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Kin is an asynchronous processor architecture designed for future 
technologies enabling one or more billion transistors per chip and 
extremely fast processing (e.g., as predicted for 2012). This huge 
resource is exploited for aggressive avid execution, where a large 
number of instructions (hundreds per cycle) are prefetched and 
executed speculatively, in order to reduce the penalty of stalls due to 
branch mispredictions and dependencies, and to yield a very aggressive 
rate of successfully completed instructions (tens of instructions every 
cycle). Unneeded instructions are removed efficiently and non- 
preemptively, under control of apruning mechanism. A multi-ported, 
wide bandwidth decoded instruction cache, wherein each line is a 
program basic block, is employed to feed this voracious machine, and 
a multi-path prcfetch unit generates multiple cache accesses each cycle. 
Instructions are fully identified with Dynamic Instance Tags and move 
about the processor as independent entities. Kin supports multi- 
execution, where multiple paths, threads and processes are all executed 
simultaneously out of order. The processor has been designed using 
statecharts, and has been simulated running the SpecInt95 benchmark. 
We conclude that such complexity, which seems necessary for very 
high performance computing, is best achieved with an asynchronous 
architecture. 
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1. INTRODUCTION 
Microprocessor performance has risen over the past 20 years from 500 
KIF’S to 300 MIPS. The industry plans to achieve 100 BE’S by the year 
2012, through the integration of almost one billion transistors on a chip 
operating at close to 10 GHz [24, 301. This explosive growth in 
performance has been made possible thanks to the rapid development 
ofsemiconductor technology [33], and improvements in architecture. 
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Technological progress has contributed both to higher clocking 
frequencies and to growing levels of integration. As more transistors 
were integrated, more architectural features (pipeline, superscalar 
processing, out-of-order execution, caches, etc.) were introduced into 
microprocessors, contributing to their growing utility. 

This impressive growth is expected to continue in the future [24], but 
designing a synchronous, single clock microprocessor will no longer be 
feasible: The basic axioms of synchronous design are intended for 
limited equipotcntial domains (where signal propagation times over all 
wires are negligible). In future large chips it will take any signal (clock 
or data) many clock cycles to propagate from one part of the chip to 
another. While the electromagnetic field travels in vacuum at the speed 
of light (c = 30 mm / 100 pSec, in VLSI terms), the electric signals 
inside chips progress about lo-100 times slower, depending on drive 
strength and on the capacitive load of the bus. Let’s assume c/20 signal 
propagation speeds (clock and data); given a chip size of 30mm in 
2012 technology [24], typical signals will require 3 nSec to cross the 
chip end-to-end. Ifthe chip is clocked at 2 GHz, about 5-7 clock cycles 
may be required for signal propagation alone. As a result, it will no 
longer be feasible to separate the logical and physical design of the 
pipelines, as is done today; rather, today’s wire buses will be 
transformed into explicit pipeline stages, whose only task is to move 
data around, and the number of stages per bus will depend strongly on 
where the various modules are placed on the VLSI chip. To make the 
situation even worse, the signal may arrive at the various receivers on 
multi-drop buses at different cycles. Other effects of technological 
progress on processor speed relate to clock distribution. Several cycles 
may be required to propagate a single clock transition over the entire 
chip, compared to less than a cycle today. A worse aspect of this is that 
many transitions will be present simultaneously on the clock 
distribution wires. While this wavefront superpipelining is not 
impossible, it is highly undesirable. Optical clock distribution 
employing pulse lasers and optical detectors/amplifiers distributed over 
the chip may provide a solution. Clock jitter and skew are also expected 
to present great difficulties. Skew is the result of in-die variations in 
physical parameters and jitter is caused by temporal variations in 
temperature and voltage and by crosstalk. Both types of variations may 
hamper correct operation and typically they are contained at the 
expense ofpower dissipation. Thus, the power dissipated for clock and 
data distribution alone in complex VLSI chips increases faster than the 
increase in clock frequency and integration levels [lo, 11,281. In one 
reported case [I] over 40% of the power budget in an Alpha chip is 
dissipated by the clock distribution network in order to limit clock skew 
and jitter. This ratio is expected to grow even higher, when processors 
are predicted to dissipate more than IOOW [24]. 

