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Abstract. We construct forests spanning Z
d, d ≥ 2, that are stationary and directed,

and whose trees are infinite but are as short as possible. For d ≥ 3, two independent copies

of such forests, pointing into opposite directions, can be pruned so as to become disjoint.

From this, we construct in d ≥ 3 a stationary, polynomially mixing and uniformly elliptic

environment of nearest-neighbor transition probabilities on Z
d, for which the correspond-

ing random walk (RWRE) disobeys a certain zero-one law for directional transience.

1. Introduction

Let d ≥ 2 and a : Z
d → Z

d be a random function for which x and
a(x) are always nearest neighbors. If a(a(x)) 6= x for all x and the set
Fa = {{x, a(x)} | x ∈ Z

d} of edges defines a forest in Z
d (that is, the graph

(Zd, Fa) does not have cycles), we call such a random function a an ancestral
function. In particular, if a is an ancestral function, then each connected
component of Fa is infinite, and we can interpret a(x) as the parent or
immediate ancestor of x. The n-th generation ancestor of x, n ≥ 1, is denoted
by an(x) = a(an−1(x)), where a0(x) = x. Then, Ray(x) = {an(x) | n ≥ 0} is
the set of ancestors of x, including x itself, whereas Tree(x) = {y ∈ Z

d | x =
an(y) for some n ≥ 1} is the set of progeny of x. The length of the longest
branch in Tree(x) is defined as

(1) h(x) = sup
{
n ≥ 0 | x = an(y) for some y ∈ Z

d
}

, x ∈ Z
d.

In this paper, we study the tail behavior of h(0) for such forests Fa that
are also stationary with respect to the translations of the lattice Z

d. The
proof of the following theorem is easy.
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2 TREES AND RANDOM WALKS IN RANDOM ENVIRONMENTS

Figure 1. (a) Left figure: Example 1. (b) Right figure: part
of the forest constructed for d = 2 in the proof of Theorem 2.
Note the long straight branches in the latter case.

Theorem 1. There is a constant c1 > 0 depending only on d ≥ 2, such that
for all stationary ancestral functions (a(x))x∈Zd ,

(2) lim inf
n→∞

nd−1
P[h(0) ≥ n] ≥ c1.

Here and throughout the paper, P will denote the probability measure of
the underlying probability space. The corresponding expectation operator
will be denoted by E.

An ancestral function (a(x))x∈Zd is directed if for some z ∈ {±1}d, a(x)−
x ∈ {ziei | i = 1, . . . , d} for all x ∈ Z

d, P-a.s., where e1, . . . , ed denote the
standard basis vectors of R

d. We then refer to z as the direction of a (or
of the corresponding forest). Perhaps the simplest example of a stationary
directed forest spanning Z

d is given in the following example.

Example 1. Define a(x) = x + i(x), where i(x), x ∈ Z
d, are independent

random variables with P[i(x) = ej] = 1/d for j = 1, . . . , d. This defines a
directed forest that spans Z

d. Part of such a forest is shown in Figure 1(a),
in d = 2. (It is not difficult to show that, in d = 2, the forest consists of a
single tree, P-a.s.; see [ZM01].) It follows from the discussion in [ZM01, Pg.
1730], that Tree(0) is enclosed by two directed simple symmetric random
walk paths on the dual lattice, that are independent of each other until they
meet. So, P[h(0) ≥ n] ≥ c2n

−1/2 for some c2 > 0 and all n ≥ 1. (Neither
this last fact nor Example 1 is used in the sequel, except as motivation.)

Example 1 might suggest that trees in stationary spanning forests need to
be longer than suggested in Theorem 1, i.e., that the rate of decay given in
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Theorem 1 is not optimal. However, this is not the case, as is shown by the
following result.

Theorem 2. For each d ≥ 2, there is a stationary and directed ancestral
function (a(x))x∈Zd that is polynomially mixing of order 1, and for which

(3) lim sup
n→∞

nd−1
P[h(0) ≥ n] < ∞.

Here, we are using the following notion of mixing.

Definition 1. Let b = (b(y))y∈Zd be a family of random variables on some
common probability space. For G ⊂ Z

d define the collections of real valued
random variables

(4) Mb
G = {f : |f | ≤ 1, f is measurable with respect to σ(b(y), y ∈ G)} .

For a given γ > 0, b is polynomially mixing (of order γ) if for all finite
G ⊂ Z

d,
sup
s∈Zd

sup
f∈Mb

G, g∈Mb
G+s

|s|γ |cov (f, g)| < ∞ .

Our motivation for studying the above growth properties of random forests
in Z

d was our desire to investigate possible extensions of a conjectured 0 −
1 law for random walk in random environment (RWRE). We proceed to
introduce the RWRE model.

For d ≥ 1, let S denote the set of 2d-dimensional probability vectors, and
set Ω = SZ

d
. We consider all ω ∈ Ω, written as ω = ((ω(x, x + e))|e|=1)x∈Zd,

as an environment for the random walk that we define next. The random
walk in the environment ω, started at z ∈ Z

d, is the Markov chain (Xn)n≥0

with state space Z
d, such that X0 ≡ z, and whose transition probabilities

P z
ω satisfy

(5) P z
ω(Xn+1 = x + e | Xn = x) = ω(x, x + e) , for e ∈ Z

d with |e| = 1 .

An environment ω is called elliptic if ω(x, x + e) > 0 for all x, e ∈ Z
d with

|e| = 1. A random environment ω is called uniformly elliptic if there exists
a so-called ellipticity constant κ > 0, such that P[ω(x, x + e) > κ] = 1 for all
x, e ∈ Z

d with |e| = 1. (See [Zt04] for an introduction to the RWRE model
and its properties.)

One of the major open questions in the study of the RWRE concerns the
so-called 0 − 1 law. Fix a vector ` ∈ R

d, ` 6= 0, and define the events A+(`)
and A−(`) by

A±(`) = { lim
n→∞

Xn · ` = ±∞} .

It has been known since the work of Kalikow [Ka81], that if the random
vectors ω(x, ·), x ∈ Z

d, are i.i.d. and ω is uniformly elliptic, then

E
[
P 0

ω [A+(`) ∪ A−(`)]
]
∈ {0, 1} .
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This was extended in [ZM01, Proposition 3] to the elliptic i.i.d. case.
The 0 − 1 law conjecture4 for RWRE states that if ω(x, ·), x ∈ Z

d, are
i.i.d. and ω is uniformly elliptic, then, in fact,

(6) E
[
P 0

ω [A+(`)]
]
∈ {0, 1} .

Recently, it has been shown that the law of large numbers for the RWRE
follows from (6) for i.i.d. environments ([Zr02]), and for a class of stationary
mixing environments ([RA04]).

When d = 2 and the environment is elliptic and i.i.d., (6) was proved in
[ZM01], using techniques that do not extend to higher dimensions. The same
paper provides an example, based on a construction of a forest spanning Z

2,
of an elliptic, ergodic environment, where (6) fails. However, this environ-
ment is neither uniformly elliptic nor mixing, and not even totally ergodic
(see [Sh96, Pg. 21] for the definition of total ergodicity), and thus the results
in [ZM01] do not contradict the validity of (6) for uniformly elliptic, mixing
environments.

Our attempts to address the validity of (6) in this last setting led to the
tree tail estimates discussed in Theorem 2. Employing these bounds, we
construct a counter-example to (6), in d ≥ 3, with a stationary, uniformly
elliptic, and polynomially mixing environment.

Theorem 3. For d ≥ 3, there is a probability space (with probability measure
P) supporting a stationary, uniformly elliptic and polynomially mixing family
ω = (ω(x))x∈Zd, such that for some constant c > 0 and P-a.a. realizations of
ω,

(7) P 0
ω

[
lim inf
n→∞

Xn ·~1
n

> c

]
> 0 and P 0

ω

[
lim inf
n→∞

Xn · (−~1)

n
> c

]
> 0 .

Here, ~1 = e1 + . . . + ed.

