/s/W.
The reason for low power efficiency lies in memristor write
energy, which dominates RCAM energy consumption during
arithmetic operations.

Figure 12 shows the GPU/CPU to RCAM computational

complexity ratio
����

�������
 as a function of nnzA (calculated for

2,740 matrices of the UFL Sparse Matrix Collection). It
shows the trend of potential RCAM speedup (over GPU and
CPU implementations) with the growing dataset size (the
number of nonzero elements in a sparse matrix).

Figure 10: (a) Snapshot of the dynamic programming matrix,
showing the direction of progress for the parallel algorithm.
(b),(c) The matching organization of data in the RCAM array
at the beginning of an iteration (b) and its end (c). AD[2]
contents in (b) is being replaced with the new result (c). Bottom
rows in a RCAM IC are daisy-chained to the next IC in a shift
instruction.

Figure 12: GPU/CPU to RCAM complexity ratio
����

�������

6.3 K-Means

Several evaluations are performed. We compare our
RCAM processing-in-storage architecture with an FPGA
[37][53], Multicore CPU [18], single GPU [9], and a 10-GPU
cluster [54] K-means implementations. Table 1 provides a
summary of the platforms and datasets. Figure 13 presents the
average runtime per iteration (log scale) of each architecture,
including the relative speedup and power efficiency of
RCAM. Li et al. [37] showed a simplified MapReduce
implementation on Xilinx ZC706 FPGA and about 2 million
samples, each with 4 attributes. Their average time per
iteration was 8.5ms, compared to 0.57ms on RCAM, yielding
speedup of 15 and 1.5× better power efficiency. Ramanathan
et al. [53] presented an implementation with work-stealing
method of run-time load balancing on an Altera Stratix V
FPGA. The total runtime is about 350ms with 16 iterations,
while RCAM completes the same task in 75ms, resulting in a
4.6 speedup. The relatively small speedup is attributed
mainly to the high clusters-to-samples ratio. The small
dataset also leads to 2.1× lower power efficiency of ReCAM.
More data samples may lead to lower FPGA performance and
power efficiency, while keeping RCAM’s the same. Ding et
al. [18] used a high-end eight-core Intel i7-3770K CPU. We
used their largest evaluated dataset for comparison,
containing 2.5M samples, each with 68 dimensions. An
iteration with 10,000 clusters has taken 432.9 seconds on the
CPU on average, compared to 6.38 seconds on RCAM,
leading to a 58.4× speedup and 20.8× higher power efficiency
of RCAM. Bhimani et al. [9] presented GPU implementation
of K-means, using NVIDIA K20M with 225W TDP and a
1164×1200 pixel RGB image. The total runtime in case of
240 clusters is 294 seconds in 166 iterations, while on RCAM
it takes only 5 seconds, showing 58.4 speedup. Compared
with 250W dissipated by a single RCAM chip, RCAM has
52.9× higher power efficiency. Rossbach et al. [54] used a
ten NVIDIA Tesla K20M GPU cluster with a very large data
set of 1 billion samples, occupying roughly 150GB. Their
average iteration time is 30.6 seconds, compared with 0.65
seconds on RCAM, yielding speedup of 47. Each of the
machines in the cluster has two Intel Xeon E5-2630 CPUs,

which leads to a 415W TDP per machine. In total, the ten
GPU cluster has 4.9× lower power efficiency than RCAM.
The large speedup over the big dataset is attributed to the
insensitivity of RCAM to dataset size, unlike the GPU
cluster, which is limited by the communication bandwidth of
each GPU.

6.4 KNN

We compare RCAM processing-in-storage
implementation with FPGA [52], GPU [30] and Nearest
neighbor Content Addressable Memory (NCAM) [35] KNN
implementations. Table 2 summarizes the platforms and
datasets used in these works. Figure 14 plots runtime (log
scale) results, relative speedup and power efficiency of
RCAM. Pu et al. [52] presented a FPGA implementation of
KNN using Stratix IV 4SGX530 and the KDD-CUP 2004
quantum physics dataset, with 20,480 samples out of the total
50,000, each sample with 5 attributes. For K=20, runtime was
69ms. On RCAM, the runtime for the same dataset,
regardless of the number of samples, is 2.3ms, resulting in
speedup of 30 and 3× improved power efficiency.