‘Kin was the God of Time of the Maya. 
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Figure 1: Kin asynchronous processor architecture. 

In simple electrical engineering terms, the processors of the future will 
transcend from lumped systems into distributed ones. Modem 
processors have introduced some elements of distributed computing, 
such as decoupling modules with FIFO buffers and executing out-of- 
order. This trend is expected to continue towards more distribution of 
the various processor components. We have found that asynchronous 
architectures are a natural fit for such distributed systems. 

This paper explains how an asynchronous processor architecture is 
most suitable for meeting the technological and architectural 
constraints offirture technology, such as forecast for the year 2012 and 
beyond, when CMOS feature size is around O.O7u, close to one billion 
transistors are integrated on a single chip, and the clock (if used) 
operates at close to 10 GHz. The paper describes a processor 
architecture for the asynchronous future, including a novel aggressive 

speculative execution method (necessary for high speed and suitable for 
asynchronous processors). 

A large number of asynchronous processors have been previously 
designed [20,7,22,2,23,4,21,27,5,31,6,19]. Most of them have 
rather simple and straightforward architectures. None of them supports 
out-of-order execution, nor considers performance enhancement by an 
advanced branch prediction. All are targeted at current technology, and 
are not scalable to take advantage of the growing amount of resources 
promised by future technology. 

Kin architecture comprises multiple fast self-timed units, 
interconnected over asynchronous channels, using handshake 
communication protocols. The asynchronous microarchitecture is 
described at a high level and allows flexible and robust implementation. 
Although Kin is designed as an asynchronous machine at the top level, 

its individual modules may be implemented according to various timing 
disciplines (synchronous, asynchronous, or anything in between). 

The novel architecture of Kin is described in Section 2. Avid execution 
is presented in Section 3, and Section 4 explains instruction pruning. 
Multi-execution is discussed in Section 5. Modeling Kin and its 
performance simulation (using the SpecInt95 benchmark) are described 
in Section 6. In Section 7 we argue that the complexity of Kin, as well 

as the technological constraints, call for an asynchronous architecture. 

2. KIN ARCHITECTURE 
2.1 General Description 
Kin is a general purpose high performance microprocessor that 
supports out-of-order and deep speculative (Avid) execution. It exploits 
massive parallelism and redundancy in order to execute hundreds or 
thousands of instructions simultaneously. The instruction set combines 
both RISC and CISC instructions; each one is decomposed by the 
decoder into (one or several) internal simple micro-operations (uOps). 

Kin comprises a distributed network of asynchronously interconnected 
modules, without any central control. Each module operates at its own 
speed, and communicates with other modules over asynchronous 
channels. FIFO buffers over those channels decouple the processor. On 
average all modules are balanced, but asynchronous interconnects 
permit flexible work loads. 

While in contemporary (synchronous) processors the collective 

knowledge about an executed instruction is distributed among the 
pipeline stages, the controller, the buses and the registers, this location- 
dependent distribution ofdata and control information is unmanageable 
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in large distributed systems like Kin. Rather, instructions flow through 
the system as self-sustained packets carrying their own identity tags and 
all needed information. They may leave some traces around such as 
instruction entries in the reorder buffer, but these eventually reunite 
with the instructions. Each module receives instruction packets, 
executes them at its own local rate, and forwards them to their next 
stops. This model resembles the dataflow architectural concept. 

