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Abstract

We consider the filtering problem, where a finite-alphabet individual sequence is corrupted by a
discrete memoryless channel, and the goal is to causally estimate each sequence component based on
the past and present noisy observations. We establish a correspondence between the filtering problem
and the problem of prediction of individual sequences which leads to the following result: Given an
arbitrary finite set of filters, there exists a filter which performs, with high probability, essentially
as well as the best in the set, regardless of the underlying noiseless individual sequence. We use
this relationship between the problems to derive a filter guaranteed of attaining the “finite-state
filterability” of any individual sequence by leveraging results from the prediction problem.

1 Introduction

The study of prediction of individual sequences with respect to a set of predictors (also known as

experts) was pioneered by Hannan [18] and Blackwell [6, 5], who considered competition with the

set of constant predictors. Their work prompted further research on and refinements of the problem

throughout the late fifties, sixties, and seventies, with notable examples including [9, 10], and references

therein. More recently, the problem has seen a resurgence of interest by both the information and

learning theory communities, generalizing the original framework to accommodate competition with

more general, and in fact arbitrary, predictors, cf. [32, 7, 8, 23] and references therein.

On a parallel thread, study of the problem of estimating the components of a noise-corrupted

individual sequence was initiated by Robbins in the seminal [25] and dubbed ‘the compound decision

problem’. The problem has been the focus of much attention during the fifties and sixties, notable

references including [19, 28, 26, 27] (cf. [39] for a comprehensive account of this literature). Much in
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this line of work was focused on the case where estimation of the components of the noise-corrupted

individual sequence needs to be done causally, which was labelled ‘the sequential compound decision

problem’. Early work on the compound sequential decision problem concentrated on competing with

the class of time-invariant “symbol by symbol” estimation rules. Later, references [1, 2, 30, 31] extended

the scope to reference classes of “Markov” estimators of a fixed and known order. Unlike the prediction

problem, however, this problem seems to have largely escaped the spotlight in the recent resurgence

of interest in sequential decision problems. An exception is the work in [3, 4] on filtering a Discrete

Memoryless Channel (DMC)-corrupted individual sequence with respect to filters implementable as

finite-state machines. Another exception is the part of the work in [35] that deals with limited-delay

coding of a noise-corrupted individual sequence.1 The closely related problem of prediction for noise-

corrupted individual sequences was considered in [34, 36].

In compliance with more modern terminology, used e.g. in the literature on hidden Markov models

[16], we henceforth use the term ‘filtering’ in lieu of ‘compound sequential decision problem’ in referring

to the problem of causally estimating the components of a noise-corrupted individual sequence. Our goal

in this work is to establish a close relationship between the problem of predicting an individual sequence,

and that of filtering a DMC-corrupted sequence. We show that with any filter one can associate a

predictor for the noisy sequence, whose observable prediction loss (under the right prediction space

and loss function) efficiently estimates that of the original filter (which depends also on the noiseless

sequence and hence is not observable). This association allows us to transfer results on prediction

relative to a set of experts to analogous results for the filtering problem: Given a set of filters, one

constructs a predictor competing with the associated set of predictors, using existing theory on universal

prediction. The filter associated with such a competing predictor can then be shown to successfully

compete with the original set of filters. In other words, this approach yields a filter performing, with

high probability, at least as well as the best in a given class of filters, regardless of the underlying

noise-free individual sequence.

An approach similar in spirit to the one we follow here was taken in [34] for the problem of pre-

dicting a noise-corrupted individual sequence. There too, the idea was to transform the problem to

one of prediction in the noiseless sense of the noisy sequence, under a modified loss function. The

prediction space, however, remained that of the original problem. In contrast, in our filtering setting,

the prediction space in the associated prediction problem will be a space of mappings from a noisy

to a reconstruction symbol. Note that the idea of introducing a modified loss function (or distortion

measure) to reduce a problem involving noise to a more familiar and basic noiseless one is used in other

contexts as well. For example, rate distortion coding of noisy sources is readily reduced to the classical

1In particular, Theorem 5 of [35], when specialized to the case where the instantaneous encoding rate is as large as
the cardinality of the alphabet of the noisy source, implies the existence of a filter competing with a reference class of
finite-memory filters of a given order.
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rate distortion problem via the introduction of a modified distortion measure [13, 38, 15]. The idea of

reducing a problem to a more basic one by considering a richer alphabet consisting of mappings is also

not new. Shannon, for example, used this idea in [29] to reduce the problem of channel coding with

causal side information at the transmitter to the classical channel coding problem.

Perhaps the bottom line of the present work, taken with that of [34], is that problems involving

sequential decision making in the presence of noise are not fundamentally different from the basic

noiseless prediction problem. The former can be reduced to the latter via appropriate associations and

modifications of the loss function and prediction space.

The remainder of this work is organized as follows. We shall start in Section 2 with a formal

description of our filtering setting, and a statement of our main result, Theorem 1, on the existence of

a filter that competes with any given finite set of “filtering experts”. In Section 3, we then briefly state

the problem of prediction of individual sequences, along with classical results on prediction relative

to a set of experts which will be of later use. In Section 4, we establish a correspondence between

prediction and filtering, which we then use to prove Theorem 1. In Section 5, we consider filtering

relative to finite-state filters, and construct a filter based on incremental parsing [40] and attaining

the “finite-state filterability” of any individual sequence. This filter builds on an incremental parsing-

based predictor (similar to that of [17]) for the associated prediction problem, and we use results

from previous sections for assessing the performance of the induced filter. We also use these results

to show that, for any finite-state filter, there exists a finite-memory (also known as “Markov”) filter

which attains the same performance, a fact whose analogue for the prediction problem has been known

since [17, 22]. In Section 6, we compare our results with those in the Markov-extended version of the

sequential compound decision problem. We conclude in Section 7 with a summary of our results.

2 Problem Formulation and Main Result

Let X ,Z, X̂ denote, respectively, the alphabets of the clean, noisy, and reconstructed source, which are

assumed finite. As in [37], the noisy sequence is a DMC-corrupted version of the clean one, where the

channel matrix Π, Π(x, z) denoting the probability of a noisy symbol z when the clean symbol is x, is

assumed to be known and of full row rank (implying |X | ≤ |Z|).
Without loss of generality, we will identify the elements of any finite set V with {0, 1, . . . , |V| − 1}.

R
V will denote the space of |V|-dimensional column vectors with real-valued components indexed by

the elements of V. M(V) will denote the simplex consisting of the elements of R
V with non-negative

components summing up to 1. The a-th component of v ∈ R
V will be denoted either by v[a] or by va

(according to what will result in an overall simpler expression in each particular case). Subscripting a

vector or a matrix by ‘max’ will stand for the difference between the maximum and the minimum of all

its components. Thus, for example, if Γ is a |Z|×|X | matrix then Γmax stands for maxz∈Z,x∈X Γ(z, x)−
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minz∈Z,x∈X Γ(z, x) (in particular, if the components of Γ are non-negative and Γ(z, x) = 0 for some z

and x, then Γmax = maxz∈Z,x∈X Γ(z, x)).