We outline how we use the spanning forest constructed in Theorem 2 to
obtain Theorem 3. The counterexample in [ZM01] was based on constructing

two disjoint directed trees in Z
2 with opposite directions z = ~1 and z =

−~1, and adjusting the transition probabilities of the RWRE on each edge
belonging to one of the trees, so that the drift at x toward the ancestor a(x)
increases as a function of h(x). By appropriately choosing the rate at which

4The origin of this conjecture is a bit murky. For d = 1, it is a consequence of the law
of large numbers in [So75]. Kalikow [Ka81] presented it as a question in d = 2; that case
was settled only recently in the affirmative in [ZM01]. The conjecture has since become
folklore, and is mentioned, e.g., in [Zt02]. Although the question has arisen whether (6)
holds for elliptic i.i.d. environments or for uniformly elliptic ergodic environments, we state
the conjecture here in the weaker form, that is for uniformly elliptic i.i.d. environments.
For d ≥ 3, this is still an open problem.
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the drift increases, one can ensure that the RWRE, when started on one of
the trees, remains on it forever with positive probability, while progressing up
its ancestral line. Because of this, the uniform ellipticity of the environment
cannot be maintained.

When trying to restore uniform ellipticity to the environment, a natural
idea is to add “insulation” around each of the directed trees. The insula-
tion should allow one to specify a uniformly elliptic environment that, with
positive probability, forever traps the walker near the tree. Of course, this
implies that the insulation must grow as one progresses up the ancestral line.
In order to leave room for two directed trees pointing in opposite directions
to have non-overlapping insulation, one needs for the trees not to be “too
large”. When quantifying the notion of “large” needed, one is naturally led
to study the random variable h(x) in (1).

The rest of the paper is organized as follows. Theorems 1 and 2 are proven
in Section 2. In Section 3, we prune the forest obtained in Theorem 2 to make
room for an independent copy of it with the direction z reversed, and then
add insulation to be able to obtain uniform ellipticity of the environment of
the RWRE later on. Geometric properties of insulated rays are investigated
in Section 4. In Section 5, we equip each such insulated ray with an environ-
ment ω that traps the RWRE with positive probability. These environments
are patched together in Section 6 to complete the proof of Theorem 3. After
a short discussion of open problems in Section 7, we prove in the appendix
the mixing properties stated in Theorems 2 and 3.

We conclude the introduction with some conventions and notation. The
p-norm, p ∈ [1,∞] (on either R

d or Z
d) will be denoted by | · |p. Most of the

time, we will use the 1-norm, in which case we will drop the index 1 from
| · |1. The metric d(·, ·) will always refer to | · |, and B(x, r) (respectively,
B∞(x, r)) denotes the closed | · |-ball (respectively, | · |∞-ball) of center x and
radius r in Z

d. The collection of strictly positive integers will be denoted by
N. Throughout the paper, ci, i = 1, 2, 3, . . ., will denote strictly positive and
finite constants that only depend on d and β, where β is introduced in (23).

2. Spanning Z
d with short trees

In this section, we provide the proofs of Theorems 1 and 2. We begin with
the easy proof of Theorem 1.

Proof of Theorem 1. Choose c1 > 0 such that for all n ≥ 1,

c1#{x ∈ Z
d | |x| = n} ≤ nd−1.

Since (a(x))x∈Zd is stationary, so is (h(x))x∈Zd , and therefore

(8) nd−1
P[h(0) ≥ n] ≥ c1

∑

|x|=n

P[h(x) ≥ n], for n ≥ 1.
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If x is an ancestor of 0, then h(x) ≥ |x|. Consequently, the right side of (8)
is at least

c1

∑

|x|=n

P[x ∈ Ray(0)] = c1E [#{x ∈ Ray(0) | |x| = n}] ≥ c1,

where the inequality holds since Ray(0) contains at least one x with |x| = n.
The bound (2) follows. �

The remainder of this section is devoted to demonstrating Theorem 2. We
begin with the construction of the ancestral function a referred to there. Fix
γd > 0 such that for all n ≥ 1,

(9) #{x ∈ N
d | |x| = n} ≥ γdn

d−1 .

Also, let n0 ∈ N and θd be finite constants such that

(10) nd
0 ≥ θd ≥ dd

γd

.

Let L(x) > 1, x ∈ Z
d, be i.i.d. random variables whose distribution is atom-

less and satisfies

(11) P [L(0) > t] = θdt
−d for all t ≥ n0.

We define, for each t ≥ 1, the umbrella

Ut =
d⋃

i=1

Ui,t , where

Ui,t = {x ∈ [0, t]d | xi = 0, and xj > 0 for j 6= i} , i = 1, . . . , d,

are the sides of the umbrella. Note that the umbrella Ut contains exactly
those points in Z

d through which one can enter the box [1, t]d∩Z
d by moving

one step in one of the directions e1, . . . , ed.
The idea of the construction of the ancestral function a is the following.

Imagine the ancestral line as being given by rainwater that always follows a
directed nearest neighbor flow on Z

d. Rain is leaving each lattice point in all
of the positive coordinate directions and is being deflected by the umbrellas
y +UL(y), y ∈ Z

d. The umbrellas will protect most of the points in the cubes
y + [1, L(y)]d from the rain, as follows. Water that has reached a vertex x is
blocked from flowing to x+ei by any umbrella whose side y+Ui,L(y) contains
x. However, for every direction e1, . . . , ed, there is an umbrella whose side
y + Ui,L(y) 3 x blocks that direction. This “battle” is lost by the direction ei

for which the largest umbrella in x blocking that direction is smallest among
all directions, and the water will flow in this direction (See Figure 2 for an
illustration in d = 2.)
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L=8

L=7

L=3

L=6

L=11

Figure 2. Water will follow the thick line if there are no
umbrellas around larger than the ones shown.

More precisely, we define, for all i = 1, . . . , d and all x ∈ Z
d,

(12) λi(x) = sup
y∈Zd:x∈y+Ui,L(y)

L(y) ,

which is the length of the largest umbrella whose i-side passes through x.
Since L(0) > 1 a.s., we have x ∈ x − ej + Ui,L(x−ej) a.s., for each j 6= i.
Consequently, the set on the right side of (12) is non-empty, and λi(x) is
greater than 1. The following lemma implies that λi(x) is also a.s. finite.

Lemma 4. There is a constant c3, such that for all i ∈ {1, . . . , d} and all
t > n0,

P [λi(0) > t] ≤ c3t
−1.(13)

Proof. It suffices to show that (13) holds for t large. Let t1 > n0 be chosen

large enough so that (1 − θdt
−d)td/θd > 1/3 for t > t1. Set

Dn
i = {y ∈ Z

d | |y|∞ = n, yi = 0, yj < 0 for all j 6= i}.
By the definition of λi(x) and the independence of L(y), y ∈ Z

d, one obtains
for t > t1, that

P[λi(0) ≤ t] = P [L(y) ≤ t for all y ∈ −Ui,t]
∏

n>t

P
[
L(y) < n for all y ∈ Dn

i

]

(11)

≥
(
1 − θdt

−d
)btcd−1 ∏

n>t

(1 − θdn
−d)c4nd−2

≥ 3−θd/t−
P

n>t c5n−2 ≥ 3−c6t−1 ≥ 1 − c3t
−1,
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for appropriate constants c3, . . . , c6. �

Since the distributions of λi(x) and L(x) are atomless, there is an a.s.
unique I(x) ∈ {1, . . . , d}, for which

λI(x)(x) = min{λi(x) | i = 1, . . . , d}.
This is the direction with the smallest “protecting” umbrellas. Any umbrella
passing through x which is perpendicular to that direction will be penetrated
at that site, in the sense that water will flow from x in that direction. We
now set, for x ∈ Z

d, a(x) = x + eI(x). Note that since a is directed with

z = ~1, a is an ancestral function; this is the ancestral function we will use to
demonstrate Theorem 2. The edges {x, a(x)}, x ∈ Z

d, that are “wetted by
the rain”, define a random forest of infinite trees that spans Z

d (as in Figure
1(b), for d = 2).

We still need to demonstrate the tail estimates and mixing properties in
the statement of Theorem 2. As a first step, the next lemma bounds the
probability that an umbrella, with sidelength at least t, has been penetrated
at any given site.

Lemma 5. For some constant c7 and all i ∈ {1, . . . , d}, t > n0, and z ∈ Ui,t,

P[I(z) = i, L(0) > t] ≤ c7t
−2d+1 .(14)

Proof. Denote by Ai(z) the σ-field generated by the random variables L(u),
with ui = zi and uj 6= zj for all j 6= i. Note that Ai(z), i = 1, . . . , d, are
independent. Moreover, λi(z) is measurable with respect to Ai(z), and L(0)
is measurable with respect to Ai(z) if z ∈ Ui,n. Therefore, for i = 1, . . . , d
and z ∈ Ui,n,

P[I(z) = i, L(0) > t]

= E

[
P

[
λi(z) < min

j 6=i
λj(z)

∣∣∣ Ai(z)

]
; L(0) > t

]

= E

[
∏

j 6=i

P [λi(z) < λj(z) | Ai(z)] ; L(0) > t

]
.