The Kin architecture is described in Fig. I. It combines many known 
features, like multiple execution units, out-of-order execution, and 
register renaming, and some novel ones (Avid Execution, Dynamic 
Instance Tagging, unified Multi-Execution, and Pruning). Multiple 
instructions are executed concurrently and out-of-order over multiple 
execution units. To preserve the serial nature of the code, instructions 
are committed (completed) in their original serial order, typically many 
of them at each time. Deep speculative execution is employed to avoid 
processor stalls; branches are predicted and code is prefetched from the 
more likely paths of the program. 

2.2 Kin Architecture and Operation 
Once fetched, instructions are decoded and stored in the Decoded 
Instruction Cache (DIG, Fig. I) where each cache line includes a single 
basic block (a sequence of instructions ending with a branch). The 
Prefetch Unit (PU) fetches multiple basic blocks from the DIC 
simultaneously, and tags each instruction with a unique Dynamic 
Instruction Tag @T, Fig. 2). The registers are renamed in the Register 
Renaming Unit (RRU), and the instructions are recorded in the 
ReOrder Unit (ROU), after which they are executed in the out-of-order 
zone. They enter one of the Reservation Stations (RSs) to wait for their 
operands, are processed in one of the Branch, Execute, or Load/Store 
Units (BU, EU, LSU), send results back to the RSs and return to the 
ROU for in-order commitment. Most instructions, however, never 
complete this cycle. Rather, they arepruned and discarded. 

In.&uction I Dynamic Instance Tag (DIT) 

opcode operands root I paa I context I PC 

Figure 2: Dynamic Instance Tag structure. 

Avid execution is fully explained in Sect. 3, but for clarity of the 
exposition it is described here in brief. The commonly used single path 
speculative execution employs branch prediction to decide which path 
to take following each branch; occasionally the prediction fails, the 
processor is halted and flushed, and execution resumes along the 
correct path. In contrast, Avid execufion also fetches and speculatively 
executes instructions along the non-predicted paths, so as to minimize 
the adverse effect of misprediction. Instructions which are found 
useless are pruned and discarded without preempting the processor. 

The Prefetch Unit (PU) executes the branch prediction and Avid 
algorithms, and issues access requests to the DIC. It also generates 
pathmarks, which fully identify the path for each instruction (Sect. 3). 
The pathmark is attached to each instruction as it is fetched from the 
DIC, as part of a unique Dynamic Instance Tag @IT, Fig. 2). The 
same basic block of code (or part thereat) may be fetched 
simultaneously multiple times. Consider a simple loop which ends with 
a conditional branch. Each time we reach that branch, we should most 
likely prefetch the same loop again. Each time, the loop is prefetched 
(and tagged) as a new instance, and must be treated separately by the 
rest of the machine (e.g., proper register renaming), regardless of the 

fact that it is the same original code. The instruction cache is 
multiported to provide simultaneous fetching of multiple cache lines, 
including multiple separate fetches of the same line. Access 
optimization techniques are employed to replace brute force multiple 
reads of the same line by a single access and intelligent duplication, but 
this is transparent to the PU. 

The PU, like other units in Fig. 1, is drawn as a triangle since it handles 
complex execution trees rather than just linear paths. Multiple triangles 
are drawn to symbolize multiple contexts (Sect. 5). 

The Register Renaming Unit (RRU) maintains the renaming tables 
for the many possible execution paths avidly prefetched, to enable 
speculative out of order execution. The renaming process replaces 
architectural register names by virtual ones, to filter out false 
dependencies. The condition codes are treated as one of the registers 
and are renamed accordingly. A new physical entry in the Reorder 
Buffer (ROB) is allocated for each pop destination (architectural) 
register. This entry number serves as the virtual name of the destination 
register. The uOp source registers are renamed according to the last 
name allocated to them on the same path, or their ancestor’s path in the 
same execution tree. 