Throughout, we shall be assuming a ‘semi-stochastic’ setting of a noiseless individual sequence

x = (x1, x2, . . .) corrupted by the DMC (of channel transition matrix Π), so that the noisy sequence

Z = (Z1, Z2, . . .) is stochastic. We will also be assuming a randomization sequence U = (U1, U2, . . .)

of i.i.d. components uniformly distributed on [0, 1], independent of Z. Lower case letters will denote

either individual deterministic quantities or specific realizations of random variables.

A filter is a sequence X̂ = {X̂t}t≥1, where X̂t : Zt × [0, 1] → X̂ is a measurable mapping. The

interpretation is that, upon observing zt = (z1, . . . , zt), and accessing a randomization variable ut ∈
[0, 1], the reconstruction for the unobserved xt is given by X̂t(z

t, ut). The normalized cumulative loss

of the filter on the individual triple (xn, zn, un) is denoted by

L
X̂

(xn, zn, un) =
1

n

n
∑

t=1

Λ
(

xt, X̂t(z
t, ut)

)

, (1)

where Λ : X × X̂ → [0,∞) is the loss function2. We also let

L
X̂

(xn, zn) =
1

n

n
∑

t=1

∫ 1

0
Λ
(

xt, X̂t(z
t, u)

)

du, (2)

where the integral here and throughout should be understood in the Lebesgue sense. Note that since

Ut ∼ U [0, 1] for each t,

L
X̂

(xn, zn) = EL
X̂

(xn, zn, Un), (3)

where the expectation on the right-hand side assumes that xn, zn are individual sequences. Further-

more, since the Ut are also independent, n
(

L
X̂

(xn, zn) − L
X̂

(xn, zn, Un)
)

is a sum of n independent

random variables of magnitude bounded by Λmax. Hoeffding’s inequality [20] then implies:

Lemma 1 For all individual sequences xn, zn

P
(∣

∣L
X̂

(xn, zn) − L
X̂

(xn, zn, Un)
∣

∣ ≥ ε
)

≤ 2 exp

(

−n
2ε2

Λ2
max

)

. (4)

For each t, zt, define now P
X̂

(zt) ∈ M(X̂ ) by

P
X̂

(zt)[x̂] =

∫

u∈[0,1]:X̂t(zt,u)=x̂
du, (5)

namely, the probability that X̂t(z
t, Ut) = x̂. Note that

∫ 1

0
Λ
(

xt, X̂t(z
t, u)

)

du =
∑

x̂∈X̂

Λ(xt, x̂)P
X̂

(zt)[x̂]. (6)

2Our assumption that Λ assumes non-negative values entails no loss of generality, since otherwise one can work with
Λ̃ defined by Λ̃(x, x̂) = Λ(x, x̂) − minx′,x̂′ Λ(x′, x̂′).
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Thus, letting λx denote the xth row of the loss matrix Λ, substitution of (6) into (2) gives

L
X̂

(xn, zn) =
1

n

n
∑

t=1

∑

x̂

Λ(xt, x̂)P
X̂

(zt)[x̂] =
1

n

n
∑

t=1

λ
xt · P

X̂
(zt). (7)

It is clear from (7) that the filtering loss on the individual pair (xn, zn), averaged with respect to the

randomization, depends on the filter X only through P
X̂

. Therefore, if only the expected performance

of a filter is of interest (expectation with respect to the randomization), it is sufficient to specify a filter

by identifying it with P
X̂

(as was done, e.g., in [24]). In our present work, however, we are ultimately

going to be interested in addressing the actual, rather than the expected, loss, which is our reason for

considering explicitly the dependence of the filter on its source of randomness. Note that for two filters

X̂ and X̃, P
X̂

(zt) = P
X̃

(zt) if and only if X̂t(z
t, Ut)

d
= X̃t(z

t, Ut) and, consequently,

{X̂t(z
t, Ut)}t

d
= {X̃t(z

t, Ut)}t ∀z ∈ Z∞ ⇔ P
X̂

(zt) = P
X̃

(zt) ∀t, zt, (8)

where
d
= denotes equality in distribution. This observation motivates the following notion of equiva-

lence.

Definition 1 Two filters, X̂ and X̃, will be said to be equivalent if P
X̂

(zt) = P
X̃

(zt) for all t and zt.

Thus, equivalence allows for the mappings X̂t(z
t, ·) and X̃t(z

t, ·) to differ, provided they satisfy the

equality in distribution on the left-hand side of (8).

Let now h : Z → R
X have the property that, for a, b ∈ X ,

Eahb(Z) =
∑

z∈Z

hb(z)Π(a, z) = δ(a, b)
△
=

{

1 if a = b
0 otherwise,

(9)

where Ea denotes expectation over the channel output Z given that the channel input is a, and hb(z)

denotes the b-th component of h(z). Let H denote the |Z| × |X | matrix whose z-th row is hT (z), i.e.,

H(z, b) = hb(z). To see that our assumption of a channel matrix with full row rank guarantees the

existence of such an h note that (9) can equivalently be stated in matrix form as

ΠH = I, (10)

where I is the |X | × |X | identity matrix. Thus, e.g., any H of the form H = ΓT (ΠΓT )−1, for any Γ

such that ΠΓT is invertible, satisfies (10). In particular, Γ = Π is a valid choice (ΠΠT is invertible

since Π is of full row rank) corresponding to the Moore-Penrose generalized inverse [21].

Ultimately, our interest is in the setting of a noiseless individual sequence, where the noisy (channel-

corrupted) and randomization sequences are stochastic (and independent). Our main result, which

pertains to this setting, is the following:
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Theorem 1 For every finite set of filters G there exists a filter X̂ (not necessarily in G) such that for

all x ∈ X∞, all n, and all ε > 0

1.

EL
X̂

(xn, Zn, Un) − min
X̂′∈G

EL
X̂′(x

n, Zn, Un) ≤ C(|X |ΛmaxHmax, |G|)/
√

n, (11)

where C(α, β) = α
√

1
2 lnβ.

2.

P

(

L
X̂

(xn, Zn, Un) − min
X̂′∈G

L
X̂′(x

n, Zn, Un) ≥ ε + C(|X |ΛmaxHmax, |G|)/
√

n

)

≤ 4(|G| + 1) exp

[

−n
ε2

8(|X |HmaxΛmax)2

]

. (12)

It will be seen in the proof of Theorem 1, given in Section 4, that the constant C(|X |ΛmaxHmax, |G|)
in (11) and (12) can be improved (reduced) to C(ℓmax, |G|) where ℓmax is the maximum value of a loss

function for a prediction problem that will be specified (in display (36)). The quantity |X |ΛmaxHmax is

merely a crude upper bound on ℓmax. Ultimately, the best possible constant that our results will imply

is C(ℓmax, |G|), where ℓmax, which will be seen to depend on H, will be minimized over all choices of

H (that satisfy (10)). This perhaps also suggests the minimization of ℓmax as a reasonable guideline

for the choice of H.

