
Mathematical modeling of many-cores

Ran Ginosar

Technion, Israel

September 2013

1

Outline

• Many core architectures

• Mathematical model

• Open questions

2

define many-cores

• Many-core is:
• a single chip

• with many (how many?) cores and on-chip memory

• running one (parallel) program at a time, solving one problem

• an accelerator

• Many-core is NOT:
• Not a “normal” multi-core

• Not running an OS

• Contending many-core architectures
• Shared memory (the Plural architecture, XMT)

• Tiled (Tilera, Godson-T)

• Clustered (Rigel)

• GPU (Nvidia)

• SIMD

• Associative Processor

• Contending programming models

3

Five many-core architectures

4

5

EXAMPLE

64 cores

64 L1 caches

16kB x64

= 1 MB

Core-to-mem

network

shared mem

many banks

1 MB x256

= 256 MB

Shared Memory Manycore

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

L1

P

shared memory

I/O

I/O

I/
O

I/
O

Tiled Manycore

6

EXAMPLE

64 tiles

64 L1 caches

16kB x64

= 1 MB

4 MB L2 x64

= 256 MB

mesh NOCs

Directory:

All L2s = L3

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

I/O

I/O

I/
O

I/
O

GPU

7

EXAMPLE

8

EXAMPLE

256 cores

memory banks

1 MB x256

= 256 MB

SIMD

I/O

I/O

I/
O

I/
O

P P

P P

P P

P P

control

9

EXAMPLE

128 MB

(each bit twice

larger than

SRAM)

Associative Processor

I/O

I/O

I/
O

I/
OCombined memory & processing

Each bit also computes

control

3D

10

Add 3D logic & 3D memory

• The HMC industry already makes the first step

• 100,000 TSV vertical interconnects

Store & Compute

• 1 Tbyte / chip in 2020
– Combined DRAM + NVM

• Many many-cores
• NoC & 3D NoC
• Must be low power &

cold: 0.1W

• THIS WILL CHANGE
MANY-CORE
ARCHITECTURE

• 1000 cubes

• 100 W

• Less than 1 MW

Many cubes in a rack

Many racks in a
supercomputer

Modeling Many-core Architectures

14

A first many-core research question

• Given fixed area, into how many processor

cores should we divide it?

• Other good questions (not dealt here):

• Given fixed power, how many cores? which cores?

• Given fixed energy, how many cores? which cores?

• Given target performance, how many? Which?

• Analysis can be based on Pollack’s rule

16

The history at the basis of Pollack’s analysis

17

Technology

generations

P1

P2

P3

P4

P5

G1 G2 G3 G4 G5

Shrink, scaling

New architecture,

same process

Q: On red arrows, how

much more performance

for how much more

area?

Pollack’s rule for processors:

Area or Power vs. Performance

18

• Pollack (& Borkar & Ronen, Micro 1999)

observed many years of (intel) architecture

• In each Intel technology node, they compared:

• Old μArch (shrink from previous node)

• New μArch (faster clock and/or higher IPC)

• They noted:

• New μArch used 2-3X larger area

• New μArch achieved 1.5-1.7X higher performance

• Resulting from both higher frequency and higher IPC

• They did not consider power increase

• Who thought about power in 1999?

• Observation: Performance ~ 𝑎𝑟𝑒𝑎

Performance = IPC × Frequency

• Experience shows: for higher performance,

both IPC and frequency must be increased

19

1.6

0.57 0.6

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Series11

Series12

Series13

Series14

Series15

Series16Speed demons

SPECInt92 = 10050

MHz

ALPHA

X86

PowerPC

PENTIUM

PENTIUM PRO

21164

21064

1.0

0.

5

1.5

2.0

50 100 150 200 250 300 350 400

1

S
P

E
C

In
t9

2
 /

 M
H

z

=

 a
A

v
e
ra

g
e
 I
P

C

FrequencyDiep, Nelson & Shen, ISCA 1995

The many-core fixed-total-area model

• Assume fixed chip area (typically 300-500 mm2)

• Split chip area A = Acores + Amem

• Split (memory size) affects on-chip hit rate

• Amem may be further split into AL1+AL2

• Divide Acores into m cores. How many ?