The Reorder Unit (ROU) manages out-of-order execution in Kin, 
and enforces in-order committing of instructions, whereby results are 
written back into architectural (real) registers and into memory. A 
Reorder Buffer (ROB) is used in the ROU to keep track of the 
instructions from the many possible avid execution paths. The ROU 
maintains binary tree of paths rather than just a linear sequence of 
instructions. It also maintains the architectural registers, and employs 
them whenever possible to provide operands to fresh pops. After 
commit, ROB instruction entries and RRU allocations are released. 

Instructions wait in the several Reservation Stations (RSs) for their 
operands. Operand values may arrive from the various execution units 
or from memory. Once ready, instructions are routed by a scheduler to 
one of several Execution Units (EUs). Execution results are 
distributed to the ROB for committing, and to all RSs, wherein other 
instructions might be waiting for them. 

The Load/Store Unit (LSU) handles memory access and bypass. It 
takes advantage ofthe locality of references of data access. While being 
similar to a data cache, it is designed as an independent smart 
associative table that tracks load and store operations. Ordering is 
enforced only when true dependencies are encountered, to guarantee 
correctness: For instance, Store(X) instructions can bypass Load 
instructions, but the LSU keeps a record of the previous value ofX 
until Store(X) commits, in case it is needed by an earlier Load(4. 
Similarly, Load instructions can bypass Store instructions, except for 
Store to the same address, in which case the argument is forwarded 
from the Store instruction. Thus, the LSU can return values even 
before they are physically written to memory or data cache. Giving 
higher priority to Loads over Stores can increase the issue rate of 
instructions, because Loads generate operands for successive 
instructions, while Stores can wait without stalling any other 
instructions. Loads can be executed speculatively without affecting 
correct operation. However, Stores can only be done at commit, at 
which time it is known that the Store is on the actual true path of the 
program. 

The Branch Unit (BU) resolves branch instructions and returns the 
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results to the ROU, the Prune Management Unit (PMU) and the PU. 
Upon receiving branch results, the PU updates the prediction algorithm 
and prefetches new instructions. 

The Pruning Management Unit (PMU) generates and distributes 
prune and behead messages, to be described in Sect. 4 below. 

3. AVID EXECUTION 
Performance of present processors is limited by a number of factors, 
including true and false dependencies, limits to inherent instruction 
level parallelism in serial code, and pipeline stalls due to misprediction 
of branches. To achieve high performance, processors must run faster 
but also execute and successfully complete many instructions in 
parallel. Although many parallel execution units may be made 
available, data and control dependencies limit the instruction level 
parallelism. To exploit instruction-level parallelism in full, the processor 
must search over a large window for instructions that can be executed. 
That window typically extends beyond multiple branches, since on 
average every fifth instruction is a branch. This can be done by using 
various branch lookahead strategies. Most of them are based on certain 
branch prediction algorithms, and on speculatively executing 
instructions beyond the predicted branches. This paper is not concerned 
with the branch prediction algorithm itself, but rather with the question 
of how it is used and which instructions are speculatively executed. 

As explained in Sect. 1, the advent of technology is expected to permit 
the integration of huge resources on single chip processors. We propose 
to apply those resources, within an asynchronous architecture, to a 
dynamically adjustable, speculative Avid Execution in order to reduce 
the misprediction penalty. The principles will become clear after we 
survey briefly the existing approaches. 

Traditionally (before speculative execution), conditional branch 
instructions stalled the processor pipeline, since it was unclear which 
instruction to fetch until the branch was executed. Early RISC 
processors employed delayed branches to avoid the stall, with limited 
improvements. Next, branch prediction has been invented, whereby 
each branch is predicted as either taken or not-taken, based on its past 
history [3,9, 16,321. Instructions are fetched (speculatively) from the 
predicted branch target (Single Path Speculative Execution), before 
the actual branch has executed. If the prediction is correct, processing 
continues normally. On a misprediction, however, the pipeline is 
flushed and the correct path is fetched. Msprediction Penalty is the 
time required for the pipeline to fill up after a flush, until instructions 
start to commit again. This time depends linearly on the pipeline depth, 
measured in the number of stages between the fetch and branch 
resolution stages, 

Out-of-order (000) execution allows the execution of later instructions 
if they are independent of former ones. Although not directly related to 
speculative execution, the latter helps increase the availability of 
instructions for 000 execution. On the down side, if all instructions are 
executed at a higher rate, so do branch instructions, and consequently 
the misprediction rate is also increased. This adverse effect is 
compounded by another setback: The deeper the processor and the 
higher the parallelism, the higher the misprediction penalty. Note that 
in order to analyze processor performance, both measures 
(misprediction rate and penalty) must be observed. 

