

Resistive Address Decoder
L. Yavits, U. Weiser, and R. Ginosar

Abstract—Hardwired dynamic NAND address decoders are widely used in random access memories to decode parts of the

address. Replacing wires by resistive elements allows storing and reprogramming the addresses and matching them to an input

address. The resistive address decoder thus becomes a content addressable memory, while the read latency and dynamic energy

remain almost identical to those of a hardwired address decoder. One application of the resistive address decoder is a fully

associative TLB with read latency and energy consumption similar to those of a one-way associative TLB. Another application is

a many-way associative cache with read latency and energy consumption similar to those of a direct mapped one. A third

application is elimination of physical addressing and using virtual addresses throughout the entire memory hierarchy by

introducing the resistive address decoder into the main memory.

Index Terms—Address Decoder, RAM, CAM, Cache, TLB, Virtual Address, Physical Address, Memristors, Resistive memory.

—————————— ——————————

1 INTRODUCTION

ontent Addressable Memory (CAM) plays an im-
portant role in computer architecture. That role could
have been even more significant had it not been for

the CAM’s major disadvantage when compared to RAM:
conventional CMOS CAM is highly, and even prohibi-
tively, power-hungry.

We propose a different approach for the rehabilitation
of CAM: a Resistive Address Decoder. Consider a typical
NAND address decoder (Fig 1), where the address of a
memory row is hardwired by connecting either address
bitline or inverse bitline to the gate of a NMOS transistor.
In a row where the address matches the hardwired pattern,
all NMOS transistors “open” and the row is selected. We
suggest adding two resistive elements, such as STT-
MRAM or memristive devices, to each NMOS transistor in
a voltage dividing manner (Fig 2), achieving a two-fold ef-
fect: the address pattern in each row becomes programma-
ble rather than hardwired, and the resistive element pair
forms a XOR gate, allowing comparison of the input ad-
dress bit to the bit “programmed” into the resistive ele-
ments. These effects enable content addressability, effec-
tively turning an address decoder into a CAM.

In this paper, we present the Resistive Address De-
coder. Since it offers read latency and energy consumption
very similar to those of a hardwired address decoder, it al-
lows creating fully-associative memory structures at the
similar price to one-way associative or direct mapped
caches.

Three Resistive Address Decoder applications are pre-
sented. A fully associative TLB can be implemented at the
same silicon area, read delay and energy consumption as a
one-way associative TLB. Likewise, a fully associative
cache can be implemented incurring the same area, read

delay and energy as a direct mapped cache. Physical ad-
dresses may be replaced by virtual addresses in various
parts of computer architecture, including memory hierar-
chies.

The rest of this paper is organized as follows. Section 2
explores the Resistive Address Decoder, Section 3 dis-
cusses its potential applications, and Section 4 offers con-
clusions.

2 RESISTIVE ADDRESS DECODER

A conventional address decoder is depicted in Fig 1(a).
Typically, address decoding is decomposed into column
selection and row decoding; we focus on the latter, being
more area- and time-critical. The row decoder consists
mostly of the NAND decoder conceptually shown in Fig
1(b). The address bits are hardwired per each word line.
The timing of dynamic NAND decoder is defined by the
signal propagation time through the series of NMOS de-
vices. Actual NAND decoder design may differ from that
concept. For example, it can be implemented by a cascade
of NAND segments of three transistors each. During ad-
dress lookup, such NAND segments are activated sequen-
tially, one after another. Such implementation might be
slower but more energy efficient, since in every step, only
segments that are selected in the previous step are acti-
vated.

While NAND decoders are typically used in non-vola-
tile memory designs [3], other types of address decoding
schemes can be implemented in other RAM designs. For
example, address decoders of high-speed on-chip SRAMs
are often implemented using random CMOS logic.

The Resistive Address Decoder employs resistive pro-
grammable devices rather than the hardwired NMOS tran-
sistors (Fig 2). The resistive elements are used to program
every address bit in every row of the decoder, as well as
form XOR gates to allow content addressable search.

Similar approach can be applied to an address decoder
implemented using CMOS logic gates.

C

————————————————

 Leonid Yavits, E-mail: yavits@tx.technion.ac.il.
 Uri Weiser, E-mail: uri.weiser@ee.technion.ac.il.
 Ran Ginosar, E-mail: ran@ee.technion.ac.il.
 Authors are with the Department of Electrical Engineering, Technion-Israel

Institute of Technology, Haifa 3200000, Israel.

mailto:yavits@tx.technion.ac.il
mailto:uri.weiser@ee.technion.ac.il
mailto:ran@ee.technion.ac.il

Fig 1. (a) Address Decoder [3]; (b) Dynamic NAND decoder.