Since for any real-valued random variable V we have EV ≤
∫∞
0 P (V ≥ x)dx (with equality for

nonnegative random variables), the following corollary is a direct consequence of (12):

Corollary 1 For every finite set of filters G there exists a filter X̂ (not necessarily in G) such that for

all x ∈ X∞ and all n,

EL
X̂

(xn, Zn, Un) − E min
X̂′∈G

L
X̂′(x

n, Zn, Un) ≤ K/
√

n, (13)

where K is a constant that depends on ℓmax and |G|.

Clearly, the benchmark against which the universal filter of Corollary 1 competes is more demanding

than the one in (11): Part 1 of Theorem 1 corresponds to competing with a “genie” that selects the filter

to be used based only on the underlying noiseless individual sequence (averaging over the channel noise

and the randomization variable), whereas Corollary 1 corresponds to competing with the genie that

selects the filter based not only on the noiseless sequence, but also on the channel and randomization

variable realizations. However, the constant K in (13) is larger than C(ℓmax, |G|)).
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3 Prediction of Individual Sequences

Let the finite sets Y, A be, respectively, a source alphabet and a prediction space (also referred to as

the “action space”). A predictor, F = {Ft}, is a sequence of functions Ft : Yt−1 → M(A) with the

interpretation that the prediction for time t is given by a ∈ A with probability Ft(y
t−1)[a]. Note that,

unlike for the filtering setting of the previous section where the filter output was a reconstruction symbol

(rather than a distribution on the reconstruction alphabet) with access to a randomization variable,

here we conform to the standard practice of letting the prediction be a distribution on the prediction

alphabet, with no access to external randomization. This definition will simplify the statement of

the results below, and suffice for our later needs of transforming results from prediction to filtering.

Assuming a given loss function l : Y × A → R, for any n and yn ∈ Yn we define the normalized

cumulative loss of the predictor F by3

LF (yn) =
1

n

n
∑

t=1

∑

a∈A

l(yt, a)Ft(y
t−1)[a] =

1

n

n
∑

t=1

Lyt · Ft(y
t−1), (14)

where Ly denotes the y-th row of the matrix representing the loss function l. Note that this can be

interpreted as the expected prediction loss on the individual sequence yn, when averaging over the

randomization. The following result is implicit in [8]:

Theorem 2 For every finite set of predictors F there exists a predictor F (not necessarily in F) such

that for all yn ∈ Yn

LF (yn) − min
F ′∈F

LF ′(yn) ≤ C(ℓmax, |F|)/
√

n, (15)

where C(·, ·) is the function from the right-hand side of (11).

Proof: For the predictor F defined by

Ft(y
t−1) =

∑

F ′∈F e−ηLF ′ (yt−1)F ′
t (y

t−1)
∑

F ′∈F e−ηLF ′ (yt−1)
(16)

the proof of [8, Theorem 1], which addresses the binary case, carries over to imply

LF (yn) − min
F ′∈F

LF ′(yn) ≤ ln |F|
η

+
ηℓ2

max

8n
. (17)

The right-hand side is minimized by taking η =

√
8n ln |F|

ℓmax
, which gives the bound (15). 2

There exist additional results in the literature on prediction of individual sequences implying similar

bounds, e.g., [32, 7]. All are based on predictors similar to that in (16), which randomize between the

3The fact that we let L, subscripted by a scheme, denote both the loss of a filter and the loss of a predictor should
not confuse since in the former case there are two or more arguments (noise-free, noisy, and, possibly, the randomization
sequence) while the latter involves only one sequence.
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predictors in the expert set by assigning weights, at each time point, that depend on their performance

thus far.

For the special case of an expert set consisting of all the constant predictors, results in the spirit

of Theorem 2 date back to Hannan’s [18] and Blackwell’s approachability theorem [6, 5]. We end this

section by detailing Hannan’s predictor, of which we will make later use when constructing a universal

filter. For ζ ∈ R
Y , let Ul(ζ) denote the Bayes envelope of the loss function l, defined by

Ul(ζ) = min
a∈A

ζT · La, (18)

La denoting the column of the matrix of the loss function l corresponding to the a-th action. We also

let b(ζ) denote the achiever of the minimum in the right-hand side of (18), namely, the Bayes Response

b(ζ) = arg min
a∈A

ζT · La, (19)

resolving ties lexicographically. The empirical distribution of a sequence yn ∈ Yn will be denoted by

pyn ∈ M(Y), i.e., pyn [y] is the fraction of appearances of y in yn. Note that, for all n and yn ∈ Yn,

min
F∈M0

LF (yn) = Ul(pyn), (20)

where M0 denotes the class of constant predictors. Letting Bl = maxy∈Y ,a∈A[l(y, a) − mina′ l(y, a′)],

the following result was established in the seminal work [18]:

Theorem 3 [18, Theorem 6] The predictor F defined by

Ft(y
t−1)[a] = Pr

{

b
(

(t − 1)pyt−1 + U
√

t
)

= a
}

, (21)

where U is uniformly distributed on
[

0,
√

6
|Y|

]Y
, satisfies for all n and yn ∈ Yn

LF (yn) − min
F ′∈M0

LF ′(yn) = LF (yn) − Ul(pyn) ≤ Bl

√

6|Y|
n

. (22)

Note that the exponential weighting predictor of Theorem 2, when applied to the reference class M0,

yields

LF (yn) − min
F ′∈M0

LF ′(yn) ≤ ℓmax

√

ln |A|
2n

, (23)

since the size of the set of constant non-randomized predictors M0 equals the size of the action alphabet

A. Evidently, which of the bounds is better depends on the loss function and the cardinalities |Y| and

|A|. In Section 5 we will use the predictor of (21) as a building block in the construction of a universal

predictor which, in turn, will lead to a universal filter.
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4 Filtering as a Prediction Problem

Let F be a predictor (from the setting of the previous section), where the source alphabet is taken to

be the alphabet of the noisy sequence from the filtering problem, Y = Z. The prediction alphabet we

take to be A = S, where S is the (finite) set of mappings s that take Z into X̂ , i.e., S =
{

s : Z → X̂
}

.

Thus, for each zt−1 ∈ Zt−1, Ft(z
t−1) is a distribution on the set of mappings S, i.e., Ft(z

t−1) ∈ M(S).

With any such predictor we associate a filter X̂F as follows:

X̂F
t (zt, ut) = x̂ if

x̂−1
∑

x̃=0

∑

s:s(zt)=x̃

Ft(z
t−1)[s] ≤ ut <

x̂
∑

x̃=0

∑

s:s(zt)=x̃

Ft(z
t−1)[s], (24)

where here and throughout summation over the empty set is defined as zero. Thus

P
X̂F (zt)[x̂] =

∑

s:s(zt)=x̂

Ft(z
t−1)[s]. (25)

In words, X̂F is defined such that the probability that X̂F
t (zt, Ut) = x̂ is the probability that the

mapping S, generated according to the distribution Ft(z
t−1), maps zt to x̂. Given the predictor F , we

shall refer to the filter X̂F as the ‘prediction-filtering transformation’ of F . Conversely, for any filter

X̂, we define the associated predictor F X̂ by:

F X̂

t (zt−1)[s] = Pr
{

X̂t(z
t−1z, Ut) = s(z) ∀z ∈ Z

}

(26)

= Pr
{

X̂t(z
t−1·, Ut) = s

}

=

∫

u∈[0,1]:s=X̂t(zt−1·,u)
du. (27)

Given the filter X̂, we shall refer to the predictor F X̂ as the ‘filtering-prediction transformation’ of X̂.