Gutierez et al. [30] proposed a GPU-based KNN on
NVIDIA K20M. They applied it to KDD-CUP 1999 dataset
of 4.9 million instances, each having 41 attributes, and

100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

nnz
A

0.1

1

10

100

1000

GPU/CPU to RCAM time complexity ratio

Moving Average

Table 1: K-Means compared datasets and platforms with
RCAM.

Work

Ref. Platform

Dataset

Clusters Samples Attributes
Size on

disk

[53] FPGA 1M 1 4MB 128

[37] FPGA 2M 4 31.6MB 4

[18] Intel i7 2.5M 68 318.8MB 10000

[9] GPU 1.4M 5 21.3MB 240

[54]
10-GPU
Cluster

1B 40 157.2GB 120

Figure 13: Speedup and power efficiency of RCAM K-Means
vs. existing solutions.

achieved runtime of 33.9 sec. On RCAM, the same task
completes in 1.9ms, showing speedup of 17,470 and
improved power efficiency of 15.7k×.

Lee et a. [35] presented a NCAM processing-in-memory
architecture, combining custom logic and HMC (hybrid
memory cube). They compared NVIDIA Titan X GPU
performance to NCAM on two image classification datasets,
SIFT [40] and ImageNet [34]. The data samples are quite
large (up to 16 KB). While the NCAM improves runtime over
the GPU by an order of magnitude (17× and 5.2× on SIFT
and ImageNet, respectively) and shows a significant benefit
of a non-von Neumann concept, the RCAM processing-in-
storage architecture demonstrates additional 1-2 orders of
magnitude speedup (17.9 and 67.9, respectively) relative to
NCAM, thanks to in-data rather than near-data processing.
Compared with NCAM, ReCAM shows lower power
efficiency of 0.9× and 0.2× for SIFT and AlexNet datasets,
respectively. The lower power efficiency can be attributed to
the highly specialized design of NCAM, which targets to
accelerate KNN, in contrast to the larger scope of
applications with high performance on RCAM.

6.5 Smith-Waterman

The CUPS metric (Cell Updates per Second) is used to
measure S-W performance. Performance results are
compared to other works in Table 3. A four Xeon Phi
implementation achieves 0.23 TCUPS [39]. A FPGA
implementation of S-W reaches 6.0 TCUPS on the
RIVYERA platform [60] having 128 Xilinx Spartan-6
LX150 FPGAs. A multi-GPU implementation reached 11.1
TCUPS on a cluster of 128 compute nodes with a total of 384
Tesla M2090 GPUs [16]. On RCAM with a total of 8GB in
32 separate ICs, each 256MB and 8M rows, we demonstrate
53 TCUPS, computing a total of 57.2×1012 scores, achieving
4.7 times higher throughput than the GPU version. Table 3
also shows computed GCUPS/Watt ratios; RCAM is close to
twice better power efficiency than the FPGA solution and
80× better than the GPU system.

7. Conclusions
Near-data processing-in-storage is inherently limited

because it is based on replicating von Neumann processors
near storage. Therefore, it potentially faces some of von
Neumann architecture problems, such as the bandwidth wall.
To resolve this problem and allow for full utilization of ultra-
high internal bandwidth of future resistive memory based
SSD, we propose a novel in-data processing-in-storage
architecture based on Resistive Content Addressable
Memory (RCAM). Unlike near-data in-SSD processing,
RCAM enables storage with in-data associative processing
capabilities. It can contain hundreds of millions of data rows,
each row serving as an associative processing unit. RCAM
requires no in-storage processing cores external to the storage
arrays. There is no data transfer outside the storage arrays.
Therefore, the internal bandwidth of the resistive memory
based storage can be utilized to its fullest extent, considerably
improving computation throughput of processing-in-storage
system.

The RCAM architecture, capable of general purpose
associative processing, has been applied to a variety of
challenging data and compute intensive problems, such as
various machine learning and bioinformatics algorithms. The
paper investigated SpMV, K-Means, KNN and Smith-
Waterman sequence alignment algorithms and compared
RCAM to other published analyses.

