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Outline

• Many core architectures

• Mathematical model

• Open questions 
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define many-cores

• Many-core is:
• a single chip

• with many (how many?) cores and on-chip memory

• running one (parallel) program at a time, solving one problem

• an accelerator

• Many-core is NOT:
• Not a “normal” multi-core

• Not running an OS

• Contending many-core architectures
• Shared memory (the Plural architecture, XMT)

• Tiled (Tilera, Godson-T)

• Clustered (Rigel)

• GPU (Nvidia)

• SIMD

• Associative Processor

• Contending programming models
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Five many-core architectures
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EXAMPLE

64 cores

64 L1 caches

16kB   x64

= 1 MB

Core-to-mem

network

shared mem

many banks

1 MB   x256

= 256 MB

Shared Memory Manycore
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Tiled Manycore
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EXAMPLE 

64 tiles

64 L1 caches

16kB   x64

= 1 MB

4 MB L2 x64

= 256 MB

mesh NOCs

Directory:

All L2s = L3

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

I/O

I/O

I/
O

I/
O



GPU
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EXAMPLE
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EXAMPLE 

256 cores

memory banks

1 MB   x256

= 256 MB

SIMD
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EXAMPLE 

128 MB

(each bit twice

larger than

SRAM)

Associative Processor

I/O

I/O

I/
O

I/
OCombined memory & processing

Each bit also computes

control



3D
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Add 3D logic & 3D memory

• The HMC industry already makes the first step

• 100,000 TSV vertical interconnects



Store & Compute

• 1 Tbyte / chip in 2020
– Combined DRAM + NVM

• Many many-cores
• NoC & 3D NoC
• Must be low power & 

cold:  0.1W

• THIS WILL CHANGE
MANY-CORE 
ARCHITECTURE



• 1000 cubes

• 100 W

• Less than 1 MW

Many cubes in a rack

Many racks in a 
supercomputer



Modeling Many-core Architectures
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A first many-core research question

• Given fixed area, into how many processor 

cores should we divide it?

• Other good questions (not dealt here):

• Given fixed power, how many cores? which cores?

• Given fixed energy, how many cores? which cores?

• Given target performance, how many? Which?

• Analysis can be based on Pollack’s rule
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The history at the basis of Pollack’s analysis
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Technology

generations

P1

P2

P3

P4

P5

G1 G2 G3 G4 G5

Shrink, scaling

New architecture,

same process

Q: On red arrows, how 

much more performance 

for how much more 

area?



Pollack’s rule for processors: 

Area or Power vs. Performance
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• Pollack (& Borkar & Ronen, Micro 1999) 

observed many years of (intel) architecture

• In each Intel technology node, they compared:

• Old  μArch (shrink from previous node)

• New μArch (faster clock and/or higher IPC)

• They noted:

• New μArch used 2-3X larger area

• New μArch achieved 1.5-1.7X higher performance

• Resulting from both higher frequency and higher IPC

• They did not consider power increase

• Who thought about power in 1999?

• Observation: Performance ~ 𝑎𝑟𝑒𝑎



Performance = IPC × Frequency

• Experience shows: for higher performance, 

both IPC and frequency must be increased
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The many-core fixed-total-area model

• Assume fixed chip area (typically 300-500 mm2)

• Split chip area A = Acores + Amem

• Split (memory size) affects on-chip hit rate

• Amem may be further split into AL1+AL2

• Divide Acores into m cores. How many ?