2.1 Functionality

Resistive elements are two-terminal devices; their re-
sistance changes by changing the direction of the current
through them. That resistance is bounded by a minimum
resistance 𝑅𝑂𝑁 (low resistive state, logic ‘1’) and a maxi-
mum resistance 𝑅𝑂𝐹𝐹 (high resistive state, logic ‘0’).

While a variety of resistive elements exist, one that
seems well suited for the Address Decoder Design is a Re-
RAM element, or memristor. It has off/off ratio of 1011, en-
durance of 1012 and switching speed of 100ps [4].

The programmable Resistive Address Decoder is
shown in Fig 2. The wires of Fig 1 are replaced by two re-
sistive elements to the gate of each NMOS transistor. One
of the resistive elements should be programmed to 𝑅𝑂𝑁
while the second (complementary) element should be pro-
grammed to 𝑅𝑂𝐹𝐹. If the element connected to the bit-line
is 𝑅𝑂𝑁 (and the other one is 𝑅𝑂𝐹𝐹), the gate is controlled by
the bit-line (‘1’ at the bit-line enables the transistor). Alter-
natively, if the other element is 𝑅𝑂𝑁, the gate is controlled
by the inverse bit-line. The former case is considered as ad-
dress bit ‘1’, and the latter case is address bit ‘0’.

To program (write) the decoder, the PE (Program Ena-
ble) line is enabled, connecting all mid-points to ground.
Appropriate (positive or negative) voltage levels applied
to the bit lines (and inverse bit lines) induce programming
currents through the resistive elements and achieve paral-
lel programming of all resistive elements in a row.

Fig 2. Resistive Programmable NAND Address Decoder

Write operation of each row requires two phases. In one
phase, appropriate voltage levels are applied only to bit-
lines, and all inverse bit lines are kept disconnected, to as-
sure that only the enabled row is affected. In the second
phase, voltage levels are applied only to the inverse bit-
lines, while all bit-lines are kept disconnected. To enable
the ternary implementation, the "don't care" state can be
encoded by programming both resistive elements to 𝑅𝑂𝐹𝐹.

During read operation, only the row where all address
bits match the address pattern placed on bit- and inverse
bit-lines are enabled, and select the corresponding memory
rows. Clearly, at most one row should be programmed
with a given address. If no matching address is found, a
“no match” is signaled (generated by wired-ORing of all
address rows). Such “no match” signal can be used to gen-
erate page faults.

This read operation is functionally identical to a search
in Content Addressable Memory (CAM). In other words,
the programmable Resistive Address Decoder functions as
CAM, allowing content addressing, and in this case the
content is the address.

With the Resistive Address Decoder, memory addresses
no longer need to be consecutive, unlike hardwired ad-
dress decoders. Data can be written anywhere in the
memory array. Additionally, the size of the address space
becomes arbitrary rather than 2n.

A number of NOR based resistive CAM and ternary
CAM designs have been proposed in recent years [7][8]. In
NOR CAM, the match discharges on a mismatch. Since in
an address decoder, all rows, but one, mismatch during a
read/lookup, the energy consumption is significant. On
the contrary, in NAND Resistive CAM, introduced in pre-
sent work, the mismatching rows do not conduct current.
Consecutively, the energy consumption during read is
much lower.

A Resistive Address Decoder using memristors has
been designed and SPICE-simulated using the TEAM
model [5], obtaining timing and energy figures as follows.
Main TEAM parameters are presented in Fig 3(a).

2.2 Timing

Read timing of the Resistive Address Decoder is similar
to read timing of hardwired address decoders. A short
time is added for signal propagation through the resistive
element, as compared with propagation over wire.

Memory write is preceded by the address lookup. If the
address exists (programmed into the address decoder), the
data is written into that memory row. Otherwise, the new
address is programmed into an available empty row of the
address decoder, simultaneously with writing the data in
the same row of the memory array, to reduce the write la-
tency. For a 512-row memristive NAND address decoder,
programming delay is 2 ns [6]. This could substantially in-
crease the write latency relative to hardwired address-de-
coded memory. However, such increased write latency
could be mitigated by dividing the memory into separate
modules. If a write is followed by a read but they address
different modules, then read and write can be executed in
parallel. Another mechanism of the write latency mitiga-
tion is a write buffer. It uses a simple queuing mechanism

to write data to memory during its free cycles. If a read
comes before the data is written in memory, it is read from
the write buffer instead.

Furthermore, as shown in Section 3 below, for most po-
tential applications of the Resistive Address Decoder,
writes are quite infrequent compared to reads.

2.3 Area

The bit-cell of the Resistive Address Decoder is two re-
sistive elements and two transistors (Fig 2) whereas the bit-
cell of a hardwired NAND decoder is 1T. Memristors have
reciprocal density of less than 4𝐹2, while SRAM memory
cells are typically larger than 140𝐹2 [4]. Resistive elements
can at least partly be placed above CMOS logic. Hence, alt-
hough the programmable address decoder is somewhat
larger than the hardwired one, it may remain small enough
to fit within the pitch of the memory array.