By (13) (for the first inequality), and by (11) and the independence of (L(x))x

(for the second inequality), this is

≤ E

[(
c3λi(z)−1

)d−1
; L(0) > t

]
≤ c7t

−(d−1)−d .

because L(0) > t implies λi(z) > t. �

We can now demonstrate Theorem 2.
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Proof of Theorem 2. It remains to show that the ancestral function (a(x))x

constructed above is polynomially mixing of order 1 and satisfies the bound
in (3). Here, we demonstrate (3); the demonstration of polynomial mixing
is deferred to Lemma 15 in the appendix. (The lemma in fact deals with a
slightly stronger notion of mixing.)

We begin the proof of (3) by introducing some notation. Denote by

Sn
m = {x ∈ Z

d | m ≤ x ·~1 ≤ n} , m, n ∈ Z,

the slab bounded by the hyperplanes perpendicular to ~1 and passing through
m~1 and n~1. (This slab is empty if m > n.) Also, set

Sn,+
m = Sn

m ∩ N
d , Sn,−

m = Sn
m ∩ −N

d .

We define the random variables

(15) Mn = sup
{
m ∈ {n0, . . . , n} | ∃x ∈ S−m,−

−m with L(x) > m
}

, n ≥ 1,

where we set Mn = n0 − 1 if the set in (15) is empty.
We will show that

(16) P[h(0) > m, Mn = m] ≤ c8n
−d , m = n0 − 1, . . . , n.

This implies

P[h(0) > n] ≤
n∑

m=n0−1

P [h(0) > m, Mn = m] ≤ c9n
−d+1,

from which (3) follows. The proof of (16) is divided into the degenerate case,
m = n0−1, and the general case, m = n0, . . . , m, which involves considerably
more work.

We first consider the case m = n0−1. Then, there is no umbrella y+UL(y),
with n0 ≤ |y| ≤ n, that protects the origin. Therefore,

P[h(0) > m, Mn = n0 − 1] ≤ P[Mn = n0 − 1]

= P
[
for all m = n0, . . . , n and y ∈ S−m,−

−m , L(y) ≤ m
]

(11)
=

n∏

m=n0

(
1 − θd

md

)#S−m,−
−m (9)

≤
n∏

m=n0

(
1 − θd

md

)(md/θd)(γdθd/m)

.

Since (1− x−1)x ≤ e−1 for x ≥ 1, the last expression is, by (10) and (11), at
most

(17) exp

(
−dd

n∑

m=n0

m−1

)
≤ exp

(
−dd

∫ n

n0

x−1 dx

)
= c10n

−d

for appropriate c10. This implies (16) for m = n0 − 1, if one takes c8 ≥ c10.
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We now demonstrate (16) for the general case m = n0, . . . , n. We will
employ the events

An
m(x, r) = {L(y) ≤ −y·~1+r for all y ∈ Sn

m∩(x−N
d)}, m, n, r ∈ Z, x ∈ Z

d .

Since the proof is long, we break it into three parts. The first part consists
of showing

P[h(0) > m, Mn = m](18)

≤
d∑

s=1

E

[
#
{
x ∈ Sm,+

m | h(x) > m
}

; L(0) > m; A−1
m−n

(⌊m

d

⌋
es, m

)]
.

In the next part, we will decouple the events appearing in this expectation,
whose probabilities we will then compute.

To prove (18), first note that by definition (15),

P[h(0) > m, Mn = m]

= P
[
h(0) > m, L(x) > m for some x ∈ S−m,−

−m ,

L(y) ≤ −y ·~1 for all y ∈ S−m−1,−
−n

]

≤
∑

x∈S−m,−
−m

P
[
h(0) > m, L(x) > m, A−m−1

−n (0, 0)
]
.

By stationarity, this equals
∑

x∈S−m,−
−m

P
[
h(−x) > m, L(0) > m, A−1

m−n(−x, m)
]

=
∑

x∈Sm,+
m

P
[
h(x) > m, L(0) > m, A−1

m−n(x, m)
]

≤
d∑

s=1

∑

x∈Sm,+
m

xs=|x|∞

P
[
h(x) > m, L(0) > m, A−1

m−n(x, m)
]
.

Observe that (m/d)es ≤ x coordinatewise whenever x ∈ Sm,+
m and xs = |x|∞.

For such x, bm/dces − N
d ⊆ x − N

d. (See Figure 3 for an illustration.)
Consequently, the above double sum is at most

d∑

s=1

∑

x∈Sm,+
m

xs=|x|∞

P

[
h(x) > m, L(0) > m, A−1

m−n

(⌊m

d

⌋
es, m

)]
,

which yields (18).
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S−n+m
−1

L(0)
U

x

me1

z

0

x− NI d

NI d
11 m/d e −  m/d e

Figure 3. The dark region (bm/dce1 − N
d)∩ S−1

m−n is always
included in the lightly shaded region (x−N

d)∩S−1
m−n, regardless

of where x is located on the bold line. The condition h(x) > m
implies that Tree(x) extends past the box on whose diagonal
x is located.

We next perform the decoupling previously mentioned, which leads to (20)
below. If x ∈ Sm,+

m and h(x) > m, then Tree(x) is not contained in the cube
[1, m]d (see Figure 3). That is, Tree(x) must possess at least one branch
which penetrates the umbrella Um that “protects” the cube. Consequently,

#
{
x ∈ Sm,+

m | h(x) > m
}

≤ #
( ⋃

z:z∈UI(z),m

Ray(z) ∩ Sm,+
m

)

≤
∑

z:z∈UI(z),m

# (Ray(z) ∩ Sm
m) =

d∑

i=1

∑

z∈Ui,m

1I(z)=i .

In the last step, we used the fact that rays are directed (in the direction ~1) and
therefore can intersect the hyperplane Sm

m at exactly one site. Substituting
this into (18) yields

P[h(0) > m, Mn = m](19)

≤
d∑

s=1

d∑

i=1

∑

z∈Ui,m

P

[
I(z) = i, L(0) > m, A−1

m−n

(⌊m

d

⌋
es, m

)]
.
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To get (16), we would like the first two events inside the last probability
to be independent of A−1

m−n(bm/dces, m). Unfortunately, this is not quite
true, but will be true if we replace it by the larger event B−1

m−n(bm/dces, m),
where

B−1
m−n(bm/dces, m)

=

{
L(y) ≤ m − y ·~1 for all y ∈

(
S−1

m−n ∩
(⌊m

d

⌋
es − N

d
))

\
d⋃

j=1

{x | xj = zj}
}

.

Indeed, for z ∈ Ui,m, I(z) and L(0) are measurable with respect to the σ-field
generated by the random variables L(x) where x has at least one coordinate
in common with z, whereas B−1

m−n(bm/dces, m) is independent of L(x) for
such x. Therefore, we obtain

P[h(0) > m, Mn = m](20)

≤
d∑

s,i=1

∑

z∈Ui,m

P [I(z) = i, L(0) > m] P
[
B−1

m−n(bm/dces, m)
]
.

As the last step in showing (16), we bound the probabilities appearing on
the right side of (20). By Lemma 5, (11), and independence of (L(x))x, the
right side of (20) is at most
(21)

d∑

s,i=1

∑

z∈Ui,m

c7m
−2d+1

n−m∏

k=2

(
1 − θd

(m + k)d

)#((S−k
−k∩(bm/dces−Nd))\

Sd
j=1{x|xj=zj})

,

where we have dropped the factor for k = 1.
We proceed to simplify (21) by estimating the cardinality of the sets in

the exponent of the above product. For all m ≥ 1, k ≥ 2, and s = 1, . . . , d,

#
(
S−k
−k ∩

(⌊m

d

⌋
es − N

d
)) (9)

≥ γd

(⌊m

d

⌋
+ k
)d−1

≥ γd

(
m + (k − 1)d

d

)d−1

≥ γdd
−d+1 (m + k)d−1

(10)

≥ d

θd
(m + k)d−1 .