Current branch prediction algorithms arep=85-95% accurate [9]. For 
p=90%, every tenth branch is mispredicted. Since the average basic 
block length is tive instructions, misprediction can be expected every 
50 instructions. Single path speculative execution is highly sensitive to 
the quality of branch prediction and to pipeline depth. An execution 
tree of depth n contains n edges for single path speculative execution, 
so the cost is linear in the overall depth of prediction. However, the 
probability ofcorrect prefetch over n levels falls off exponentially asp”. 

In Eager Execution all paths are prefetched and (speculatively) 
executed. When a branch is encountered, execution proceeds down 
both paths of the branch. Multiple resources are required to support the 
parallel prefetch and execution of multiple paths. Once a branch is 
executed, its ‘losing’ sub-tree may be aborted and disposed of, and the 
corresponding resources can be released. The principal benefit of eager 
execution is that misprediction stalls may be eliminated. However, 
eager execution is exponentially wasteful: Of the T-l edges of a n- 
level execution tree, only n edges are on the true path and eventually 
commit, while the remaining 2-l-n edges should be discarded. If we 
consider an execution tree of depth n=S, then only about 25 
instructions out of 155 will be committed, and this ratio grows 
exponentially. Due to the enormous amount of resources required to 
implement eager execution, and the relative high accuracy of prediction 
algorithms available, eager execution is impractical and has not been 
implemented in any real processor. 

Multiple Path Exploration [ 17, 181 is an attempt to implement eager 
execution with a limited tree depth. Disjoint Eager Execution [29] is 
another attempt to combine the benefits of eager execution and single 
path speculative execution methods. However, for high prediction 
accuracies it practically converges into single path speculative 
execution. 

AvidEwecution combines the benefits of both single path speculative 
and eager execution methods, such that the frequency of 
mispredictions is kept very low, while the exponential cost of eager 
execution is replaced by an approximately linear cost. Avid execution 
is basically an eager execution with limited eagerness, based on branch 
prediction. As in single path speculative execution, the predicted path 
is prefetched and executed. In addition, for each branch encountered 
and predicted, certain parts ofa k levels deep subtree which is predicted 
as not-taken are also fetched into the processor, and are speculatively 
executed. 

The number k of prefetched levels in the non-predicted subtree is 
adjustable. Figure 3 shows two examples of Avid execution depths, for 
k=2 and k-5. The main predicted path is marked by solid arrows, while 
the extra (avid) paths are drawn as dashed arrows. Note that if k-0, 
Avid execution is reduced to single path speculative execution. For k= 1, 
about 50% of all instructions fetched will be pruned, since for every 
predicted basic block another basic block from the non-predicted path 
is also fetched. The price of exponential demand for resources in eager 
execution is avoided and is replaced by an approximately linear one: 
For Avid execution of depth k, the number of edges in an n levels deep 
execution tree is O(kn). Avid execution can produce instructions at a 
sufficient rate to reduce or even eliminate all stalls on misprediction, as 
analyzed in [ 151. The unneeded instructions are pruned 
asynchronously, without preempting continuous operation of the 
processor, as described in Sect. 2 above. 
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k-2 k=m (m=5) 

Figure 3: Examples ofAvid Execution depth (k). m is the number of processor pipeline stages between prefetch (PF) and branch resolution 
(EiI) stages. 