We note the following two points:

1. The transformation from a predictor F to the filter X̂F is not one to one, i.e., two different

predictors can yield the same filter. For a simple example, take X = Z = X̂ = {0, 1} and

consider the following four mappings

s1(z) ≡ 0
s2(z) ≡ 1
s3(z) = z
s4(z) = z,

(28)

where z denotes the binary complement of z. Let F,G be constant predictors given, for all t and

zt−1, by

Ft(z
t−1)[s] =

{

1/2 if s = s1 or s = s2

0 otherwise,
Gt(z

t−1)[s] =

{

1/2 if s = s3 or s = s4

0 otherwise.
(29)
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When transforming, X̂F becomes the filter saying ‘0’ with probability 1/2 and ‘1’ with proba-

bility 1/2, without regard to the observations. X̂G, on the other hand, says ‘what it sees’ with

probability 1/2 and the binary complement of ‘what it sees’ with probability 1/2. The net effect

is the same filter given, for all t, zt, ut, by

X̂F
t (zt, ut) = X̂G

t (zt, ut) =

{

0 if ut ∈ [0, 1/2)
1 otherwise.

(30)

2. The transformation from a filter X̂′ to the predictor F X̂
′

is one to one when identifying filters

belonging to the same equivalence class as per Definition 1, i.e., for any filter X̂′, P
X̂(F X̂′

)
= P

X̂′ .

Indeed,

P
X̂(F X̂′

)
(zt)[x̂] =

∑

s:s(zt)=x̂

F X̂
′

t (zt−1)[s] =
∑

s:s(zt)=x̂

Pr
{

s = X̂ ′
t(z

t−1·, Ut)
}

(31)

= Pr
{

X̂ ′
t(z

t−1zt, Ut) = x̂
}

= P
X̂′(z

t)[x̂], (32)

where the first equality follows from (25), the one following it is due to (26), and the right-most

equality follows from the definition of P
X̂′ (in (5)).

To state the main result of this section, we let, for any s : Z → X̂ , ρ(s) denote the column vector

with xth component

ρx(s) =
∑

z

Λ(x, s(z))Π(x, z). (33)

In words, ρx(s) is the expected loss when using the estimator s(Z) while the underlying symbol is x

(and is observed through the channel Π in a ‘single-letter’ problem). The above prediction-filtering

correspondence is motivated by the following result.

Theorem 4 For all n, xn ∈ X n, and any predictor F

[Unbiasedness:]

EL
X̂F (xn, Zn) = ELF (Zn) (34)

[Concentration:]

P
(∣

∣L
X̂F (xn, Zn) − LF (Zn)

∣

∣ ≥ ε
)

≤ 2 exp

(

−n
2ε2

L2
max

)

, (35)

with LF (zn) denoting the normalized cumulative loss of the predictor F (as defined in (14)) for

source alphabet Y = Z and prediction space A = S under the loss function

ℓ(z, s) = h(z)T · ρ(s), (36)

where h is any function satisfying (9) and Lmax = max {Λmax, ℓmax}.

10



In words, for every predictor F the observable LF (Zn) is an unbiased efficient estimate of L
X̂F (xn, Zn).

Theorem 4 is a consequence of the following lemma, whose proof is given in Appendix A.

Lemma 2 For all x ∈ X∞, and any predictor F ,
{

n
[

L
X̂F (xn, Zn) − LF (Zn)

]}

n≥1
is a {Zn}-martingale.

Proof of Theorem 4: The first item immediately follows from Lemma 2. For the second item note that,

by Lemma 2, L
X̂F (xn, Zn)−LF (Zn) is a normalized sum of martingale differences. These differences,

as is evident from (A.9), are bounded by Lmax. Inequality (35) then follows from the Hoeffding-Azuma

inequality [12, Theorem 9.1]. 2

Let now G be a given finite reference class of filters. Theorem 4 suggests the following recipe for

construction of a competing filter:

• Transform each of the filters in G into its associated predictor to obtain the predictor set F =
{

F X̂
′
: X̂′ ∈ G

}

.

• Construct a predictor F that competes with F in the sense of Theorem 2.

• Take X̂F to be the competing filter.

It is this recipe which we use in proving the following theorem:

Theorem 5 For every finite filter set G there exists a filter X̂ such that for all x ∈ X∞, all n, and all

ε > 0

1.

EL
X̂

(xn, Zn) − min
X̂′∈G

EL
X̂′(x

n, Zn) ≤ C(ℓmax, |G|)/
√

n. (37)

2.

P

(

L
X̂

(xn, Zn) − min
X̂′∈G

L
X̂′(x

n, Zn) ≥ ε + C(ℓmax, |G|)/
√

n

)

≤ 2(|F| + 1) exp

(

−n
ε2

2L2
max

)

,

(38)

where ℓmax pertains to the loss function in (36).

Proof: Let F be the predictor set defined by

F =
{

F X̂
′
: X̂′ ∈ G

}

(39)

and F be the predictor that competes with this set in the sense of Theorem 2. Letting X̂ = X̂F ,

EL
X̂

(xn, Zn) − min
X̂′∈G

EL
X̂′(x

n, Zn) = ELF (Zn) − min
X̂′∈G

EL
F X̂′ (Zn) (40)

= ELF (Zn) − min
F ′∈F

ELF ′(Zn) (41)

11



≤ E

[

LF (Zn) − min
F ′∈F

LF ′(Zn)

]

(42)

≤ C(ℓmax, |F|)/
√

n (43)

≤ C(ℓmax, |G|)/
√

n, (44)

where (40) follows from (34), (41) follows from the definition of F in (39), (43) follows from Theorem 2,

and the last equality follows since |F| ≤ |G|.4 This proves (37). For the second item note that for all

xn, zn

∣

∣

∣

∣

L
X̂

(xn, zn) − min
X̂′∈G

L
X̂′(x

n, zn) −
(

LF (zn) − min
F ′∈F

LF ′(zn)

)∣

∣

∣

∣

=

∣

∣

∣

∣

L
X̂

(xn, zn) − min
F ′∈F

L
X̂F ′ (xn, zn) −

(

LF (zn) − min
F ′∈F

LF ′(zn)

)∣

∣

∣

∣

(45)

≤
∣

∣L
X̂F (xn, zn) − LF (zn)

∣

∣+ max
F ′∈F

∣

∣L
X̂F ′ (xn, zn) − LF ′(zn)

∣

∣ , (46)

where equality (45) follows from the fact that G =
{

X̂F ′
: F ′ ∈ F

}

. It follows from (15), (35), (46),

and a union bound that

P

(

L
X̂

(xn, Zn) − min
X̂′∈G

L
X̂′(x

n, Zn) ≥ ε + C(Λmax, |G|)/
√

n

)

≤ P

(

L
X̂

(xn, Zn) − min
X̂′∈G

L
X̂′(x

n, Zn) ≥ ε + LF (Zn) − min
F ′∈F

LF ′(Zn)

)

≤ P
(∣

∣L
X̂F (xn, Zn) − LF (Zn)

∣

∣ ≥ ε/2
)

+ P

(

max
F ′∈F

∣

∣L
X̂F ′ (xn, Zn) − LF ′(Zn)

∣

∣ ≥ ε/2

)

≤ 2(|F| + 1) exp

(

−n
ε2

2L2
max

)

.