(For the first inequality, note that the set on the left side consists of those
z ∈ Z

d with z < bm/dces coordinatewise and d(z, bm/dces) = bm/dc + k.)
Similarly,

#

(
S−k
−k ∩

(⌊m

d

⌋
es − N

d
)
∩

d⋃

j=1

{x | xj = zj}
)

≤ c11

(m

d
+ k
)d−2

.
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The expression in (21) is consequently at most

d∑

s,i=1

∑

z∈Ui,m

c7m
−2d+1

n−m∏

k=2

(
1 − θd

(m + k)d

)d(m+k)d−1/θd

×
∏

k≥2

(
1 − θd

(m + k)d

)−c11(m
d

+k)
d−2

.(22)

One easily checks that the infinite product in (22) is less than a constant
independent of m because of the difference of 2 in the exponents d and d−2 of
k. (Recall that θd < (m+k)d for k ≥ 2, by (10).) Applying (1−x−1)x ≤ e−1,
for x ≥ 1, to the terms of the finite product, the right side of (22) is at most

d2(#U1,m)c12m
−2d+1 exp

(
−d

n−m∑

k=2

(m + k)−1

)

≤ c13m
d−1m−2d+1 exp

(
−d

n∑

k=m+2

k−1

)

≤ c13m
−d exp

(
−d

∫ n

m+2

t−1 dt

)
= c13

(
m + 2

m

)d

n−d ≤ c14n
−d.

This bounds P [h(0) > m, Mn = m] for m = n0, . . . , n. Together with (17),
this completes the proof of (16) if one chooses c8 = max(c14, c10). �

3. Pruning and insulating trees

For the remainder of the paper, we will consider arbitrary ancestral func-
tions (a(x))x∈Zd satisfying the statement of Theorem 2. Eventually, when
studying mixing properties (in the proof of Theorem 3 and in the appendix),
we will need to use the explicit construction of ancestral functions provided
in Section 2.

In this section, we prune the trees constructed in Theorem 2, with an eye
toward the construction of an environment for the RWRE. This will allow
us to build wide enough channels to trap the random walker and direct it in
certain chosen directions. Throughout the remainder of the paper, we will
assume d ≥ 3 and employ a constant β satisfying

(23) 0 < β <
d − 2

2d
.

(In order to guarantee mixing properties, we will eventually take β small
enough so that the conclusion of Lemma 19, in the appendix, holds.)

For each y ∈ Z
d, we consider the ball B(y, h(y)β), where h is defined in

(1). (Such balls will serve as the “insulation” alluded to in the introduction.)
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Any given x ∈ Z
d may be covered by a number of balls; we set

(24) H(x) = sup
{
h(y) | x ∈ B

(
y, h(y)β

)}
.

We first estimate the tail behavior of H(0).

Lemma 6. For appropriate c17,

(25) lim sup
n→∞

n(1−β)d−1
P[H(0) ≥ n] ≤ c17 < ∞ .

Proof. For t = nβ chosen large enough,

P
[
H(0)β ≥ t

]
= P

[
0 ∈ B

(
y, h(y)β

)
and h(y)β ≥ t , for some y ∈ Z

d
]

≤
∑

m≥0

∑

|y|=m

P
[
h(y)β ≥ m ∨ t

]

≤
∑

|y|≤btc

P
[
h(0) ≥ t1/β

]
+
∑

m>btc

∑

|y|=m

P
[
h(0) ≥ m1/β

]
.

By (3) of Theorem 2, this is

≤ c15t
dt(1−d)/β +

∑

m>btc

c16m
d−1m(1−d)/β ≤ c17t

d+(1−d)/β

for appropriate c15, c16, c17, since d − 1 > βd by (23). This implies (25). �

Recall that Theorem 2 guarantees the existence of a directed stationary
forest with certain specific properties. By relabeling the coordinate axes, we
can choose the directions in which the rays of this forest grow, i.e., we can
specify z ∈ {±1}d such that, for each x ∈ Z

d, a(x)−x ∈ {ziei | i = 1, . . . , d}.
We may therefore assume that there exist, on the same probability space,
two independent directed forests, Fi = {{x, ai(x)} | x ∈ Z

d}, i = 1, 2, with
ancestral functions ai, such that a1(x) − x = ej for some j = 1, . . . , d and
a2(x)− x = −ej for some j = 1, . . . , d. These two forests “grow” in opposite

directions ~1 and −~1. We define the corresponding functions hi and Hi in the
same way as above, using their respective forests Fi.

We proceed to “prune” the trees in both forests in such a way that each
pruned forest will consist solely of infinite trees, and these forests will be
“well separated”. (The forests will no longer span Z

d.) To this end, we
define, for (i, j) = (1, 2), (2, 1),

T̃i =
{
x ∈ Z

d
∣∣ hi (x) > Hj(y) for y ∈ B

(
x, hi(x)β

)}
.

We prune the original forests Fi by removing the vertices Z
d\T̃i. This will

split any tree in such a forest into a number of finite and at most one infinite
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piece. After removing the finite branches, we are left with the set of (apriori,
possibly empty) directed infinite pruned trees

Ti =
{

x ∈ T̃i

∣∣ an
i (x) ∈ T̃i for all n ≥ 0

}
.

In order for the transition probabilities we are going to construct to be
uniformly elliptic, we insulate the forests Ti by defining, for i = 1, 2,

(26) Bi =
⋃

x∈Ti

B
(
x, hi(x)β

)
.

The next proposition shows that the sets B1 and B2 are disjoint and not
empty.

Proposition 7. B1 and B2 are a.s. disjoint. There exist a.s. Ni ∈ N,
i = 1, 2, such that an

i (0) ∈ Ti for all n ≥ Ni. In particular, Bi 6= ∅ a.s.

Proof. To prove the disjointness of B1 and B2, assume instead that x ∈
B1 ∩ B2. Then, there exist x1 ∈ T1 and x2 ∈ T2 so that x ∈ B

(
xi, hi(xi)

β
)

for i = 1, 2. Since x ∈ B
(
x1, h1(x1)

β
)
, one has H1(x) ≥ h1(x1). Moreover,

since x2 ∈ T̃2 and x ∈ B
(
x2, h2(x2)

β
)
, one has H1(x) < h2(x2) by the

definition of T2. Consequently, h2(x2) > h1(x1). Analogously, one obtains
h1(x1) > h2(x2), which is a contradiction and proves B1 ∩ B2 = ∅.

We will next show that

(27) lim sup
k→∞

k(1−2β)d−2
P

[
an

i (0) /∈ T̃i for some n ≥ k
]

< ∞ , i = 1, 2,

which implies the second claim since, by (23), (1− 2β)d− 2 > 0. To demon-
strate (27), let k ≥ 0 and (i, j) = (1, 2) or (i, j) = (2, 1). Then,

P

[
an

i (0) /∈ T̃i for some n ≥ k
]

≤
∑

n≥k

P

[
Hj(y) ≥ hi (a

n
i (0)) for some y ∈ B

(
an

i (0), hi (a
n
i (0))β

)]

≤
∑

n≥k

E

[ ∑

y∈B
“

an
i (0),hi(an

i (0))
β

”

P
[
Hj(y) ≥ hi (a

n
i (0)) | σ(ai(x), x ∈ Z

d)
] ]

.(28)

The number of terms in the inner sum is bounded above by c18(hi(a
n
i (0))βd for

appropriate c18. Moreover, Hj is measurable with respect to σ(aj(x), x ∈ Z
d),

which is independent of σ(ai(x), x ∈ Z
d). Hence, we can use Lemma 6 to

estimate each such term from above, and obtain that (28) is at most
∑

n≥k

E

[
c19hi (a

n
i (0))1−(1−2β)d

]
≤
∑

n≥k

c19n
1−(1−2β)d ,

for appropriate c19, since hi(a
n
i (0)) ≥ n. Since 1 − (1 − 2β)d < −1 by (23),

the inequality (27) follows. �
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Since they are subsets of Fi, the sets Πi = {(x, ai(x)) | x ∈ Ti}, i =
1, 2, are also forests. By Proposition 7, they almost surely contain infinite
rays that point in opposite directions, and they do not have any vertices
in common. Moreover, the set of immediate ancestors of vertices in Ti is
contained in Bi, because, for any x ∈ Ti, hi(x) ≥ 1 (since Hj(x) ≥ 0) and
hence ai(x) ∈ B(x, hi(x)β). Consequently, no vertex in Π1 is connected to a
vertex in Π2, and so, Π1 ∪ Π2 is also a forest (although it does not span all
of Z

d). With a slight abuse of notation, we say that the ancestral function
of Π1 ∪ Π2 is given by

(29) α(x) =

{
a1(x) if x ∈ T1,
a2(x) if x ∈ T2,

where α(x) is defined only for x ∈ T1 ∪ T2.