Table 2: KNN compared datasets and platforms with RCAM.

Work

Ref.
Platform

Dataset

Name Samples Attributes K

[52] FPGA
KDD-Cup

2004
20.5k 5 240

[30] GPU KDD-Cup 99 4.9M 41 1000

[35]

CPU
SIFT [40] 1M 128 16

NCAM

GPU
AlexNet [34] 1M 4096 32

NCAM

Figure 14: Speedup and power efficiency of RCAM KNN vs.
existing solutions.

Table 3: Summary of state-of-the-art performance for S-W
scoring step in previous works and in RCAM.

Accelerator Xeon Phi FPGA GPU RCAM

Performance
(TCUPS)

0.23 6.0 11.1 53

Number of ICs 4 128 384 32

Power (kW) 0.8 1.3 100.0 6.6

GCUPS/W 0.3 4.7 0.1 8.0

Reference [39] [60] [16]

8. REFERENCES
[1] Ahn, J., Hong, S. , Yoo, S., Mutlu, O., and Choi, K. , “A scalable processing-in-

memory accelerator for parallel graph processing,” Computer Architecture
(ISCA), ACM/IEEE 42nd Annual International Symposium on, , pp. 105–117
2015.

[2] Ahn, J., Yoo, S., Mutlu, O., & Choi, K. “PIM-enabled Instructions: A Low-
overhead, Locality-aware Processing-in-memory Architecture.” Computer
Architecture (ISCA) ACM/IEEE 42nd Annual International Symposium on (pp.
336-348) , 2015.

[3] Akin, B., Franchetti, F., & Hoe, J. C.. “HAMLeT architecture for parallel data
reorganization in memory”. IEEE Micro, 36(1), 14-23, 2016.

[4] Akinaga, H., and Hisashi Shima. "Resistive random access memory (RRAM)
based on metal oxides." Proceedings of the IEEE 98.12: 2237-2251, 2010.

[5] Alibart, F., T. Sherwood, D. Strukov. "Hybrid CMOS/nanodevice circuits for
high throughput pattern matching applications”, IEEE Conference on Adaptive
Hardware and Systems, 2011.

[6] Azarkhish, E., Pfister, C., Rossi, D., Loi, I. and Benini, L. “Logic-Base
Interconnect Design for Near Memory Computing in the Smart Memory
Cube”. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 25(1), 210-223, 2017.

[7] Bae, D.-H., J.-H. Kim, S.-W. Kim, H. Oh, and C. Park, “Intelligent SSD: a turbo
for big data mining,” in Proceedings of the 22nd ACM international conference
on Conference on information & knowledge management, pp. 1573–1576,
ACM, 2013.

[8] Balasubramonian, R., Chang, J., Manning, T., Moreno, J. H., Murphy, R., Nair,
R., & Swanson, S. “Near-data processing: Insights from a MICRO-46
workshop”, IEEE Micro, 34(4), 36-42, 2013.

[9] Bhimani, J., M. Leeser, and N. Mi. "Accelerating K-Means clustering with
parallel implementations and GPU computing." High Performance Extreme
Computing Conference (HPEC), 2015.

[10] Boboila, S., Kim, Y., Vazhkudai, S. S., Desnoyers, P., & Shipman, G. M. (2012,
April). Active flash: Out-of-core data analytics on flash storage. In Mass Storage
Systems and Technologies (MSST), IEEE 28th Symposium on (pp. 1-12), 2012.

[11] Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., and Xie, Y., “Prime:
A novel processing-in-memory architecture for neural network computation in
reram-based main memory,” Proceedings of the 43rd International Symposium
on Computer Architecture, pp. 27–39, IEEE Press, 2016.

[12] Cho, B. Y., W. S. Jeong, D. Oh and W. W. Ro, “Xsd: Accelerating mapreduce by
harnessing the gpu inside an ssd,” Proceedings of the 1st Workshop on Near-Data
Processing, 2013.