2.4 Energy Consumption

Read dynamic energy consumption remains virtually
identical to that of a hardwired address decoder.

Write dynamic energy may also include the resistive el-
ement programming energy, which may reach 1pJ for
memristors [5]. Static power is consumed by current leak-
ing through the resistive element pair. 𝑅𝑂𝐹𝐹 spans a 104—
1011 Ω range, depending on specific resistive devices and
material [4]. Since typically only one memory module is
active at a time, the static power consumption could range
from 10nW to 100mW.

2.5 Endurance

Endurance (namely the number of times the resistive el-
ement may be programmed until it stops functioning cor-
rectly) could limit the usage of the programmable Resistive
Address Decoder. While endurance of STT-MRAM is close
to that of DRAM, the endurance of memristors is probably
limited to 1012 [4]. To mitigate such endurance, the fre-
quency of write to each memory cell must be lower.

 The probability of a write to a certain memory address
equals the probability of a memory write times the proba-
bility of specific entry to be selected (which in the case of
uniform memory utilization equals 1/number_of_entries).
Given the typical size of L2 TLB or L2/L3 cache and typical
write frequency in such devices, such probability can be
quite low: For a memory structure with the resistive ad-
dress decoder (with endurance of 1012) to perform for 10
years at 1GHz, the average frequency of write to each ad-
dress should be ~1/315,000 cycles-1, so as not to exceed 1012
writes. For a 4MB L2 cache with the line size of 64B and
4MB/64B=8192 entries (yielding the probability of a cer-
tain address entry selection of 1/8192), assuming the frac-
tion of memory access instructions is 20% and L1 miss rate
is 10% (yielding the L2 write probability of 1/200), this
condition is safely met: 1/200 ×1/8192 < 1/315000.

If a memory structure has only few entries, or few tens
of entries (for example some L1 DTLBs, or L2 DTLBs with
1G page size), contemporary memristor (with 1012 endur-
ance) is not a suitable building block. Such small memory
structures, however, are set to benefit very little from the
resistive address decoder anyway, since making them fully

associative using conventional approach (comparators) is
quite cost effective.

3 APPLICATIONS OF THE RESISTIVE ADDRESS

DECODER

In this section, we suggest three potential applications
of the Resistive Address Decoder.

3.1 Translation Lookaside Buffer

The hit ratio of TLB is important since L2 TLB miss may
result in a costly page walk. The obvious way of improving
the hit ratio is increasing the associativity of the TLB. How-
ever, associativity incurs larger silicon area, higher com-
plexity, longer access delay and higher energy consump-
tion.

We propose replacing the TLB CMOS CAM by pro-
grammable Resistive Address Decoder, which provides an
“affordable” full associativity, as follows.

Read access delay of a fully associative TLB using Resis-
tive Address Decoder is similar to that of a 1-way associa-
tive TLB, which is shorter than the access delay of 4-way
or 8-way associative CMOS TLB.

Read energy consumption of a fully associative TLB us-
ing Resistive Address Decoder is also similar to that of a 1-
way associative TLB.

Writing energy of the Resistive Address Decoder is
higher than that of the hardwired TLB due to the need to
program resistive elements. However, low write frequency
in TLBs, around 1000 or fewer writes per million instruc-
tions, is typical for many workloads [2]. In that case, the
added energy required for programming the resistive de-
vices may be negligible.

In summary, the Resistive Address Decoder converts a
1-way associative TLB into a fully associative TLB, improv-
ing hit ratio and reducing or eliminating page walks. The
read latency and energy of such fully associative TLB are
very similar to those of 1-way associative TLB. The write
energy of such TLB are higher, however since write is typ-
ically infrequent in TLBs, the impact on overall energy con-
sumption may be minor.

3.2 Cache Memory

A fully associative cache generally delivers higher hit
ratio that a direct mapped one. The Resistive Address De-
coder enables a fully associative cache with similar lookup
time and energy as a direct mapped cache that uses a hard-
wired address decoder. The silicon cost of a fully associa-
tive cache using the Resistive Address Decoder is likely to
be similar to that of a direct mapped cache, since resistive
elements can be placed above CMOS.

Caches are usually too large to be designed as a single
memory array. They are typically partitioned into a num-
ber of separate memory banks, with the higher bits of ad-
dress selecting the bank and the lower bits selecting the
memory row within the bank. Each memory bank has its
own NAND address decoder. If we make programmable
only the NAND address decoder inside the memory bank,
we create a many-way set associative cache, where each
memory row of a memory bank is a way, and each memory

bank is a set. This many-way set associative cache architec-
ture is presented in Fig 3(b). A large number of ways is
possible, e.g., 256 or 512. The hit ratio of such many-way
set associative cache is likely to be similar to that of a fully
associative cache.