4. Geometry of insulated rays

In this section, we introduce terminology and provide estimates that we
will need when analyzing the RWRE environment in Sections 5 and 6. For
i = 1, 2, let ∂Ti = {z ∈ Ti | z 6= α(x) for all x ∈ Ti} denote the set of leaves
of the infinite pruned tree Ti. By (26),

Bi =
⋃

z∈∂Ti

B
(
αn(z), (hi(α

n(z)))β
)

, i = 1, 2.

Instead of Bi, we will work with the somewhat simpler sets (see Figure 4)

(30) Ci =
⋃

z∈∂Ti

InsRay(z),

where

(31) InsRay(z) =
⋃

n≥0

B
(
αn(z), nβ

)

is the insulated ray emanating from z ∈ ∂Ti. (Since ∂T1 and ∂T2 are disjoint,
there is no need to index InsRay(z) or Ray(z) with i.) Because hi(α

n(z)) ≥
n, Ci ⊆ Bi. In particular, since B1 and B2 are disjoint by Proposition 7, so
are C1 and C2.

For z ∈ ∂T1 ∪ ∂T2 and x ∈ Z
d, we define two quantities uz(x) and vz(x),

each measuring the “effective” insulation at x in a slightly different way. We
set

(32) uz(x) = d(x, InsRay(z)c) and vz(x) = sup
n≥0

(
nβ − |x − αn(z)|

)
.

One can check that

(33) vz(x) ≤ sup
n≥0

d
(
x, B(αn(z), nβ)c

)
≤ uz(x) .
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z

Figure 4. Ci is shaded and InsRay(z) is darkly shaded.

Also, let nz(x) be the largest value of n at which the supremum in (32) is
attained, that is

(34) nz(x) = max{n ≥ 0 : nβ − |x − αn(z)| = vz(x)} .

Since uz(x) < ∞ and β < 1, nz(x) < ∞, a.s. Also,

(35) |vz(x) − vz(x + e)| ≤ 1

for all x, e ∈ Z
d with |e| = 1; this follows from

vz(x) = nz(x)β −
∣∣x − αnz(x)(z)

∣∣

≤ nz(x)β −
∣∣x + e − αnz(x)(z)

∣∣ + |e| ≤ vz(x + e) + 1.

We will need the following estimates involving uz(x) and x− z in Sections
5 and 6.

Lemma 8. For appropriate c20, and all z ∈ ∂Ti, i = 1, 2, and x ∈ InsRay(z),

(36) |x − z| ≤ 2Hi(x)

and

(37) uz(x) ≤ c20

(
(−1)i+1(x − z) ·~1

)β

.

Consequently, for appropriate c21,

(38) uz(x) ≤ c21Hi(x)β.

Proof. Inequality (38) follows from (36) and (37). For the proof of (36), recall
that since x ∈ InsRay(z) for z ∈ ∂Ti, |x − am

i (z)| ≤ mβ for some m ≥ 0; in
particular, Hi(x) ≥ hi(a

m
i (z)) ≥ m. Therefore,

|x − z| ≤ |x − am
i (z)| + |am

i (z) − z| ≤ mβ + m ≤ 2m ≤ 2Hi(x).
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The argument for (37) is longer. Set n = (−1)i+1(x − z) · ~1; n ≥ 0 since
Ray(z) is directed. Moreover, we may assume n ≥ 1, because n = 0 implies
that x = z, in which case uz(x) = 0 and (37) is trivial.

We introduce a vector w 6= 0, as follows. For x /∈ Ray(z), one has x 6=
αn(z), in which case we set w = x − αn(z). Then,

w ·~1 = (x − z) ·~1 + (z − αn(z)) ·~1 = (−1)i+1(n − n) = 0 ,

since (z − αn(z)) · ~1 = (−1)in. For x ∈ Ray(z), one has x = αn(z); we then

set w = e1 − e2 6= 0, which is also orthogonal to ~1.
We choose c20 large enough so that

(39) c22 = ((c20 − 2)d−2)1/β satisfies c−β
22 (c22 − 1) >

√
d ,

and set

y = x +

⌊
c20n

β

|w|

⌋
w = αn(z) +

(
1{x /∈ Ray(z)} +

⌊
c20n

β

|w|

⌋)
w.

In order to demonstrate (37), it is enough to show y /∈ InsRay(z), since then
uz(x) ≤ |x − y| ≤ c20n

β.
We argue by contradiction and assume that y ∈ InsRay(z). We will show

that there exists an m such that both

(40) m ≥ c22n

and

(41) m ≤
(

c22

√
d

c22 − 1

)1/(1−β)

must hold. This is not possible because of our choice of c22 in (39) and n ≥ 1.
We choose m ≥ 0 so that

mβ ≥ |y − αm(z)|(42)

=

∣∣∣∣α
n(z) − αm(z) +

(
1{x /∈ Ray(z)} +

⌊
c20n

β

|w|

⌋)
w

∣∣∣∣ ,

and show that m satisfies (40) and (41). Since Ray(z) is directed, the co-
ordinates of αn(z) − αm(z) all have the same sign. On the other hand,
|wj| ≥ d−1|w| must hold for at least one of the coordinates wj of w. There
is also at least one other coordinate wk of w with sign opposite to that of wj

and with |wk| ≥ d−2|w|, because w·~1 = 0. Therefore, either wj or wk has sign
that is the opposite of that of the corresponding coordinate of αn(z)−αm(z),
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and has absolute value at least d−2|w|. So, by (42),

mβ ≥
(
1{x /∈ Ray(z)} +

⌊
c20n

β

|w|

⌋)
d−2|w|

≥
(

c20n
β

|w| − 1{x ∈ Ray(z)}
)

d−2|w| ≥ (c20 − 2)d−2nβ .

Because of our choice of c22 in (39), this implies (40).
We still need to show (41), which we do by bounding |y − αm(z)| from

below. One has the string of inequalities

|y − αm(z)| ≥ |y − αm(z)|2 ≥ |(y − αm(z)) ·~1|/
√

d

= |(αn(z) − αm(z)) ·~1|/
√

d = |m − n|/
√

d ≥ (1 − 1/c22)m/
√

d ,

where the second inequality follows from Cauchy-Schwartz and the last in-
equality follows from (40) and c22 > 1. Along with (42) this implies (41),
and completes the proof of (37). �

5. Environment attached to an insulated ray

In this section, we construct, for every insulated ray InsRay(z), z ∈ ∂T1 ∪
∂T2, a uniformly elliptic environment which forever traps the walk inside
InsRay(z) with positive probability. This is achieved by both “pushing” the
walk toward Ray(z) and in a direction parallel to Ray(z) in which InsRay(z)
widens. Proposition 7 is the main result of the section; most of the work is
done in Lemmas 10 and 11.

These two directions are determined as follows, for any x ∈ InsRay(z).
The parallel motion of the walk consists of jumping from x to x + rz(x),
where

(43) rz(x) = αnz(x)+1(z) − αnz(x)(z)

and nz(x) is given by (34). To define the second direction sz(x), note that
since

(44) x ∈ Ray(z) iff x = αnz(x)(z) ,

there exists, for any x /∈ Ray(z), a (deterministically chosen) unit vector
sz(x) ∈ Z

d so that

(45) |x + sz(x) − αnz(x)(z)| ≤ |x − αnz(x)(z)| − 1;

moving from x to x + sz(x) takes the walk closer to αnz(x)(z). For x ∈
Ray(z), the choice of the unit vector sz(x) is arbitrary. (See Figure 5 for an
illustration of both motions, for z ∈ B1.)
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z

x

x+s (x)z α  n z(z)  

α  n z(z)  +r (x)

Ray(z)

z

Figure 5

For z ∈ ∂T1 ∪ ∂T2, we define the environment ωz attached to Ray(z) by
setting, for e ∈ Z

d with |e| = 1,
(46)

ωz(x, x+e) =

{
3
4
1e=rz(x) + 1

5
1e=sz(x) +

1e/∈{rz(x),sz(x)}

20(2d−1−1rz(x)6=sz(x))
, if x ∈ InsRay(z),

1
2d

, if x /∈ InsRay(z).