2

Theorem 5 is very close to our end goal, which is to prove Theorem 1. The only difference is

that the filtering loss in the former is averaged over the randomization sequence. The concentration

stated in Lemma 1, however, provides the link that allows us to deduce Theorem 1 from Theorem 5.

Specifically:

Proof of Theorem 1: The first item follows directly from that of Theorem 5, combined with (3) and

the fact that ℓmax ≤ |X |ΛmaxHmax. For the second item, note first that, similarly as in (46),

∣

∣

∣

∣

L
X̂

(xn, zn) − min
X̂′∈G

L
X̂′(x

n, zn) −
(

L
X̂

(xn, zn, un) − min
X̂′∈G

L
X̂′(x

n, zn, un)

)∣

∣

∣

∣

(47)

≤
∣

∣L
X̂

(xn, zn) − L
X̂

(xn, zn, un)
∣

∣+ max
X̂′∈G

∣

∣L
X̂′(x

n, zn) − L
X̂′(x

n, zn, un)
∣

∣ . (48)

4The second point noted at the beginning of the section implies that |F| = |G| whenever each filter in G belongs to a
different equivalence class. The situation |F| < |G| will arise if G contains two different filters from the same equivalence
class.
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Hence, for all ε′ and ε,

P

(

L
X̂

(xn, Zn, Un) − min
X̂′∈G

L
X̂′(x

n, Zn, Un) ≥ ε + C(ℓmax, |G|)/
√

n

)

(49)

≤ P

(

L
X̂

(xn, Zn) − min
X̂′∈G

L
X̂′(x

n, Zn) ≥ ε′ + C(ℓmax, |G|)/
√

n

)

(50)

+P
(∣

∣L
X̂

(xn, Zn) − L
X̂

(xn, Zn, Un)
∣

∣ ≥ (ε − ε′)/2
)

(51)

+P

(

max
X̂′∈G

∣

∣L
X̂′(x

n, zn) − L
X̂′(x

n, zn, un)
∣

∣ ≥ (ε − ε′)/2

)

(52)

≤ 2(|G| + 1) exp

(

−n
ε′2

2L2
max

)

+ 2(|G| + 1) exp

(

−n
(ε − ε′)2

2Λ2
max

)

, (53)

where the first inequality is due to (48), the triangle inequality, and (repeated use of) the union

bound, while the second is due to (38), Lemma 1 and (repeated use of) the union bound. Taking

ε′ = ε Lmax
Λmax+Lmax

we obtain

P

(

L
X̂

(xn, Zn, Un) − min
X̂′∈G

L
X̂′(x

n, Zn, Un) ≥ ε + C(ℓmax, |G|)/
√

n

)

≤ 4(|G| + 1) exp

(

−n
ε2

2(Λmax + Lmax)2

)

. (54)

Inequality (12) follows by noting that Λmax + Lmax ≤ 2|X |HmaxΛmax and that ℓmax ≤ |X |ΛmaxHmax

(because |X |Hmax ≥ 1). 2

5 Competition with Finite-State Machines

5-A Finite-State Filterability

X̂ is a finite–state filter with finite state–space Ω if there exists a next–state function g : Ω ×Z → Ω,

a reconstruction function f : Ω ×Z → X̂ , and an initial state ω ∈ Ω such that, for t ≥ 1,

X̂t(z
t) = f(ωt, zt), ωt+1 = g(ωt, zt), ω1 = ω. (55)

Note that a finite–state filter is deterministic, as there is no dependence on a randomization sequence

U. It is not hard to see that there is no loss in restricting attention to non-randomized schemes in

the sense that for every xn, zn, the finite–state filter with minimum expected loss (expectation with

respect to randomization) among all (possibly randomized) schemes with a given number of states is

deterministic. Let GΩ denote the class of all finite–state filters with state space Ω and let φΩ(xn, zn)

be the loss incurred by the best filter in GΩ for xn, zn:

φΩ(xn, zn) = min
X̂∈GΩ

L
X̂

(xn, zn). (56)
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For the individual pair x, z, let φ(x, z) denote the finite-state filterability defined by

φ(x, z) = lim
|Ω|→∞

lim sup
n→∞

φΩ(xn, zn). (57)

Our goal, in this section, is to establish, for the semi-stochastic setting, existence of a filter X̂ which is

universal in the strong sense of satisfying

lim sup
n→∞

L
X̂

(xn, Zn, Un) ≤ φ(x,Z) a.s. ∀x ∈ X∞. (58)

In accord with the theme of this paper, we will achieve this goal by moving to the prediction domain,

constructing a predictor which is universal with respect to the class of finite-state predictors, and

transforming back to the filtering setting.

We note the easily verifiable fact that, for fixed x, φ(x, z) is invariant to a change in any finite number

of components of z. Combined with the Kolmogorov zero-one law (cf., e.g., [14]),5 this observation

implies the existence of a deterministic constant φ(x) such that

φ(x,Z) = φ(x) a.s. (59)

This result is analogous to the noisy prediction [36, Theorem 15] and denoising [37, Claim 1] cases.

5-B Finite-State Predictability

Consider the generic prediction setting of Section 3. F is said to be a finite–state predictor with state

space Ω if there exists a next state function ĝ : Ω × Y → Ω, an action function f̂ : Ω → A, and an

initial state ω such that

Ft(y
t−1) = δf̂(ωt)

, ωt+1 = ĝ(ωt, yt), ω1 = ω, (60)

where δa ∈ M(A) denotes the degenerate simplex member assigning probability 1 to a and 0 to all the

rest. Let FΩ denote the class of all finite–state predictors with state space Ω and define

λΩ(yn) = min
F∈FΩ

LF (yn), (61)

namely, the loss incurred by the best predictor in FΩ for yn. As is well known, and easy to see,

there is no loss in restricting attention, as we have, to a reference class of machines with deterministic

predictions in the sense that the minimum in (56) would be achieved by a deterministic machine even

had FΩ been defined to include machines with stochastic predictions. This is in analogy to the situation

for the filtering problem, as mentioned previously. For the individual sequence y let now

λ(y) = lim
|Ω|→∞

lim sup
n→∞

λΩ(yn). (62)

5Specifically, we use the fact implied by the Kolmogorov zero-one law that if the function f(a1, a2, . . .) is invariant to
changes in a finite number of ai-s then f(A1, A2, . . .) is almost surely constant provided A1, A2, . . . are independent.
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There are various results in universal prediction that imply the existence of a predictor P satisfying

lim sup
n→∞

LP (yn) ≤ λ(y) ∀y ∈ Y∞. (63)