[13] Cho, S., Park, C., Oh, H., Kim, S., Yi, Y., and Ganger, G. R. “Active disk meets
flash: A case for intelligent ssds,” in Proceedings of the 27th international ACM
conference on International conference on supercomputing, pp. 91–102, , 2013.

[14] Coburn, J., Bunker, T., Schwarz, M., Gupta, R., & Swanson, S. From ARIES to
MARS: Transaction support for next-generation, solid-state drives.
In Proceedings of the twenty-fourth ACM symposium on operating systems
principles, pp. 197-212, 2013.

[15] Davis, T., Hu, Y., "The University of Florida sparse matrix collection," ACM
Transactions on Mathematical Software (TOMS), 38, no. 1, 2011.

[16] de Oliveira Sandes, E. F., Miranda, G., Martorell, X., Ayguade, E., Teodoro, G.,
& Melo, A. C. M. CUDAlign 4.0: Incremental Speculative Traceback for Exact
Chromosome-Wide Alignment in GPU Clusters. IEEE Transactions on Parallel
and Distributed Systems, 27(10), 2838-2850, 2016.

[17] De, A., M. Gokhale, R. Gupta, and S. Swanson, “Minerva: Accelerating data
analysis in next-generation ssds,” in Field-Programmable Custom Computing
Machines (FCCM), 2013 IEEE 21st Annual International Symposium on, pp. 9–
16, IEEE, 2013.

[18] Ding, Y. , Zhao, Y., Shen, X., Musuvathi, M., and Mytkowicz, T. “Yinyang k-
means: A drop-in replacement of the classic k-means with consistent speedup”.
In Proceedings of the 32nd International Conference on Machine Learning,
ICML,pp. 579–587, 2015.

[19] Dorrance, R., Ren, F., and Marković, D. “A scalable sparse matrix-vector
multiplication kernel for energy-efficient sparse-blas on FPGAs”. In Proceedings
of the 2014 ACM/SIGDA international symposium on Field-programmable gate
arrays, pp. 161-170, 2014.

[20] Duck-Ho, B., Jin-Hyung, K., Yong-Yeon, J., Sang-Wook, K., Hyunok, O., &
Chanik, P. Intelligent SSD: A turbo for big data mining. Proceedings of the 22nd

ACM international conference on Conference on information & knowledge
management, 2013, pp. 1573-1576, 2016.

[21] Eshraghian, K., Cho, K. R., Kavehei, O., Kang, S. K., Abbott, D., & Kang, S. M.
S.. Memristor MOS content addressable memory (MCAM): Hybrid architecture
for future high performance search engines. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 19(8), 1407-1417, 2011.

[22] Farmahini-Farahani, A., Ahn, J. H., Morrow, K., & Kim, N. S. “NDA: Near-
DRAM acceleration architecture leveraging commodity DRAM devices and
standard memory modules.” IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 283-295, 2015.

[23] Fengwei, A. N., Tetsushi Koide, and Hans Juergen Mattausch. "A K-means-
based multi-prototype high-speed learning system with FPGA-implemented
coprocessor for 1-NN searching." IEICE TRANSACTIONS on Information
and Systems 95, no. 9, pp. 2327-2338, 2015.

[24] Foster, C., “Content Addressable Parallel Processors”, Van Nostrand Reinhold
Company, NY, 1976.

[25] Gao, M., and Kozyrakis, C. (2016, March). “HRL: efficient and flexible
reconfigurable logic for near-data processing.” IEEE International Symposium
on High Performance Computer Architecture (HPCA), (pp. 126-137).

[26] Gotoh, O. "An improved algorithm for matching biological sequences." Journal

of molecular biology 162.3, pp. 705-708, 1982.

[27] Guo, Q., Guo, X., Bai, Y., and Ipek, E. A resistive TCAM accelerator for data-
intensive computing. Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 339-350, 2011.

[28] Guo, Q., Guo, X., Bai, Y., Patel, R., Ipek, E., and Friedman, E. G. “Resistive
ternary content addressable memory systems for data-intensive
computing.” IEEE Micro, vol. 35, no. 5, pp. 62-71, 2015.