That is, when x ∈ InsRay(z), the walk moves with probabilities 3/4 and 1/5
in the directions rz(x) and sz(x), respectively (if the directions are differ-
ent), and uniformly chooses one of the other directions, with the remaining
probability; when x 6∈ InsRay(z), the motion of the walk is symmetric.

The environment ωz ∈ Ω is uniformly elliptic since for x, e ∈ Z
d, with

|e| = 1, and for κ = (20(2d − 1))−1,

(47) ωz(x, x + e) ≥ κ.

As mentioned in the beginning of the section, ωz has been constructed so
that

Tz = inf{n ≥ 0 : Xn 6∈ InsRay(z)}
is infinite with positive probability. For the proof of this, we need to distin-
guish when the walk is and is not on Ray(z). To this end, we introduce a
sequence of stopping times defined by τ0 = 0 and

τn+1 = inf {k > τn | Xk ∈ Ray(z)} , n ≥ 0.

We will employ two martingale estimates in Lemma 10. Both use Azuma’s
inequality, a version of which we recall in Lemma 9.

Lemma 9 (Azuma’s inequality). For every b1, b2 ∈ (0,∞), there exist b3, b4, b5

∈ (0,∞) so that the following holds. If (Yn)n≥0 is a sequence of random vari-
ables on a probability space with measure P and expectation E, and τ is a
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(possibly infinite) stopping time w.r.t. that sequence such that P -a.s., Y0 = 0,
|Yn+1 − Yn| ≤ b1, and

(48) E[Yn+1 − Yn | σ(Ym, m ≤ n)] ≥ b2 on the event {n ≤ τ},

then

P [Yn < b3n, n ≤ τ ] ≤ b4e
−b5n for all n ≥ 0.

Lemma 10 will be used in the proof of Lemma 11.

Lemma 10. For appropriate c23, c24 and c25, and all i ∈ {1, 2}, z ∈ ∂Ti,
x ∈ InsRay(z), and n ≥ 0, P-a.s.,

(49) P x
ωz

[
(−1)i+1(Xn − x) ·~1 < c23n , Tz ≥ n

]
≤ c24 e−c25n

and

(50) P x
ωz [Tz = n < τ1] ≤ c24 e−c25(uz(x)∨n) .

Roughly speaking, (49) says that the speed of the walk is bounded be-

low in the direction (−1)i+1~1, as long as the walk remains in InsRay(z),
whereas (50) bounds the probability of leaving InsRay(z)\Ray(z) through
the boundary of InsRay(z).

Proof of Lemma 10. Set Fn = σ(Xk, k ≤ n). For the demonstration of (49),

it suffices to verify that Yn = (−1)i+1(Xn −x) ·~1 satisfies the assumptions of
Azuma’s inequality, Lemma 9, with P = P x

ωz and τ = Tz. Except for (48),
all assumptions are obviously satisfied, with b1 = 1. The bound (48) is also
satisfied since, on the event {Tz > n},

Ex
ωz

[
(−1)i+1(Xn+1 − Xn) ·~1 | Fn

]
=

∑

e∈Zd,|e|=1

(−1)i+1ωz(Xn, Xn + e)e ·~1

≥ (−1)i+1 3

4
rz(Xn) ·~1 −

∑

e6=rz(Xn)

ωz(Xn, Xn + e) =
3

4
− 1

4
> 0.(51)

We now demonstrate (50). Since (Xn)n is a nearest-neighbor walk, Tz ≥
uz(x), and so the statement is trivial for n < uz(x). Set Yn = vz(Xn)−vz(x).
For n ≥ uz(x), on {Tz = n < τ1}, Xn /∈ InsRay(z), and so by (33), Yn ≤
uz(Xn) = 0.

We first consider x ∈ InsRay(z)\Ray(z). For (50), it suffices to check (48)
in Azuma’s inequality, with τ = τ1∧Tz and P = P x

ωz , since the other assump-
tions are obviously satisfied. For this, we consider y ∈ InsRay(z)\Ray(z),
and estimate the value of vz at the nearest neighbors of y in terms of vz(y).
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For the increment rz(y),

vz(y + rz(y))
(32)

≥ (nz(y) + 1)β − |y + rz(y) − αnz(y)+1(z)|
(43)

≥ nz(y)β − |y − αnz(y)(z)| = vz(y).

Therefore, moving from y to y + rz(y), which occurs in the environment ωz

with probability at least 3/4, does not decrease vz. Similarly,

vz(y + sz(y))
(32)

≥ nz(y)β − |y + sz(y) − αnz(y)(z)|
(45)

≥ nz(y)β − (|y − αnz(y)(z)| − 1) = vz(y) + 1;

since a walker at y moves with probability at least 1/5 to y + sz, vz increases
by 1 with probability at least 1/5. With probability 1/20, the walker moves
to one of its other neighbors; when doing so, vz can decrease by at most 1
due to (35). Therefore,

(52) Ex
ωz [Yn+1 − Yn | Fn] ≥ 1/5 − 1/20 > 0

for any n ≥ 0 on the event {n < τ1 ∧ Tz}, which implies (48), and hence
(50), for x ∈ InsRay(z)\Ray(z).

On the other hand, for x ∈ Ray(z) and n = 0, (50) is trivial. For x ∈
Ray(z) and n > 0,

P x
ωz [Tz = n < τ1] =

∑

y∈Zd\Ray(z):
|x−y|=1

ωz(x, y)P y
ωz [Tz = n − 1 < τ1] ,

and we can apply the bound (50) already proved for y ∈ InsRay(z)\Ray(z)
to obtain (50) in this case, with a new choice of c24. �

The inequality (54) is the main result we will need for the proof of Proposi-
tion 12. It follows quickly from (53), which is an analog of (50), but without
the restriction on not hitting Ray(z) before exiting InsRay(z).

Lemma 11. For appropriate c26, c27, c28 and c29, and all i ∈ {1, 2}, z ∈ ∂Ti,
x ∈ InsRay(z), and n ≥ 0,

(53) P x
ωz [Tz = n] ≤ c26e

−c27(uz(x)∨nβ)
P − a.s.

and

(54) Ex
ωz [Tz; n < Tz < ∞] ≤ c28e

−c29(uz(x)∨nβ)
P − a.s.

Proof. By symmetry, we may assume i = 1. We will demonstrate (53) by a
union bound with four events. Choose kn so that τkn ≤ n < τkn+1 and set
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ξn = (x − z) · ~1 + c23n, where c23 is as in Lemma 10. Since x ∈ InsRay(z),
ξn > 0. One can then check, that

P x
ωz [Tz = n] ≤ I + II + III + IV, where

I = P x
ωz [(Xn − x) ·~1 < c23n, Tz = n],

II = P x
ωz [Tz = n < τ1],

III = P x
ωz

[
τ1 < Tz = n, n − τkn ≥ ξβ

n/2
]
,

IV = P x
ωz

[
(Xn − x) ·~1 ≥ c23n, τ1 < Tz = n, n − τkn < ξβ

n/2
]
.

In words, the event in I occurs when, by the time n at which the walk exits
InsRay(z), it has not moved to a much wider part of InsRay(z). The event
in II occurs when, by that time n, the walk has not hit Ray(z). The event
in III occurs when, by that time n, the walk has hit Ray(z), but the elapsed
time since last visiting Ray(z) is large. The event in IV occurs when, by that
time n, the walk has hit Ray(z), the elapsed time since last visiting Ray(z)
is not large, and the walk has moved to a much wider part of InsRay(z).

