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Abstract 

Delay variations are typically accounted for by increasing cycle time margins. Adaptive 

Synchronization eliminates this on inter-modular interfaces in very large, high performance 

chips. The chip is divided into multiple smaller synchronous modules or clock domains. Multi-

synchronous hierarchical clocking provides the same frequency to all modules, but does not 

maintain any particular phase. Adaptive synchronizers compensate for the time-varying inter-

modular clock and data phases, and out-perform conventional synchronizers. A novel 

modeling approach to delay variations is introduced to support Adaptive Synchronization. 

 

Introduction 

On-chip clocks in high performance processors are typically distributed over a balanced tree 

network, where the delay from the root to each and every leaf is the same  [1],  [2],  [3].  This 

provides for reliable synchronization of on-chip interconnects. However, achieving balanced 

clock trees in future high performance chips integrating large systems (of four billion 

transistors and operating at close to 20 GHz  [4]) is becoming more difficult and less effective 

as delay variations grow in proportion to the clock cycle. This motivates a search for 

architectures that do not rely on a single, zero skew clock available for the entire chip. A fully 

synchronous clock can be maintained within smaller modules, but inter-module timing may be 

controlled less tightly. 

To accommodate faster clocks and larger dies, contemporary synchronous chips are divided 

into multiple clock domains, where each domain maintains its own single synchronous clock. 

How many clock domains are needed? As clocks become faster, the distance traveled by a 

data signal during a single clock cycle becomes progressively shorter. We define effective 

wavelength as the distance propagated by the electric signal on metal interconnect during one 

clock cycle, where by 'propagated' we mean the ability to drive a gate rather than the mere 

electromagnetic wavefront propagation. At typical such driving-capability propagation of c/40 

(c=speed of light) and with a 10 GHz clock, the effective wavelength is only 0.75mm. 

Assuming a clock domain no larger than 0.5x0.5 effective wavelength, a 36x36 mm
2
 die 

would need about 10,000 clock domains to maintain proper synchronous operation. This is 

obviously a difficult challenge (a similar analysis is given in  [5]). 

Treating on-chip data interconnects between separate modules or clock domains as either 

asynchronous or source-synchronous inputs and synchronizing them at the receivers has been 

proposed for such systems. Methods similar to inter-chip serial link synchronizers  [6],  [7],  [8] 



could be used but the related latency overhead may be too high for on-chip interconnects. 

Synchronization is statistically subject to failures and metastability; when the data and clock 

switch approximately at the same time, synchronization typically takes longer to resolve and, 

in rare cases, fails completely  [6]. To reduce failure probability, multiple synchronizer stages 

are employed in series, incurring an added latency of at least one and often more than one 

clock cycles (Fig. 1). Typically, synchronization resolution requires a certain number of gate 

delays  [7]; while clock frequencies increase with the advent of technology, gate switching 

speeds do not scale as fast, and the number of gate delays per clock cycle diminishes. Thus, as 

technology progresses, more clock cycles are needed to obtain the same level of 

synchronization. In addition, when successive delays are correlated (as explained below), 

normal synchronization schemes are subject to repeated failure patterns: Once data and clock 

coincide, they are highly likely to conflict again in the following cycle. 
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Fig. 1: Bundled data synchronization. The Ready signal is assumed 

stable no later than one clock cycle after it is first latched. It is used to 

enable the second data latch. If this is too short, additional synchronizer 

stages would be required. 

 

Pipeline synchronizers  [9],  [10], a proposed alternative to regular synchronizers, incur 

substantial latency. In such a scheme, the multiple stages of synchronization are distributed 

over a number of pipeline stages. However, pipeline synchronization is not a practical method 

for large chips: Mixing computational pipelines and synchronization is incompatible with 

structured design methodologies and with IP core-based SOC (System on Chip) designs.  