Read (lookup) timing and energy are similar to those of
a direct mapped cache. The only difference is due to the
discrepancy in the number of index bits in a direct mapped
cache vs. the number of tag bits in the many-way set asso-
ciative cache, which affects the number of NMOS transis-
tors in, and hence the propagation delay of, the NAND de-
coder.

Fig 3. (a) TEAM parameters used in the Resistive Address Decoder

simulation (b) The architecture of a many-way set associative cache

Cache replacement could be somewhat costly energy-
wise, since per-cell programming energy of a resistive ele-
ment could reach 1pJ.

In summary, the Resistive Address Decoder converts a
direct mapped cache into a fully associative one. The
lookup latency and energy of such fully associative cache
are similar to those of a direct mapped cache. The write en-
ergy of such a cache is higher. However, as we move far-
ther in the cache hierarchy, the miss rate drops, and with it
drops the frequency of write. Therefore, the impact of pro-
gramming the resistive elements at each write on the over-
all energy consumption should not be critical, especially in
higher level caches.

3.3 Elimination of physical address

Virtual addressing is essential to contemporary com-
puters. Unfortunately, virtual to physical address transla-
tion takes its toll in terms of performance degradation and
excessive energy consumption. TLBs alone may consume
up to 13% of a core power [1].

Introducing the Resistive Address Decoder to the main
memory may enable the elimination of physical address-
ing altogether. In a write access, the virtual addresses, to-
gether with the corresponding process and thread IDs are
transferred to the memory along with the data and are pro-
grammed into the Resistive Address Decoder. The delay
and energy impact of programming resistive elements can
be mitigated by lower write frequency (which could be the
case if most memory accesses hit in cache and there is no
write-through).

Data is read using the virtual rather than physical ad-
dress (which no longer exists). Although functionally
equivalent to a search in content addressable memory, the

read is very similar in terms of access delay and energy
consumption to a read from a hardwired address-decoded
memory.

If an address that is not programmed in the Resistive
Address Decoder is accessed, the “no match” signal is gen-
erated, signaling a page fault to the operating system.

Managing memory footprints larger than physical
memory also becomes easier. Every newly assigned ad-
dress is simply programmed into an empty location (which
could be marked by a “busy” bit”). On page fault, one page
is evicted by the OS, the requested page is loaded in its
place, and the virtual address in the Decoder is updated.

4 CONCLUSIONS

A Resistive Address Decoder has been presented,
where the row address pattern is programmed by resistive
elements rather than hard-wired. The Resistive Address
Decoder allows comparing the input address with the pro-
grammed row pattern, effectively turning the address de-
coder into a CAM.

The read latency and energy consumption of the Resis-
tive Address Decoder are similar to those of a hardwired
decoder. Similarly, its silicon area may be only slightly
larger because resistive elements can be placed above
CMOS transistors. Thus, the Resistive Address Decoder
enables creating fully associative memory structures at the
price of direct mapped ones.

We discuss potential applications of the Resistive Ad-
dress Decoder. One such application is a fully associative
TLB at similar silicon area, read delay and energy con-
sumption as with a one-way associative TLB. Another ap-
plication is a many-way associative cache at the same price
as a direct mapped cache. Introducing the resistive de-
coder to main memory may potentially eliminate physical
addressing throughout the entire computer architecture,
including the memory hierarchies.

ACKNOWLEDGMENT

We thank Eitan Rosen and Marcelo Yuffe for their valu-
able input.

REFERENCES

[1] A. Sodani, “Race to Exascale: Opportunities and Challenges,” in MICRO
2011 Keynote

[2] A. Bhattacharjee, M. Martonosi, “Characterizing the TLB behavior of
emerging parallel workloads on chip multiprocessors”, PACT 2009.

[3] G. Campardo, R. Micheloni, and D. Novosel. “VLSI-design of non-vola-
tile memories”. Berlin: Springer, 2005.

[4] J. Yang, D. Strukov, and D. Stewart, “Memristive devices for compu-
ting”. Nature nanotechnology, 8(1), 13-24

[5] S. Kvatinsky, E. Friedman, A. Kolodny, U. Weiser, “TEAM: threshold
adaptive memristor model”, IEEE TCAS I, 60(1), 211-221.

[6] L. Yavits, S. Kvatinsky, A. Morad, & R. Ginosar, ”Resistive Associative
Processor,” IEEE Computer Architecture Letters, 14(2), 148-151.

[7] Q. Guo, X. Guo, Y. Bai, E. Ipek, “A resistive TCAM accelerator for data-
intensive computing”, MICRO 2011.

[8] Meng-Fan Chang et al. "Designs of emerging memory based non-vola-
tile TCAM for Internet-of-Things (IoT) and big-data processing: A 5T2R
universal cell”, ISCAS 2016.