We will show that each of these four terms has an upper bound of the
form in (53). The bounds for I and II follow directly from Lemma 10, while
those for III and IV require some additional work. For I, note that from
(49) and Tz ≥ uz(x), it follows that I ≤ c24e

−c25(uz(x)∨n), which is a stronger
bound than required. The same is true for the estimate of II provided by
(50). We next bound III. Since τk is the time of the k-th visit to Ray(z),
τk ≥ k for all k ≥ 0. It follows from this and the Markov property, that

III =

n∑

k=1

bn−ξβ
n/2c∑

l=k

P x
ωz [τk = l < Tz = n < τk+1]

=
n∑

k=1

bn−ξβ
n/2c∑

l=k

Ex
ωz

[
P Xl

ωz [Tz = n − l < τ1] ; τk = l < Tz

]

(50)

≤
n∑

k=1

bn−ξβ
n/2c∑

l=k

Ex
ωz

[
c24e

−c25(n−l) ; τk = l < Tz

]

≤ c24e
−c25ξβ

n/2
n∑

k=1

P x
ωz [τk < Tz] ≤ c24ne−c25ξβ

n/2

≤ c26e
−c30((x−z)·~1 + n)β

(37)

≤ c26e
−c27(uz(x)∨nβ)(55)

for appropriate c26, c27, c30, where the next to last inequality in (55) follows
from the elementary observation that for all α, γ, δ > 0, there exists η > 0
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such that for all s, t ≥ 0,

(56) tαe−γ(s+t)δ

< ηe−γ(s+t)δ/2.

We demonstrate IV = 0 by showing that the corresponding event cannot
occur. We argue by contradiction; on the event in IV ,

(57) 0 = uz(XTz)
(33)

≥ vz (XTz)
(35)

≥ vz

(
Xτkn

)
− (n − τkn).

Since τ1 < n, we have kn ≥ 1 and therefore Xτkn
∈ Ray(z). Because of

(44), Xτkn
= αm(z), where m = nz(Xτkn

) =
(
Xτkn

− z
)
· ~1. So, on the event

considered in IV ,

vz

(
Xτkn

)1/β
=
(
Xτkn

− z
)
·~1

=
(
Xτkn

− Xn

)
·~1 + (Xn − x) ·~1 + (x − z) ·~1 ≥ τkn − n + ξn.

Substituting this into (57) and using n − τkn ≤ ξβ
n/2, we get

0 ≥ (ξn − ξβ
n/2)β − ξβ

n/2 ≥ (ξn − ξn/2)β − ξβ
n/2 = (2−β − 2−1)ξβ

n > 0,

which is a contradiction. So, IV = 0, and we have demonstrated (53).
To obtain (54), note that the left side equals

∑
l>n lP x

ωz [Tz = l]. One can
consider separately the cases uz(x) ≤ nβ and uz(x) > nβ, in the latter case

decomposing the sum into l < u
1/β
z and l ≥ u

1/β
z . One can then obtain (54)

from (53) and (56) by standard manipulation. �

In the next section, we will patch together the different environments
ωz defined in (46). To do this, it will be useful to introduce some further
terminology. Choose c31 > c21 ∨ 1 large enough so that for all n ≥ 1,

(58) c28e
−c29cβ

31n/c21 ≤ κn,

where c21 is chosen as in Lemma 8, c28 and c29 as in Lemma 11, and κ is the
ellipticity constant given in (47). For x ∈ Z

d and z ∈ ∂Ti, i = 1, 2, define

pz(x) = P x
ωz [Tz ≤ c31Hi(x)] ,

Ez(x) = Ex
ωz [Tz; Tz ≤ c31Hi(x)] ,

E∞
z (x) = Ex

ωz [Tz; Tz < ∞] .

Note that

(59) Ez(x) ≥ κ for x ∈ InsRay(z) with d(x, InsRay(z)c) = 1 ,

since for such x, P x
ωz [Tz = 1] ≥ κ, and both c31 and Hi(x) are at least 1.

Proposition 12 will be used in Section 6. The inequalities in the first line
of (60) are elementary; the second line will follow from (54) of Lemma 11.



TREES AND RANDOM WALKS IN RANDOM ENVIRONMENTS 25

Proposition 12. For all i ∈ {1, 2}, z ∈ ∂Ti and x ∈ InsRay(z),

(60)
κuz(x) ≤ pz(x) ≤ Ez(x) ≤ E∞

z (x) ,
E∞

z ≤
(
c28e

−c29uz(x)
)
∧ (Ez(x) + pz(x)) ,

P-a.s., where c28 and c29 are given in Lemma 10.

Proof. Choose a path of length uz(x) from x to InsRay(z)c. By (38), uz(x) ≤
c31Hi(x). Therefore, following this path contributes at least probability κuz(x)

to the probability of the event {Tz ≤ c31Hi(x)}, which implies the first
inequality of the first line of (60). The other inequalities on this line are
immediate from the definition of the quantities involved.

The first part of the inequality in the second line of (60) follows from (54)
of Lemma 11, applied to n = 0. The second part follows from

E∞
z (x) − Ez(x) = Ex

ωz [Tz; c31Hi(x) < Tz < ∞]
(54)

≤ c28e
−c29(c31Hi(x))β

(38)

≤ c28e
−c29cβ

31uz(x)/c21
(58)

≤ κuz(x) ≤ pz(x),

with the last step employing the first inequality in the first line of (60). �

6. Patching environments attached to insulated rays

In this section, we prove Theorem 3 by constructing an appropriate ran-
dom environment ω. The main idea behind the construction of ω is to choose,
for any point x ∈ Ci, among all environments attached to insulated rays cov-
ering x, the one that “minimizes the probability of exiting the ray”. In order
to make this choice locally and thus not destroy the mixing properties inher-
ited by the trees Ti we have constructed, a slight modification of this idea is
actually needed. This is done by minimizing the expectations of exit times
from the insulated rays (on the event they are finite).

For x ∈ C1 ∪ C2, we set Z(x) = {z ∈ ∂T1 ∪ ∂T2 | x ∈ InsRay(z)} and
denote by z(x) a leaf z ∈ Z(x) which minimizes Ez(x). (We apply some
arbitrary rule, e.g., lexicographic order, to break ties.) Using this, we define,
for x, e ∈ Z

d with |e| = 1,

(61) ω(x, x + e) =

{
ωz(x)(x, x + e) if x ∈ C1 ∪ C2 ,

(2d)−1 otherwise,

where ωz is given by (46). Note that ω inherits the uniform ellipticity of the
environments ωz, with ellipticity constant κ given above (47). Moreover, for
x ∈ C1 ∪ C2, we set

E(x) = Ez(x)(x) , E∞(x) = E∞
z(x)(x) and p(x) = pz(x)(x).

Because of (59), we will find it useful to employ the stopping time

σ = inf{n ≥ 0 | E(Xn) ≥ κ}.
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The next lemma is the reason for our choice of the environment ω in (61).

Lemma 13. For all x ∈ C1 ∪ C2, the sequence (Yn)n≥0 given by Yn =
E (Xσ∧n) is a supermartingale under P x

ω with respect to the filtration Fn =
σ(Xk, k ≤ n), n ≥ 0.

Proof. Suppose x ∈ C1 ∪ C2. If E(x) ≥ κ, then σ = 0 and the statement is
trivial. So, we can assume that E(x) < κ. For y ∈ C1 ∪ C2 with E(y) < κ,

E(y) = Ez(y)(y)
(60)

≥ E∞
z(y)(y) − pz(y)(y)

= Ey

ωz(y)

[
1 + (Tz(y) − 1); Tz(y) < ∞

]
− pz(y)(y)

≥ Ey

ωz(y)

[
EX1

ωz(y)

[
Tz(y); Tz(y) < ∞

]]
= Ey

ωz(y)

[
E∞

z(y)(X1)
]

(60)

≥ Ey

ωz(y)

[
Ez(y)(X1)

]
.

Because of E(y) < κ and (59), d(y, InsRay(z(y))c) > 1. Since the walk is
nearest neighbor, this implies that X1 ∈ InsRay(z(y)), and hence, by the
definition of z(X1), Ez(y)(X1) ≥ Ez(X1)(X1). Therefore,

(62) E(y) ≥ Ey

ωz(y)

[
Ez(y)(X1)

]
≥ Ey

ωz(y)

[
Ez(X1)(X1)

] (61)
= Ey

ω [E(X1)] .

We need to show Ex
ω[Yn+1 | Fn] ≤ Yn. For this, observe that on the event

{σ ≤ n} ∈ Fn, trivially Yn+1 = Yn, whereas on the event {σ > n}, by the
Markov property,

Ex
ω[Yn+1 | Fn] = Ex

ω[E(Xn+1) | Fn] = EXn
ω [E(X1)]

(62)

≤ E(Xn) = Yn.

This completes the proof of the lemma. �

We now prove that with positive probability, the random walk (Xn)n de-
fined by the environment in (61) remains in Ci forever.

Proposition 14. For i = 1, 2, there is P-a.s. some x ∈ Ci, so that

(63) P x
ω [Xn ∈ Ci for n ≥ 0] > 0.