Others propose to tune the clocks  [11],  [12],  [13],  [14]. According to that scheme, the clock is 

locally generated by each module, and an arbiter occasionally defers the clock if the incoming 

data switch simultaneously with the clock. There are two problems associated with stoppable 

clocks. First, the frequency of a locally generated, non-crystal based clock varies with 



temperature and supply voltage, and thus the chip cannot be specified at one dependable 

frequency. This drawback may or may not matter, depending on the application.  

The other problem is more severe: In large systems, many modules intercommunicate with a 

large number of other modules, say 10. When one incoming bus faces a data-clock conflict, 

the clock is shifted a bit. This shift may cause a new conflict with another data bus incident 

upon the same module, and the clock is shifted yet again. This new shift may now cause yet 

another conflict, and so on. Depending on the number of incident buses and the clock shift 

resolution, this problem may evolve into a cyclical never-ending dance of the clock.  

It turns out that for many on-chip and MCM applications, even when tight clock phase control 

over the entire chip becomes impractical, the relative timing of nearby modules or clock 

domains is not asynchronous but is highly correlated. We propose that tuning of data 

interconnects (rather than the clock) addresses these issues. A hierarchical multi-sync clock 

abandons phase control at the high level, and adaptive synchronization provides for efficient 

on-chip communications. 

 

Delay Variations and Correlation 

We propose to model delay variations as follows. The delay of any specific gate or wire is 

sampled repeatedly over time. The resulting function of time is Fourier-transformed, yielding 

a frequency characterization of the variation of the delay. Such a presentation is shown, on a 

logF scale, in Fig. 2. Typical clock and data delay variations are separated into four distinct 

types in Fig. 2:  

• Skew comprises all intra- and inter-chip delay non-uniformities that are constant over 

time. They result from variations in Vth and geometric dimensions. Due to such 

statistical variations, two different gates which are drawn the same in two different 

places on the chip may end up manufactured with slightly different dimensions, and 

thus may incur different delays. The same fact is true for one specific gate 

implemented in two different samples of the same chip. Once fabricated, these delay 

differences remain unchanged for the life of the chips. Since the skew never changes, 

it is represented by the δ function at DC (the origin of the graph in Fig. 2). Note that 

we restrict the meaning of the term 'skew' relative to its common use. 

• Jitter relates to fast (cycle-to-cycle) delay variations.  Delays vary between cycles 

mostly due to power supply coupling: As some gates switch, they draw switching 

current from the supply lines, leading to momentary decrease in voltage near the 

gates. This voltage reduction, in turn, results in slower switching speeds of nearby 

gates which are fed by the same supply lines. Since not all gates switch every cycle, 

the exact voltage functions vary from cycle to cycle and from place to place. Another 

closely related source of jitter is instantaneous temperature: Excessive switching of 

some gates causes a brief increase in substrate temperature around them, and this in 

turn may slow down nearby gates. While these phenomena are data-dependent and 

could, in principle, be predicted, they are so complicated that it makes much more 

sense to treat these variations as random processes, namely jitter. Additionally, some 

jitter is attributed to capacitive and inductive cross-talk. To address the jitter 



problem, it is first estimated and then a suitable safety margin is added to all 

switching times. In other words, although a full clock cycle could theoretically allow 

a certain number of gate delays, we usually design synchronous circuits with only a 

smaller number of gates in series to allow for the jitter uncertainty. Since it is 

impractical to construct circuits with margins beyond, say, 30% of the total clock 

cycle, the designer always insures that the jitter is kept well under such limits. This is 

ensured by expensive power buffering, by geometric design rules, and by limiting the 

clock frequency of the circuit; all measures unfortunately limit circuit performance. 

The constrained jitter appears as a constant level over all frequencies in Fig. 2. 

•  Drift  is similar in principle to jitter, but it relates to much slower variations of delay. 