• Area of each core: 𝑎 =
𝐴𝑐𝑜𝑟𝑒𝑠

𝑚
. Thus, m ~ 1 𝑎

• [Pollack’s]: core area determines core performance. Select
IPC and frequency f so that:
• Performance (core) = IPC × 𝑓 ~ 𝑎. Thus, a ~ 𝐼𝑃𝐶2𝑓2 , m ~ 1 𝐼𝑃𝐶2𝑓2

• Power (core) ~ a × 𝑓 ~ 𝐼𝑃𝐶2𝑓3

• Assume perfect parallelism (at least as upper bound)

• Performance (m cores) = IPC × 𝑓 ×𝑚 ~
𝐼𝑃𝐶∙𝑓

𝐼𝑃𝐶2𝑓2
=

1

𝐼𝑃𝐶∙𝑓
~

𝐼𝑃𝐶∙𝑚

𝐼𝑃𝐶 𝑚
= 𝑚

• Power (m cores) = a × 𝑓 ×𝑚 ~
𝐼𝑃𝐶2𝑓3

𝐼𝑃𝐶2𝑓2
= f ~

1

𝐼𝑃𝐶 𝑚

20

Summary: Performance~
1

𝑓
~ 𝑚, Power~

1

𝑚
~𝑓, m ~

1

𝑓2

Performance (core) = IPC × 𝑓

21

a ~ 𝐼𝑃𝐶2𝑓2

22

For each IPC curve, a ~ 𝑓2

m ~
1

𝐼𝑃𝐶2𝑓2

23

For each IPC curve, m ~
1

𝑓2

Performance~
1

𝑓
~ 𝑚

24

Power~𝑓~
1

𝑚

25

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑃𝑜𝑤𝑒𝑟
~

 1 𝑓

𝑓
=

1

𝑓2
~

𝑚

 1 𝑚
= 𝑚

Analysis of the results so far:

• Slower frequency and lower IPC higher performance, lower power

• Thanks to Pollack’s square rule

But this changes when we also consider memory power…

Now add memory

• So far, only computing power

• Including power to access local cache/memory in each

core

• But we also need to access not-so-local shared

memory

• Access rate to memory: once every rm instructions

• E.g. about every 20 instructions

• Assume using only on-chip memory

• Need to add memory access power to the

computing power

• Relative energy: assume access is 10x higher than exec.

26

27

𝑚1

𝑓

𝑚

𝑚+
1
𝑚

1
𝑓

1
𝑓

+𝑓

𝑚+
1

𝑚

1

𝑓
+ 𝑓

Does the model apply to different architectures?

28

Shared memory versus Tiled architectures

29

Architecture Shared memory Tiled

Local memory L1 in each core L1 & L2 in each core

Global (on-chip) memory Shared memory L2 of other cores

Core-to-global-memory

network

Dedicated cores-to-

memories, e.g. MIN

Indirect via other

cores/routers, e.g. mesh

Access rates

(strongly depends on

app; Examples:)

1/20 to L1

1/1,000 to shared mem

1/20 to L1

1/1,000 to L2

1/50,000 to others

Access time (cycles) 2 to L1

10 to shared memory

2 to L1

10 to L2

100 to others

Access energy

(relative to one register

instruction)

2x to L1

20x to shared mem

2x to L1

5x to L2

100x to others

Shared memory & Tiled architectures versus others

30

Architecture Shared memory Tiled GPU SIMD AP

Local memory L1 in each core L1 & L2 in each core

Global (on-chip)

memory

Shared memory L2 of other cores

Core-to-global-

memory network

Dedicated cores-to-

memories, e.g. MIN

Indirect via other

cores/routers, e.g.

mesh

Access rates

(strongly depends

on app;

Examples:)

1/20 to L1

1/1,000 to shared mem

1/20 to L1

1/1,000 to L2

1/50,000 to others

Access time

(cycles)

2 to L1

10 to shared memory

2 to L1

10 to L2

100 to others

Access energy

(relative to one

register instruction)

2x to L1

20x to shared mem

2x to L1

5x to L2

100x to others

Summary of the model

• Considering only cores, fixed-total-area model

implies: for highest performance and lowest

power, use

• smallest / weakest cores (lowest IPC)

• lowest frequency

• Adding on-chip access to memory leads to a

different conclusion: for lowest power and

highest performance/power ratio, use

• Strongest cores (high IPC)

• But stay with lowest frequency

• Lower frequency lower access rate to global memory

• How does this apply to other architectures?
31