Selecting the Avid depth can be done either statically (e.g., all 
conditional branches have the same alternative path depth), or 
dynamically. Dynamic adjusting of Avid depth can be done per each 
branch instruction, and can be based on statistics collected at run time. 
If confidence is applied to prediction [ 12,261, the Avid depth can be 
adapted accordingly. When the prediction confidence level is low, a 
deeper Avid depth should be used, and for high confidence prediction 
a small Avid depth (or non at all) might be better. Obviously, k=O for 
unconditional branches. 

Observe that the first edge of each alternative path described in Fig. 3, 
originating from each branch instruction (a tree vertex), is the branch 
direction predicted as not being followed. The following edges of the 
alternative paths are selected by branch prediction. Other options are 
discussed in [15]. As more alternative paths are fetched by Avid 
execution, more resources are required. Our simulations verify that the 
single path alternatives is quite adequate when prediction accuracies are 
very high. Spanning more alternative paths results in diminishing 
returns. 

0 1 2 3 4 5 

k - Avid depth 

Figure 4: Average performance improvement achieved by various 
Avid depths (k), for m=5,p=0.95, and high bandwidth (execution 
limited by ILP). 

Consider the following example of performance improvement 
achievable by Avid execution. The pipeline depth (measured in the 

number of stages, each stage handling a basic block, that tit between 
instruction fetch and the branch unit) is m=5, the accuracy of branch 
prediction isp=O.95, and sufficient hardware resources are available to 
execute all fetched execution paths, so that execution is limited only by 
ILP and mispredictions. Analytical studies [ 151 show that performance 
can be improved by as much as 50% under these conditions, as can be 
seen in Fig. 4. 

4. INSTRUCTION PRUNING 
Avid execution prefetches and executes both directions of each branch. 
Eventually, one ofthe two commits and the other must be pruned. As 
explained in Sect. 2, Kin performs the pruning clean-up tasks on the 
fly, without preempting execution, without stalling the processor, and 
without flushing the pipes. The pruning algorithm employspathnuzrks 
to identify the doomed instructions. 
Pathmarks am part of the DIT (Fig. 2) and distinguish alternative paths. 
Each edge of the execution tree is assigned a unique pathmark, based 
on prefix notation of binary trees. If an edge (a basic block, terminated 
by a branch instruction) is marked by m, then the sequentially 
following edge and the branch target edge are marked mO and ml, 
respectively (Fig. 5). The root is marked by the empty string. An 
instruction’s pathmark is generated by accumulating these bits as a 
road map to follow from the root until the edge the instruction is on. 
Note that the marks of all edges in the (dashed) subtree of node n are 
prefixed by n. Pathmarks are generated dynamically during program 
execution and are affixed to each instruction at prefetch by the PU 
(Sect. 2). 

Pruning removes entire subtrees per each resolved branch. Since the 
pathmarks of all the instruction of the subtree share the same prefix, a 
single pruneO message suffices for the job. If a branch m was taken 
(not taken), the prune(m0) message @rune(ml), respectively) is 
broadcast to the entire processor. Out-of-order pruning is possible and 
permitted. For instance, a branch with pathmark mOk may execute 
before branch m; the prune(mOkl) message may precede the 
prune(mO) message; the latter will override the former. Pruning 
messages are generated and distributed by the PW (Fig. 1). 
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Figure 5: Pathmarks based on prefix notation 

The pathmark length grows very fast, as one more bit is attached on 
every branch. On the other hand, much of the information of the 
pathmark becomes irrelevant when processing progresses down the 
tree. Consider a mark m, L-bits long. Once a branch instruction marked 
m commits, the pathmarks of all useful subsequent instructions in the 
processor will be prefixed by m. Since the m prefix is now redundant, 
it is beheaded. A distributed beheading algorithm is employed to 
contain pathmarks growth. 