As computations vary, e.g. when a processor starts to execute a floating point 

computation that exercises the floating point unit intensively, the average 

temperature around that unit may rise a bit and the average supply voltage may drop 

a bit. These changes could, in turn, affect the delay of other nearby units. Once the 

processor changes its computing pattern, e.g. completes the floating point subroutine, 

local temperature and voltage may resume their previous values, resulting in another 

delay shift. Such slow variations tend to be cumulative over a large number of cycles, 

because the voltage and temperature factors affect unidirectional changes. This is in 

contrast to jitter, which is not correlated from cycle to cycle. Thus, over a large 

number of cycles, the drift may accumulate into significant changes of delay. This 

fact is reflected in the triangular shape of the drift in Fig. 2. 

• Another source of delay variation consists of very fast switching and clock 

harmonics. These variations are typically much harder to characterize and are beyond 

the scope of this treatment. They appear as the dashed line beyond the clock 

frequency in Fig. 2. 

While jitter is constrained to much less than a clock cycle, skew and drift may present delay 

variations of dangerous dimensions, and their relative threat increases as the clock cycle 

decreases. Adaptive Synchronization is designed to counter those two sources of delay 

variation on intra-chip communication links. Since skew is fixed in time and drift is band-

limited to FD (Fig. 2), it is sufficient to apply adaptation at a rate that is slightly higher than 

FD. In applications in which drift is insignificant, one-time power-up adaptation may be all 

that is required to account for skew. 

 

Multi-Synchronous Clocking 

In the proposed method, the system is decomposed into modules which are sufficiently small 

(say, one million transistors) so that they may comprise individual clock domains (Fig. 3). A 

global network distributes a single multi-synchronous global clock to all modules. While the 

exact same frequency is provided to every module, the relative phase is undetermined. Since 

the global clock network needs not guarantee the phase, it may be designed to conserve power 

and area. Each module regenerates its local clock, by reshaping and (if necessary) frequency-

multiplying the global multi-sync clock. While the frequency of the local clock is the same as 

in other modules, its relative phase is a-priori unknown, and may change over time. The 



relative phases are affected by delay variations, as discussed above. Since the skew is constant 

and the drift changes very slowly, we say that (up to jitter) the relative phases are stationary. 

In other words, we can identify relatively long periods of time over which the relative phases 

may be considered fixed. We take advantage of this fact with Adaptive Synchronization. 
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Fig. 2: Frequency-domain representation of characteristic delay 

variations, measured in units of the clock cycle. Skew is constant over 

time, jitter is amplitude-limited to a small portion of the clock cycle, and 

drift represents band-limited cumulative variations. 

 

Adaptive Synchronization 

Modules communicate over data channels, which provide Data Ready (Rdy) signals. The 

clock delays DA , DB and the data delay DAB in Fig. 3  are all stationary, and all clocks are of 

the same frequency. Thus, the arrival time of the Rdy signal at module B is typically correlated 

with the receiver's clock, CB. 
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Fig. 3: Multi-sync clocking 

 



The shaded interface of Module B is detailed in Fig. 4. Each data input bus Di is equipped 

with an Adaptive Synchronization (A/S) circuit that detects the particular phase difference 

between Rdyi and the local clock. A number of phase detection and locking circuits may be 

used ( [6],  [15]), and they typically employ low pass filtering over multiple cycles to smooth 

out metastability. A simple A/S circuit is shown in  Fig. 5a. Data / clock collisions are 

detected by the four ME elements in Fig. 5b. Given that the delay lines are d sec. long, the 

circuit detects when | t(Data) - t(Clock) | ≤ d  for both rising and falling data edges. The ME 

elements are shown in Fig. 5c. The circuit also contains a digital delay line (Fig. 5d) 

controlled by the counter. To start an adaptation cycle, the controller resets the counter. As 

long as there is a collision, the counter increases the programmable data delay. If we design 

the conflict threshold d to be close to, but slightly less than, half a clock cycle, we can 

guarantee that all data transitions are positioned as far away from clock transitions as possible, 

and typically at the center of the clock cycle, so as to minimize jitter sensitivity.  
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Fig. 4: Adaptive Synchronization 

 

Adaptation is achieved by means of a training session as follows. Normal operation of the 

chip is suspended. The sender side of each data bus generates a sequence of dummy 

transmissions on the RDY lines. The receiver side performs adaptation until the receiving 

delay is adjusted as above. Normal operation resumes after a predefined period of time, 

assuming all adaptations are complete. 