One example is the following extension of the incremental parsing predictor in [17, Section V] which

was designed for the binary case and Hamming loss: The predictor sequentially parses the sequence

into distinct phrases, starting with the empty phrase, such that each phrase is the shortest string which

is not a previously parsed phrase. Let yt′ be the string obtained by concatenating all complete phrases

in the parsing of yt, 0 ≤ t′ ≤ t, and denote q(yt) = yt′+1 · · · yt (defined to be the empty string in case

t′ = t). We will refer to q(yt) as the context in which the symbol yt+1 occurs. We let m(yt−1, q) ∈ R
Y

denote the vector whose y-th component is the number of occurrences of symbol y in context q along

yt−1, and we further denote w(yt−1) = m(yt−1, q(yt−1)). The prediction for time t is then given by

Pt(y
t−1)[a] = Pr







b



w(yt−1) + U

√

∑

y∈Y

w(yt−1)[y] + 1



 = a







, (64)

where U is uniformly distributed on
[

0, 6
|Y|

]|Y|
and b(·) is the Bayes Response defined in (19). Clearly,

this predictor can be efficiently implemented by growing a tree. In the appendix, we show that it

satisfies (63). A predictor based on incremental parsing which, as this one, also uses ideas from [18], is

proposed in [33].

5-C FS Filter is Mapped to FS Predictor with Same Number of States

Throughout the remainder of this section, when referring to the prediction setting, we take, as in

Section 4, Y = Z, A = S, and ℓ(z, s) = h(z)T · ρ(s). We note first that if X̂ ∈ GΩ, with associated

reconstruction and next-state functions f and g, respectively, then F X̂ ∈ FΩ with action and next-

state functions f̂(ωt) = f(ωt, ·) and ĝ = g, respectively, and the same initial state. Conversely, F ∈ FΩ

implies that X̂F ∈ GΩ, with the same correspondence between f, g, f̂ and ĝ. This implies also that

{X̂F : F ∈ FΩ} = GΩ. (65)

Theorem 6 For any predictor P satisfying (63),

lim sup
n→∞

L
X̂P (xn, Zn, Un) ≤ φ(x,Z) a.s. ∀x ∈ X∞. (66)

In words, if P is a universal predictor then X̂P is a universal filter.

Proof of Theorem 6: Fixing a finite set of states Ω, it will suffice to show that if

lim sup
n→∞

LP (zn) ≤ lim sup
n→∞

λΩ(zn) ∀z ∈ Z∞ (67)
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then

lim sup
n→∞

L
X̂P (xn, Zn, Un) ≤ lim sup

n→∞
φΩ(xn, Zn) a.s. ∀x ∈ X∞. (68)

To this end, fix x ∈ X∞ and note that

P (|φΩ(xn, Zn) − λΩ(Zn)| ≥ ε) (69)

= P

(∣

∣

∣

∣

∣

min
X̂∈GΩ

L
X̂

(xn, Zn) − min
F∈FΩ

LF (Zn)

∣

∣

∣

∣

∣

≥ ε

)

(70)

= P

(∣

∣

∣

∣

min
F∈FΩ

L
X̂F (xn, Zn) − min

F∈FΩ

LF (Zn)

∣

∣

∣

∣

≥ ε

)

(71)

≤ P

(

max
F∈FΩ

∣

∣L
X̂F (xn, Zn) − LF (Zn)

∣

∣ ≥ ε

)

(72)

≤ 2|FΩ| exp

(

−n
2ε2

L2
max

)

, (73)

where (71) follows by (65), and the last inequality by Theorem 4. Consequently, assuming (67), we

have a.s.

lim sup
n→∞

L
X̂P (xn, Zn, Un) = lim sup

n→∞
L

X̂P (xn, Zn) (74)

= lim sup
n→∞

LP (Zn) (75)

≤ lim sup
n→∞

λΩ(Zn) (76)

= lim sup
n→∞

φΩ(xn, Zn), (77)

where, with repeated use of the Borel-Cantelli lemma, (74) follows from Lemma 1, (75) from Theorem

4, (76) follows from (67), and (77) from (73). 2

5-D Markov Filters are as Good as Finite-State Filters

F will be said to be a Markov or finite-memory predictor of order k, if there exists a mapping f : Yk →
M(A) such that for all t > k and yt−1 ∈ Yt−1

Ft(y
t−1) = f(yt−1

t−k). (78)

We let Mk denote the class of all Markov predictors of order k. In universal prediction, it is known since

[17, 22] that the finite-state performance can be attained by predictors from the much smaller class

of “finite-memory”, or “Markov”, predictors. As we now show, the prediction-filtering correspondence

implies that an analogous fact is true for the filtering problem as well. A Markov filter of order k is a

finite-state filter with state space Ω = Zk and ωt = zt−1
t−k. We let Gk denote the class of finite-memory

filters of order k and let µk(x
n, zn) denote the loss incurred by the best k-th order Markov filter (when
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observing zn while the underlying noiseless sequence is xn), in analogy to (56):

µk(x
n, zn) = min

X̂∈Gk

L
X̂

(xn, zn). (79)

Denoting

µ(x, z) = lim
k→∞

lim sup
n→∞

µk(x
n, zn), (80)

we have the following result:

Theorem 7

µ(x,Z) = φ(x,Z) a.s. ∀x ∈ X∞. (81)

Proof: For any fixed k, the inequality

P

(∣

∣

∣

∣

µk(x
n, Zn) − min

F∈Mk

LF (Zn)

∣

∣

∣

∣

≥ ε

)

≤ 2|Gk| exp

(

−n
2ε2

L2
max

)

(82)

follows analogously as in the chain leading to (73). For any finite set of states Ω, Theorem 2 of [22]

shows the existence of a constant C depending only on the loss function l, such that for all k, n, and

zn

min
F∈Mk

LF (zn) ≤ λΩ(zn) +

(

2C log |Ω|
k + 1

)1/2

, (83)

where λΩ(zn) is the Ω-state predictability defined in (56).6 Inequalities (82) and (83) imply

lim sup
n→∞

µk(x
n, Zn) ≤ lim sup

n→∞
λΩ(Zn) +

(

C log |Ω|
k + 1

)1/2

= lim sup
n→∞

φΩ(xn, Zn) +

(

C log |Ω|
k + 1

)1/2

a.s.,

(84)

where the equality follows from (73) and the Borel-Cantelli lemma. It follows that

µ(x,Z) = lim
k→∞

lim sup
n→∞

µk(x
n, Zn) ≤ lim sup

n→∞
φΩ(xn, Zn) a.s., (85)

implying µ(x,Z) ≤ φ(x,Z) a.s. by the arbitrariness of Ω. Combined with the obvious fact that