[29] Guo, Q., Guo, X., Patel, R., Ipek, E., & Friedman, E. G. “AC-DIMM: associative
computing with STT-MRAM”. ACM SIGARCH Computer Architecture
News, vol. 41, no. 3, pp. 189-200, 2013.

[30] Gutiérrez, P. D., Lastra, M., Bacardit, J., Benítez, J. M., & Herrera, F. “GPU-
SME-kNN: Scalable and memory efficient kNN and lazy learning using GPUs.”
Information Sciences, 373, 165-182, 2016.

[31] Jo, Y. Y., Cho, S., Kim, S. W., & Oh, H. “Collaborative processing of data-
intensive algorithms with CPU, intelligent SSD, and GPU.” Proceedings of the
31st Annual ACM Symposium on Applied Computing, pp. 1865-1870, 2016.

[32] Jun, S. W., Liu, M., Lee, S., Hicks, J., Ankcorn, J., King, M., Xu, S, Arvind,
“BlueDBM: an appliance for big data analytics”, ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA), 2015.

[33] Kang, Y., Kee, Y. S., Miller, E. L., & Park, C. (2013, May). Enabling cost-
effective data processing with smart SSD. IEEE 29th Symposium on Mass
Storage Systems and Technologies (MSST), pp. 1-12, 2013.

[34] Krizhevsky, A., I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” Advances in Neural Information
Processing Systems 25 (F. Pereira, C. Burges, L. Bottou, and K. Weinberger,
eds.), pp. 1097–1105, Curran Associates, Inc., 2012.

[35] Lee, V. T., del Mundo, C. C., Alaghi, A., Ceze, L., Oskin, M., & Farhadi, A.
(2016). NCAM: Near-Data Processing for Nearest Neighbor Search. arXiv
preprint arXiv:1606.03742.

[36] Li, J., Montoye, R. K., Ishii, M., & Chang, L. 1 Mb 0.41 µm² 2T-2R cell
nonvolatile TCAM with two-bit encoding and clocked self-referenced sensing.
IEEE Journal of Solid-State Circuits, 49(4), 896-907, 2014.

[37] Li, Z., Jifang J., and Lingli W. "High-performance K-means Implementation
based on a Coarse-grained Map-Reduce Architecture." arXiv preprint
arXiv:1610.05601, 2016.

[38] Liu, T. Y., Yan, T. H., Scheuerlein, R., Chen, Y., Lee, J. K., Balakrishnan, G. and
Sasaki, T. A 130.7mm2 32-Gb ReRAM Memory Device in 24-nm
Technology. IEEE Journal of Solid-State Circuits, 49(1), 140-153, 2014.

[39] Liu, Y. and Schmidt, B.. SWAPHI: Smith-Waterman protein database search on
Xeon Phi coprocessors. In IEEE ASAP. pp. 184–185, 2014.

[40] Lowe, D. G. “Distinctive Image Features from Scale-Invariant Keypoints,” Int.
J. Comput. Vision, vol. 60, pp. 91–110, Nov. 2004.

[41] Matsunaga, S., Hiyama, K, Matsumoto, A, Ikeda, S, Hasegawa, H, Miura, K,
Hayakawa, J., Endoh, T., Ohno, H., and Hanyu, T. "Standby-power-free compact
ternary content-addressable memory cell chip using magnetic tunnel junction
devices." Applied Physics Express 2, no. 2, 2009.

[42] Matsunaga, S., Katsumata, A., Natsui, M., Fukami, S., Endoh, T., Ohno, H., and
Hanyu, T., "Fully Parallel 6T-2MTJ Nonvolatile TCAM with Single-Transistor-

Based Self Match-Line Discharge Control," Symposium on VLSI Circuits
Digest of Technical Papers, pp. 298-299, 2011.

[43] Mingyu, G., Ayers, G., and Kozyrakis, C. "Practical near-data processing for in-
memory analytics frameworks." International Conference on Parallel
Architecture and Compilation (PACT), 2015.

[44] Nair, R., Antao, S.F., Bertolli, C., Bose, P., Brunheroto, J.R., Chen, T., Cher, C.Y.,
Costa, C.H., Doi, J., Evangelinos, C. and Fleischer, B.M. “Active memory cube:
A processing-in-memory architecture for exascale systems. IBM Journal of
Research and Development,” 59(2/3), pp.17-1, 2015.