• Area of each core:   𝑎 =
𝐴𝑐𝑜𝑟𝑒𝑠

𝑚
.     Thus,  m ~  1 𝑎

• [Pollack’s]: core area determines core performance. Select 
IPC and frequency f   so that:
• Performance (core) = IPC × 𝑓 ~ 𝑎.   Thus,  a ~ 𝐼𝑃𝐶2𝑓2 , m ~  1 𝐼𝑃𝐶2𝑓2

• Power (core) ~ a × 𝑓 ~ 𝐼𝑃𝐶2𝑓3

• Assume perfect parallelism (at least as upper bound)

• Performance (m cores) = IPC × 𝑓 ×𝑚 ~ 
𝐼𝑃𝐶∙𝑓

𝐼𝑃𝐶2𝑓2
=

1

𝐼𝑃𝐶∙𝑓
~ 

𝐼𝑃𝐶∙𝑚

𝐼𝑃𝐶 𝑚
= 𝑚

• Power (m cores) = a × 𝑓 ×𝑚 ~ 
𝐼𝑃𝐶2𝑓3

𝐼𝑃𝐶2𝑓2
= f ~  

1

𝐼𝑃𝐶 𝑚
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Summary: Performance~
1

𝑓
~ 𝑚,      Power~

1

𝑚
~𝑓,       m ~ 

1

𝑓2



Performance (core) = IPC × 𝑓
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a ~ 𝐼𝑃𝐶2𝑓2
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For each IPC curve, a ~ 𝑓2



m ~ 
1

𝐼𝑃𝐶2𝑓2
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For each IPC curve,    m ~ 
1

𝑓2



Performance~
1

𝑓
~ 𝑚
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Power~𝑓~
1

𝑚
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𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑃𝑜𝑤𝑒𝑟
~

 1 𝑓

𝑓
=

1

𝑓2
~

𝑚

 1 𝑚
= 𝑚

Analysis of the results so far:

• Slower frequency and lower IPC  higher performance, lower power

• Thanks to Pollack’s square rule

But this changes when we also consider memory power…



Now add memory

• So far, only computing power

• Including power to access local cache/memory in each 

core

• But we also need to access not-so-local shared 

memory

• Access rate to memory: once every rm instructions

• E.g. about every 20 instructions

• Assume using only on-chip memory

• Need to add memory access power to the 

computing power

• Relative energy: assume access is 10x higher than exec.
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Does the model apply to different architectures?
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Shared memory versus Tiled architectures
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Architecture Shared memory Tiled

Local memory L1 in each core L1 & L2 in each core

Global (on-chip) memory Shared memory L2 of other cores

Core-to-global-memory

network

Dedicated cores-to-

memories, e.g. MIN

Indirect via other 

cores/routers, e.g. mesh

Access rates

(strongly depends on 

app; Examples:)

1/20 to L1

1/1,000 to shared mem

1/20 to L1

1/1,000 to L2 

1/50,000 to others

Access time (cycles) 2 to L1

10 to shared memory

2 to L1

10 to L2

100 to others

Access energy 

(relative to one register 

instruction)

2x to L1

20x to shared mem

2x to L1

5x to L2

100x to others



Shared memory & Tiled architectures versus others
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Architecture Shared memory Tiled GPU SIMD AP

Local memory L1 in each core L1 & L2 in each core

Global (on-chip)

memory

Shared memory L2 of other cores

Core-to-global-

memory network

Dedicated cores-to-

memories, e.g. MIN

Indirect via other 

cores/routers, e.g. 

mesh

Access rates

(strongly depends 

on app; 

Examples:)

1/20 to L1

1/1,000 to shared mem

1/20 to L1

1/1,000 to L2 

1/50,000 to others

Access time 

(cycles)

2 to L1

10 to shared memory

2 to L1

10 to L2

100 to others

Access energy 

(relative to one 

register instruction)

2x to L1

20x to shared mem

2x to L1

5x to L2

100x to others



Summary of the model

• Considering only cores, fixed-total-area model 

implies: for highest performance and lowest 

power, use

• smallest / weakest cores (lowest IPC)

• lowest frequency

• Adding on-chip access to memory leads to a 

different conclusion: for lowest power and 

highest performance/power ratio, use

• Strongest cores (high IPC)

• But stay with lowest frequency

• Lower frequency  lower access rate to global memory

• How does this apply to other architectures?
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