µ(x,Z) ≥ φ(x,Z) (for all realizations), we obtain (81). 2

5-E A Universal Incremental Parsing Filter

To conclude this section, we detail the form of the “incremental parsing filter” X̂P obtained when P is

the incremental parsing predictor detailed in Subsection 5-B. To this end, recall that S is the (finite)

set of mappings taking Z into X̂ , i.e., S =
{

s : Z → X̂
}

. For ξ ∈ R
Z , let BH(ξ, ·) ∈ S be defined by

BH(ξ, z) = arg min
x̂

ξT · H · [λx̂ ⊙ πz], (86)

6For p, q ∈ M(Y), letting ∆(p‖q) = pT ·Lb(q)−pT ·Lb(p) = pT ·Lb(q)−Ul(p) (recall notation from Section 3), Theorem 2

of [22] asserts that minF∈Mk
LF (zn) ≤ λΩ(zn) + [(2C log |Ω|)/(k + 1)]δ/2 for δ satisfying ∆(p‖q) ≤ C‖p− q‖δ

1. Inequality
(83) is obtained by taking δ = 1, which is justified since in our finite-alphabet setting ∆(p‖q) ≤ lmax‖p − q‖1 (cf., e.g.,
[37, Lemma 1] for a proof).
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where, for vectors v1 and v2 of equal dimensions, v1⊙v2 denotes the vector obtained by componentwise

multiplication, πz denotes the column of the channel matrix Π corresponding to channel output z, and

λx̂ denotes the x̂th column of the loss matrix Λ. Note that

BH(ξ, ·) = argmin
s∈S

∑

z

ξT · H · [λs(z) ⊙ πz], (87)

since minimizing the sum on the right-hand side of (87) boils down to minimizing the summand with

respect to s(z) for each z. Thus,

BH(ξ, ·) = arg min
s∈S

ξT · H · ρ(s) = arg min
s∈S

∑

z

ξ(z)[hT (z) · ρ(s)]

= arg min
s∈S

∑

z

ξ(z)l(z, s) = arg min
s∈S

ξT · Ls = b(ξ), (88)

where the first equality follows by (87) upon recalling (33) which implies ρ(s) =
∑

z λs(z) ⊙ πz, the

equality before the right-most one follows by recalling from Section 3 that Ls denotes the column of

the matrix of the loss function ℓ corresponding to s, and where the right-most equality follows by the

definition of the Bayes response b(ξ) in (19) (for our particular source and action alphabets, and loss

function). With this notation it is now easy to see, from the definition of the transformation from a

predictor to a filter, that the filter obtained by transforming the incremental parsing predictor detailed

in Subsection 5-B to the filtering domain is equivalent to the filter which parses the source sequence

and assigns contexts and counts exactly as does the incremental parsing predictor. Since the predictor

is the Bayes response to the perturbed w(zt−1) (recall Equation (64)), it follows from (88) that the

reconstruction given by the corresponding filter at time t is

X̂P
t (zt, Ut) = BH







w(yt−1) + T (Ut)

√

∑

y∈Y

w(yt−1)[y] + 1



 , zt



 , (89)

where T (·) is any transformation under which T (Ut) is uniformly distributed on the cube7
[

0,
√

6
|Z|

]|Z|
.

By Theorem 6, this “incremental parsing filter” is universal in the strong sense of satisfying (66), since

the predictor it is based on satisfies (63).

6 Discussion

The problem of competing with Markov filters of a given order in a semi-stochastic setting of an

individual sequence corrupted by memoryless noise has been considered, prior to our work, under the

7Perhaps a slightly less convoluted presentation of this filter would have been to replace T (Ut) with a random variable

uniformly distributed on the cube
[

0,
√

6
|Z|

]|Z|

. The presentation in (89), however, complies with our formal filtering

problem definition, which assumes the randomization variable to be uniform on [0, 1].
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label of “the extended sequential compound decision problem” in [1, 2, 30, 31]. While the main focus

of our work is the association between filtering and prediction, the results herein also generalize the

extended sequential compound decision problem in several directions.

First, we note that Theorem 1 and Corollary 1 apply to a generic finite class of filters, with Markov

filters of a given order as a special case. The setting of the extended sequential compound decision

problem corresponds to Part 1 of Theorem 1 (as applied to Markov filters of a given order). Here, in

Part 2 of the theorem, we also show measure concentration properties. Moreover, as noted at the end

of Section 2, Corollary 1 corresponds to a stronger benchmark.

Second, the assumption in the extended compound decision problem was of a fixed and known

Markov order k. Here, in Section 5, we consider competition against filters of any order, in the spirit

of [40].

For a Markov filter of order k, one can generalize Hannan’s predictor of Theorem 3 just as in

Equation (64), where the context q(yt−1) is replaced with zt−1
t−k. The corresponding filter is thus given

by Equation (89) with, again, w(yt−1) replaced with m(zt−1, zt−1
t−k). Now, notice that in the case

|X | = |Z|, Equation (10) necessitates H = Π−1, implying BH(ξ, z) = arg minx̂ ξT ·Π−1 · [λx̂⊙πz]. This

observation shows, by comparing with display (12) of [37], that the DUDE algorithm (operating on

kth-order double-sided contexts) is given by X̂i = BH

(

m(zn, zi−1
i−k, zi+k

i+1 ), zi

)

, where m(zn, zi−1
i−k, zi+k

i+1 )

is now the vector of counts associated with the number of occurrences of the various noisy symbols in

the double-sided context (zi−1
i−k, zi+k

i+1 ) along the sequence zn. Thus, up to the randomization, the filter

is operating as the DUDE, but using the counts learned from zt−1 only (and in a one-sided manner).

Notice that the above described filter does not utilize all the count information at our disposal at time

t, which is summarized in the vector m(zt, zt−1
t−k). Whether a filter based on the latter vector (which is

intuitively more appealing) is universal, remains open.

The filter that our approach gives rise to is randomized, even when competing with a reference

class of deterministic filters. This is because it inherits the randomization of its corresponding pre-

dictor (which competes with a set of predictors in an individual sequence setting and, hence, need be

randomized). We conjecture, however, that in the filtering setting such randomization is not necessary

since the channel noise can induce the required randomization. Specifically, our conjecture is that the

filter obtained by transforming from the prediction domain the predictor which imitates, deterministi-

cally, the best predictor at each time-point, will successfully compete with any finite reference class of

filters. Van-Ryzin’s results in [27] imply that this conjecture holds for the reference class of constant

“symbol by symbol” filters. Whether or not randomization is necessary for competing with a general

finite reference class of filters remains open.

Similarly, the question of whether or not the incremental parsing filter of Subsection 5-E would

remain universal without the random perturbation term in (89) is also open. In other words, would an
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incremental parsing filter that uses the “single-letter” denoising rule of the DUDE, using the counts

w(zt−1) be universal? We note that in [24], building on the results of [27], a deterministic filter was

constructed and shown to be universal. In that filter, the contexts are also determined by incremental

parsing, but of the “counting sequence” instead of the noisy source sequence itself (and, hence, was

dubbed as the “static IP filter”). This type of parsing guarantees that occurrences of the same context

will not overlap. The idea of avoiding context overlap was pioneered in [30] to obtain a deterministic

filter which competes with the class of Markov filters of a given order k. Based on that filter, it is

possible to compete against Markov filters of any order by letting k increase slowly, as shown in [17]

for the prediction setting. Theorem 7 then shows that this approach, while less elegant than the

incremental parsing one, also competes against the class of FS filters.