To behead prefixes, a root markR is added to the DIT (Fig. 2). Once 
every L committed branches, a behead&m) message (R=path root, 
m=path prefix of L bits) is generated and distributed by the PMU. 
Following the receipt of such a message, each unit modifies each 
instruction it encounters as follows: If the instruction’s DIT contains 
root mark R and pathmark prefix M, then the root mark is updated to 
R+I and the pathmark is left-shifled by L bits. In effect, linear 
pathmark growth is thus replaced by logarithmic growth of the root 
mark. 

FIFOs can be used for storing prune and behead messages. New 
messages push older ones out, so that old and redundant messages are 
automatically discarded. Other issues regarding prune and behead 
messages, such as races, overflow, and resource allocation, are treated 
in [15]. 

5. MULTI-EXECUTION ON KIN 
The mechanisms built into Kin to support concurrent superscalar 
execution of multiple paths (such as the DIT and ooo) are also directly 
applicable to concurrent execution of multiple threads and multiple 
processes. All four paradigms are unified under a single multi- 
execution model. 

The DIT fully identifies, for each instruction, to which path, thread, 
and process it belongs. The various units of the ooo zone treat all 
instructions equally, regardless of their context. The only exception is 
the RS, which matches instructions to operands based on the DIT. The 
units outside the ooo zone, on the other hand, must treat each context 
separately. Consequently, Kin contains multiple copies of the PU, 
RRU, and the ROU (the DIC may or may not be divided by context). 
Each copy is dedicated to one context (thread and process), and the 

several contexts intermingle only upon entering the ooo zone. Each 
unit does handle all paths of the same context (execution tree), and 
hence they are drawn as triangles in Fig. 1. They employ associative 
memories to efficiently handle many instructions in parallel. 

6. KIN MODEL AND PERFORMANCE 
SIMULATIONS 
We have developed a software model of Kin and Avid execution, and 
simulated that model executing the SpecInt95 benchmark. A standard 
branch prediction algorithm [32] was implemented. Various prediction 
accuracies were obtained by changing the size of the branch target 
buffer (implemented as a l-way set associative). The pathmarks were 
limited to 32 bits, and 16 bits were allocated for the root mark (of 
which at most 5 were used during the simulations). Beheading was 
issued every two branch commits. 

The Kin model was specified at the high level using statecharts [8]. 
The internals of each module were specified as functions in C. At the 
higher level, statecharts control the Kin model and activate the C 
functions as needed. This formal and operational specification of Kin 
has enabled us to execute event driven simulations, which are suitable 
for asynchronous design. Modules react to messages arriving at their 
inputs, process the data and generate proper outputs. Handshake 
protocols and mutual exclusions are controlled and executed by 
statecharts. The interface between the statechart model and the C 
functions is based on handshaking protocols and regards the programs 
as self-timed modules. Each program may be assigned a (variable) 
delay at real-time [14]. 

Kin’s model has a (partly) synthesizable specification: The parts 
defined by statecharts can be synthesized automatically into VHDL 
programs, and may be converted to asynchronous implementation 
afterwards [13,14]. 

We have made extensive use of Kin’s model for debugging and 
performance evaluations of the architecture, and specitically for 
simulating the avid execution concept with various depths. Animation 
of the model helped us identify deadlocks, races and bottlenecks in 
earlier versions of the architecture. We used SpecInt95 traces for the 
simulations, and gathered information on average and worst case FIFO 
and table sizes, committing and pruning rates, and program execution 
times. 

Avid execution was simulated for three possible (fixed) Avid depths: 
k=O, 1, and 2. The processor hardware width (the number of 
instructions that can be handled concurrently in each processor unit) 
was simulated at 20,40 and 80 instructions. Avid execution spanning 
an ‘eager’ subtree for k=2 was also simulated, and demonstrated 
diminishing returns, as expected. The results were at best the same as 
those obtained by Avid execution spanning a ‘single path’ for k-2, and 
some times even worse, due to high prediction accuracies and 
contention for resources. Some of the results [ 15,251 are shown in 
Fig. 6. 