[45] Nickel, J., "Memristor Materials Engineering: From Flash Replacement
Towards a Universal Memory," Proceedings of the IEEE International Electron
Devices Meeting, 2011.

[46] Omitted for blind review

[47] Omitted for blind review.

[48] Omitted for blind review.

[49] Park, K., Kee, Y. S., Patel, J. M., Do, J., Park, C., & Dewitt, D. J. “Query
Processing on Smart SSDs”. IEEE Data Eng. Bull., 37(2), 19-26, 2014.

[50] Paul, S., & Bhunia, S. A scalable memory-based reconfigurable computing
framework for nanoscale crossbar. IEEE transactions on Nanotechnology, 11(3),
451-462, 2012.

[51] Potter J., and Meilander, W. “Array processor supercomputers,” Proceedings of
the IEEE, vol. 77, no. 12, pp. 1896–1914, 1989.

[52] Pu, Y., Peng, J., Huang, L., & Chen, J. (2015, May). An efficient knn algorithm
implemented on fpga based heterogeneous computing system using opencl.
IEEE 23rd Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 167-170, 2015.

[53] Ramanathan, N., Wickerson, J., Winterstein, F., & Constantinides, G. A. A case
for work-stealing on fpgas with opencl atomics. Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (pp. 48-53), 2016.

[54] Rossbach, C. J., Yuan Yu, Jon, C., Jean-Philippe M., and Dennis F. "Dandelion:
a compiler and runtime for heterogeneous systems." Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pp. 49-68. 2013.

[55] Saule, E., Kaya, K., & Çatalyürek, Ü. V. Performance evaluation of sparse matrix
multiplication kernels on intel xeon phi. In International Conference on Parallel
Processing and Applied Mathematics (pp. 559-570), 2013.

[56] Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P.,
Hu, M., Williams, R.S. and Srikumar, V., ISAAC: A convolutional neural
network accelerator with in-situ analog arithmetic in crossbars. In Proceedings of
the 43rd International Symposium on Computer Architecture (pp. 14-26)., 2016.

[57] Smith, T. F., and Waterman M. S. "Identification of common molecular

subsequences." Journal of molecular biology 147.1 pp. 195-197, 1981.

[58] Sura, Z., Jacob, A., Chen, T., Rosenburg, B., Sallenave, O., Bertolli, C., Antao,
S., Brunheroto, J., Park, Y., O'Brien, K. and Nair, R., May. Data access
optimization in a processing-in-memory system. In Proceedings of the 12th
ACM International Conference on Computing Frontiers, p. 6, 2015.

[59] Torrezan, A. C., Strachan, J. P., Medeiros-Ribeiro, G., & Williams, R. S. “Sub-
nanosecond switching of a tantalum oxide memristor.” Nanotechnology, vol. 22
no. 48, 2011.

[60] Wienbrandt., L.”The FPGA-based High-Performance Computer RIVYERA for
Applications in Bioinformatics.” Language, Life, Limits: 10th CiE, pp. 383-392.
Springer 2014.

[61] Xu, W., Zhang, T., Chen, Y., "Design of spin-torque transfer magnetoresistive
RAM and CAM/TCAM with high sensing and search speed”, IEEE
Transactions VLSI Systems, 18.1 pp. 66-74, 2010.

[62] Yang, J., Strukov, D., and Stewart, D. “Memristive devices for computing.”
Nature nanotechnology, vol. 8, no. 1, 13-24, 2013.

[63] Yavits L, Morad, A., & Ginosar, R. "The effect of communication and
synchronization on Amdahl’s law in multicore systems". Parallel Computing,
vol. 40, no. 1, pp. 1-16, 2014.

[64] Zhang, D., Jayasena, N., Lyashevsky, A., Greathouse, J. L., Xu, L., & Ignatowski,
M. TOP-PIM: Throughput-oriented programmable processing in memory.
Proceedings of the 23rd international symposium on High-performance parallel
and distributed computing, pp. 85-98, 2014.