7 Conclusion

We considered the problem of filtering a DMC-corrupted individual sequence with respect to an ar-

bitrary reference class of filtering schemes. We established a correspondence between filtering and

prediction that allowed us to capitalize on known results from prediction relative to a set of experts

for constructing a filter competing with any finite reference class of filters. Thus, our work joins the

results of [34] in showing that problems involving sequential decision making in the presence of noise

can be reduced to the problem of noiseless prediction by appropriately modifying the loss function and

the prediction space.

Our results also generalize the extended sequential compound decision problem in several directions:

The special case of Markov filters of a given order is extended to a generic class of experts, we provide

results on measure concentration which result in competition with a stronger benchmark, and we

consider competition against filters of any order, in the spirit of [40].

We confined our interest in this work to the semi-stochastic setting of a noiseless individual sequence.

We point out, however, that analogously as was shown to be the case for denoising in [37], optimality

in the semi-stochastic setting implies optimality in the fully stochastic setting. It is straightforward to

extend the proof ideas in Section VI of [37] to the sequential setting of the present work and show that

any filter which is universal in the sense of satisfying (58) is also universal in the stochastic setting. More

specifically, the asymptotic expected filtering loss of such a filter achieves the distribution-dependent

optimum for any stationary noiseless process, and its actual (rather than expected) filtering loss attains

the optimum performance with probability one if the process is also ergodic.
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Appendix

A Proof of Lemma 2

Fix xn ∈ X n. Consider

E

[

∑

x̂

Λ(xt, x̂)P
X̂F (Zt)[x̂]

∣

∣

∣

∣

∣

Zt−1

]

=
∑

z

∑

x̂

Λ(xt, x̂)P
X̂F (Zt−1z)[x̂]Π(xt, z) (A.1)

=
∑

z

Π(xt, z)
∑

x̂

Λ(xt, x̂)





∑

s:s(z)=x̂

Ft(Z
t−1)[s]



 (A.2)

=
∑

z

Π(xt, z)
∑

s

Λ(xt, s(z))Ft(Z
t−1)[s] (A.3)

=
∑

s

ρxt(s)Ft(Z
t−1)[s] (A.4)

=
∑

s

[δT
xt

· ρ(s)]Ft(Z
t−1)[s] (A.5)

= E

[

∑

s

[h(Zt)
T · ρ(s)]Ft(Z

t−1)[s]

∣

∣

∣

∣

∣

Zt−1

]

(A.6)

= E

[

∑

s

ℓ(Zt, s)Ft(Z
t−1)[s]

∣

∣

∣

∣

∣

Zt−1

]

, (A.7)

where δx ∈ R
X denotes the column vector all of whose components are 0 except for the x-th one which

is 1, equality (A.1) follows from the independence of Zt and Zt−1, equality (A.2) follows from (25), and

equality (A.6) follows again by the independence of Zt and Zt−1, combined with Eh(Zt) = δxt (which

is the requirement in (9)). Subtracting (A.7) from the left hand side of (A.1) gives

E

[

∑

x̂

Λ(xt, x̂)P
X̂F (Zt)[x̂]

∣

∣

∣

∣

∣

Zt−1

]

− E

[

∑

s

ℓ(Zt, s)Ft(Z
t−1)[s]

∣

∣

∣

∣

∣

Zt−1

]

= 0. (A.8)

Now, (7) implies

n
[

L
X̂F (xn, Zn) − LF (Zn)

]

− (n − 1)
[

L
X̂F (xn−1, Zn−1) − LF (Zn−1)

]

=
∑

x̂

Λ(xn, x̂)P
X̂F (Zn)[x̂] −

∑

s

ℓ(Zn, s)Fn(Zn−1)[s], (A.9)

which when combined with (A.8) gives

E
[

n
[

L
X̂F (xn, Zn) − LF (Zn)

]∣

∣Zn−1
]

= (n − 1)
[

L
X̂F (xn−1, Zn−1) − LF (Zn−1)

]

. (A.10)

2
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B Proof of Universality of the Incremental Parsing Predictor

We assume here the generic setting of Section 3.

Theorem 8 Let P denote the incremental parsing predictor described in (64). Then, for all y ∈ Y∞,

n, k,

LP (yn) ≤ min
F∈Mk

LF (yn) +
k · c(yn) · ℓmax

n
+ Bl

√

6|Y|
√

c(yn)

n
, (A.11)

where Mk is the set of Markov predictors of order k (as defined in Subsection 5-D) and c(yn) denotes

the number of phrases in the incremental parsing of yn.

The proof of Theorem 8 consists of applying Theorem 3 in each possible context, similarly as was done

in the proof of [17, Theorem 4].

Proof of Theorem 8: By the incremental parsing rule, each context must have occurred as a phrase in

the parsing of the sequence. Thus, the number of different contexts occurring along yn is c = c(yn).

For 1 ≤ j ≤ c, let mj = m(yn, qj), where qj denotes the j-th context, and let mj =
∑

y∈Y mj[y]. We

divide the sequence yn into subsequences of symbols occurring at the same context (“bins”). Applying

Theorem 3 to each one of the c bins and averaging over the bins, we obtain

LP (yn) ≤ 1

n

c
∑

j=1

[

Ul(m
j) + Bl

√

6|Y|mj

]

(A.12)

≤





1

n

c
∑

j=1

Ul(m
j)



+ Bl

√

6|Y|
√

c

n
, (A.13)

the second inequality following by Jensen’s inequality and the concavity of the square root function.

Now, for any k ≥ 0, we can write

c
∑

j=1

Ul(m
j) =

∑

j∈J1

Ul(m
j) +

∑

j∈J2

Ul(m
j), (A.14)

where J1 is the set of indices of contexts shorter than k, and J2 is the set of indices of contexts of length

k or longer. The fact that only the first k letters in each phrase are allocated to contexts pertaining to

J1 implies
∑

j∈J1

Ul(m
j) ≤ k · c · ℓmax. (A.15)

As for the second sum on the right-hand side of (A.14), it follows from the concavity of Ul(·) that

Ul(v + v′) ≥ Ul(v) + Ul(v
′) for any v, v′ ∈ R

Y . Thus, since the contexts associated with J2 serve as

refinements to contexts of length k, we obtain

∑

j∈J2

Ul(m
j) ≤ n min

F∈Mk

LF (yn). (A.16)
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Inequality (A.11) follows by combining (A.13), (A.14), (A.15) and (A.16). 2

Proof that (63) is satisfied by the incremental parsing predictor in (64): Theorem 8 and the fact that
1
n maxyn c(yn) = O(1/ log n) (cf., e.g., [11, Lemma 12.10.1]) imply

lim sup
n→∞

LP (yn) ≤ lim
k→∞

lim sup
n→∞

min
F∈Mk

LF (yn) = λ(y), (A.17)

where the equality is due to Theorem 2 of [22]. 2
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