It can be seen in Fig. 6 that R improves with k, although the 
improvement diminishes at very high values of p. Note that R is limited 
in these simulations by the limited ILP inherent in the SpecInt95 
benchmark. All simulated results agree with our analytical analysis. A 
first glance at Fig. 6 reveals that, over all benchmarks, the incremental 
improvement of k-1 over k=O is more significant than the additional 
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Fire 6: SpecInt95 simulation results (for ~~40). The graphs describe the average execution rate (R) as a function of prediction accuracy @), with 
Avid execution depth (k) as the parameter. 

incremental improvement provided by k-2. The simulation of Go 
program (Fig. 6(a)), k==2 shows better performance than either k-1, or 
k=O, up top=85%. Simulation of Ijpeg (Fig. 6(b)) resulted in highest 
performance for k==2 up top=77%, then k=l gives better performance 
up to p=97%. They are always better than k=O. Although we could 
expect Avid execution to be more beneficial for programs having lower 
prediction accuracy, it did prove useful even for Ijpeg, which shows the 
highest prediction accuracy in that benchmark. A similar behavior was 
seen for the Li program (Fig. 6(c)), where k=2 performs better than 
k-1, up top=92%. Atp=93% they switch, but are still both better than 
k-4. Vortex (Fig. 6(d)) always resulted in best performance for k=2 (up 
top=95%), while even k=l was better than k=O. 

7. WHY ASYNCHRONOUS KIN ? 
The lessons of our study provide two principal reasons why Kin should 
be an asynchronous processor, one regarding the architecture and the 
other concerning technology constraints. 

On the architectural side, Kin is a very complex and distributed 
processor, where the different parts perform very different tasks and 
their workloads vary significantly from one moment to another. Kin 
behaves more like a network than a well synchronized machine. Thus, 
although the individual modules may be implemented as synchronous 
circuits, at the high level the modules should be decoupled. As long as 
they are decoupled, they should be treated as components in an 
asynchronous system. 

Avid execution is based on the premise that different components can 
efficiently process varying workloads. The dynamic instruction fetch 
process produces varying numbers of instructions each cycle. IJnlike 
conventional ROUs, Kin’s must handle sparse lists of committing 
instructions, since the many instructions that are pruned leave ‘holes’ 

in the ROB. Self-timed modules tend to vary their speed depending on 
the data, and this flexibility must be accommodated for by other 
modules. Prune and behead algorithms are inherently distributed and 
operate with large variances, and do not need to be synchronized with 
normal processing. Variations are the results of varying program 
conditions such as changing branch prediction accuracies and 
switching contexts. A distributed asynchronous processor is clearly 
simpler to design and operate under such conditions. 

On the technological side, Kin architecture is designed with very large 
chips in mind. The large size and the very high speed dictate that, if we 
were to employ a global clock, its wavelength would have been a 
fraction of the chip size. This is analogous to the operating conditions 
of any distributed computer network, Kin simply applies at the chip 
level the same solutions that are used for computer networks. This 
aspect has been further elaborated in the introduction. 

8. CONCLUSION 
We have described a very aggressive computer architecture and have 
explained that it should be designed as an asynchronous processor. The 
architecture is planned for future technologies enabling one billion 
transistors per chip and, if a clock were used, up to 10 GHz clocks (as 
projected by the SIA for the year 2012). A novel method of speculative 
Avid execution was introduced, which exploits massive parallelism to 
speed processing and bypass control and data dependencies. 
Asynchronous processing has led to smooth and efficient disposal of 
redundant computations (through pruning). Instructions are 
dynamically tagged and traverse the processor as independent entities 
in a data flow manner, leading to unification of several multi-context 
methods. High performance requirements were described for cache 
memory to support such architectures. A software model was 
constructed, and used for performance evaluation using the SpecInt95 
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benchmark. 
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