Adaptation can be performed according to one of the following five modes. 

• One time adaptation at test / burn-in right after manufacture of each chip. This mode 

requires some form of permanent setting of the delays. It provides adjustments of 

skew only.  

• Power-up adaptation is performed once power is applied. Only skew is accounted 

for, and no permanent setting is required. 
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Fig. 5: Adaptive Sensitivity implementation (a), the Conflict Detector 

(b), a Mutual Exclusion element (c), and the Digital Delay Line (d). 

 

• Periodic training sessions. In this mode, the normal operation of the chip is 

suspended and an adaptation session is called for at a rate slightly higher than FD (the 

drift cut-off frequency, Fig. 2). This mode compensates for both skew and drift 

variations. 

• Triggered training sessions. Once adjusted, the various phase detectors can also serve 

to detect and flag suspected variations as they develop. Since drift is cumulative, the 

phase detectors show a growing phase difference. A threshold can be employed to 

trigger a training session once any one of the phase detectors has detected a phase 

variation beyond the preset threshold. This scheme optimizes the use of Adaptive 

Synchronization in an adaptive manner. 

• Continuous tracking -- the A/S mechanism may be allowed to continually adjust the 

delays, avoiding accumulation of any drift, simultaneously with normal chip 

operation. An up/down counter is used in Fig. 5a instead of the up-counter. In this 

mode, no training sessions are needed, but it may require higher power dissipation 

than the other ones. 



Stochastic analysis shows that failure probability of A/S is substantially lower than standard 

synchronizers  [16]. An asynchronous signal has non-zero probability of coinciding with the 

clock, leading to non-zero failure probability. Adaptive Synchronization accounts for skew 

and drift variations, but is still subject to jitter. Since A/S tunes the data transition to the 

middle of the clock cycle (about one half of a clock cycle from each sampling clock 

transition), and since jitter is restricted to well below one half a clock cycle, the probability of 

clock / data conflict is substantially lower than in the asynchronous case. 

 

Discussion 

A/S adapts the circuit to the delay variations, rather than accounting for them as margins 

added to the clock cycle. On average, it incurs lower latency than standard synchronizers (one 

half cycle, as opposed to one or more cycles), thus resulting in faster chips. It increases the 

yield with less compromise of performance. A/S helps contain the clocking problem: Most 

parts of the chip are designed with a simple clocking scheme (constrained into clock 

domains), and only limited portions (at module / domain interfaces) need to be more complex. 

A/S is expected to scale towards high frequencies. It is applicable to both single chips and 

some MCM systems. The phase detection circuits may also serve as temperature and voltage 

shift alarms. 

A/S implies globally asynchronous, locally synchronous architecture (GALS  [14],  [16],  [17]): 

An input cannot be expected on any particular cycle. Rather, the cycle of any particular arrival 

may change between chips and over time. The architecture must provide for this by tagging 

the data  [16],  [18]. 

The main cost of A/S lies in the adaptation circuits. About 1000 transistors are required per 

Adaptive Synchronizer, resulting in 1% overhead per 1M transistor modules with ten input 

busses. Time (for training sessions) and power overheads are negligible: A typical training 

session should converge on all interfaces well within 1,000 clock cycles. Assuming FD < 

1MHz for a 10 GHz locally-clocked chip, the total time overhead is 0.1%. Upper bound on 

power overhead can be estimated by (Transistor count overhead) x (Time overhead)=10
-5

. 
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