Proof. For i = 1, 2, pick an arbitrary z ∈ ∂Ti and set x = αn(z) ∈ Ray(z),
where n is large enough so that

(64) c28e
−c29nβ

< κ,

for c28 and c29 chosen as in Lemma 11. By Proposition 12,

(65) E(x) ≤ c28e
−c29uz(x)(x)

(33)

≤ c28e
−c29nβ (64)

< κ .

We also require a lower bound on E(x). Since (Yn)n in Lemma 13 is a
supermartingale under P x

ω ,

E(x) = Ex
ω[Y0] ≥ Ex

ω[Yn] ≥ Ex
ω[Yn; σ < ∞] = Ex

ω[E(Xσ∧n); σ < ∞] .
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By Fatou, this implies

E(x) ≥ Ex
ω[E(Xσ); σ < ∞] ≥ κP x

ω [σ < ∞] .

Together with (65), this implies P x
ω [σ = ∞] > 0. On the other hand, by

(59), on the event {σ = ∞}, one has d(Xn, Cc
i ) ≥ 1 for all n. Therefore, (63)

holds. �

We now present the proof of Theorem 3.

Proof of Theorem 3. Define ω as in (61). By Lemma 19 in the appendix,
one can choose β > 0 small enough so that ω is stationary and polynomially
mixing. (Recall that β was introduced in (23) and used throughout the
construction of ω, beginning with (24).) By construction, ω is uniformly
elliptic, with ellipticity constant at least κ = (20(2d − 1))−1.

Let (Xn)n be the RWRE on this environment. We still need to verify that
(7) is satisfied. By Proposition 14, with positive probability, (Xn)n remains
forever in Ci, i = 1, 2, if the RWRE starts at appropriate xi ∈ Ci. Let TCi

be
the exit time of (Xn)n from Ci (which may be infinite). Since (51) remains
valid with the environment ωz replaced by ω, a repetition of the proof of
(49) shows that

P xi
ω

[
(−1)i+1(Xn − xi) ·~1 < c23n , TCi

≥ n
]
≤ c24 e−c25n , i = 1, 2 .

By Borel-Cantelli, this implies

P xi
ω

[
Xn ∈ Ci for all n, lim inf

n→∞

(−1)i+1Xn ·~1
n

>
c23

2

]
> 0 , i = 1, 2 .

Since the origin communicates with any x ∈ Z
d, one obtains (7). �

7. Discussion and open problems

In this brief section, we discuss several open problems. The first involves
random forests in Z

d built from ancestral functions, and is motivated by the
upper bound in Theorem 2.

Open Problem 1. What is the optimal constant c1 in the lower bound (2)
of Theorem 1?

There are several natural questions involving RWRE.

Open Problem 2. Does the statement of Theorem 3 continue to hold in
d = 2? If it does, what are the mixing assumptions on the environment that
imply the 0− 1 law (6)? (Recall that the 0− 1 law for i.i.d. environments is
proved in [ZM01].)

As mentioned in the introduction, the following question is still open.
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Open Problem 3. Prove the 0− 1 law (6) for i.i.d. uniformly elliptic envi-
ronments, when d ≥ 3 .

8. Appendix: Mixing orders

We deferred the demonstration of mixing properties used in the paper to
the appendix; a weaker form of Lemma 15 was used in the proof of Theorem
2, and Lemma 19 was used in the proof of Theorem 3. Here, we demonstrate
Lemmas 15 and 19, and the intermediate Lemmas 16-18 that are used in the
proof of Lemma 19.

We need to extend the notion of polynomial mixing that was introduced
in Definition 1, by allowing the set G there to grow with s. We will employ
the notation Mb

G introduced in (4).

Definition 2. Let γ > 0, 0 ≤ ν < 1 and b = (b(x))x∈Zd be a collection of
random variables on a common probability space. Then, b is polynomially
ν-mixing (of order γ) if, for any fixed µ > 0,

(66) sup
s∈Zd

sup
f∈Mb

Bs
, g∈Mb

Bs+s

|s|γ |cov (f, g)| < ∞ ,

where Bs = B(0, µ|s|ν).

Note that polynomial mixing is the same as polynomial 0-mixing.
Let a1 = (a1(x))x∈Zd and a2 = (a2(x))x∈Zd be two independent families

of directed ancestral functions having the same law as the function a con-
structed in Section 2, where for a2 the direction has been reversed, i.e., each
ej, j = 1, . . . , d, has been replaced by −ej. The quantities hi and Hi, i = 1, 2,
are defined analogously to h and H in (1) and (24), by using ai; the quantities
α and ω are given as before by (29) and (61).

We will investigate the mixing properties of the above variables. Our strat-
egy will be to first use i.i.d. random variables (Li(x))x∈Zd,i∈{1,2} to construct
a realization of the ancestral functions ai; this will allow us to conclude that
the pair (a1, a2) is polynomially ν-mixing (Lemma 15). We extend poly-
nomial ν-mixing to the collection (a1, h1, a2, h2) (Lemma 16), then to the
collections (a1, h1, H1, a2, h2, H2) (Lemma 17) and (α, H1, H2) (Lemma 18),
and finally to the variables (ω(x))x∈Zd (Lemma 19). In each step, we will use
the definitions and appropriate tail estimates to “localize” the random vari-
ables that are involved. The details depend on the specific random variables
at each step.

The proofs of all five lemmas employ the following elementary inequality:
for any measurable functions f, g, f̄ and ḡ that are bounded in absolute value
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by 1,

|cov(f, g)| ≤ |cov(f̄ , ḡ)| + |cov(f − f̄ , g)| + |cov(f̄ , g − ḡ)|
≤ |cov(f̄ , ḡ)| + 4

(
P[f 6= f̄ ] + P[g 6= ḡ]

)
.(67)

The first inequality in (67) is an immediate consequence of the bilinearity of
the covariance function. Throughout this section, in addition to depending
on β and d, all constants ci are also allowed to depend on µ and ν.

Lemma 15. For d ≥ 2 and 0 ≤ ν < 1/d, the collection ((a1, a2)(x))x∈Zd is
polynomially ν-mixing of order 1 − dν.

Proof. We may assume that the ancestral functions a1 and a2 have been de-
fined by two independent families (L1(x))x and (L2(x))x of umbrella lengths.

In order to prove that (a1, a2) is polynomially ν-mixing, we “localize” the
variables ai and show that the localization does not cause damage. Let λi

j(x)
denote the value of λj(x) corresponding to the collection Li, as in (12). We
set, for i = 1, 2, j = 1, . . . , d and s, x ∈ Z

d,

(68) λs,i
j (x) = sup

y∈B(x,
|s|
8

) :x∈y+(−1)i+1Uj,Li(y)

Li(y) .

The random variable λs,i
j (x) is the length of the largest umbrella whose j-side

passes through x and whose vertex y is contained in B(x, |s|/8). Let I s,i(x),
i = 1, 2, s, x ∈ Z

d, be the unique element of {1, . . . , d} for which

λs,i
Is,i(x)(x) = min{λs,i

j (x) | j = 1, . . . , d} ;

this is the direction with the smallest “protecting” umbrellas. We now set
āi(x) = x+(−1)i+1eIs,i(x); this corresponds to the definition of a(x) in Section
2.

Let (f, g) ∈ M(a1,a2)
Bs

×M(a1,a2)
Bs+s (where the notation is the same as in (4)).

Let (f̄ , ḡ) denote the same functions for the collection (ā1, ā2) instead of
(a1, a2). In order to show that (66) holds, we use (67) to compare cov(f, g)
with cov(f̄ , ḡ).

We will show that cov(f̄ , ḡ) = 0, for s chosen large enough so that |s| −
diam(Bs) ≥ |s|/2. To see this, set

B̂s =
⋃

y∈Bs

B

(
y,

|s|
8

)
, B̂+

s =
⋃

y∈Bs+s

B

(
y,

|s|
8

)
.

Then, for large s,

d(B̂s, B̂+
s ) ≥ |s| − diam(Bs) − |s|/4 ≥ |s|/4 ;

in particular, B̂s ∩ B̂+
s = ∅. Since f̄ depends on only those random variables

Li(x) with x ∈ B̂s, and ḡ depends on only Li(x) with x ∈ B̂+
s , it follows that

f̄ and ḡ are independent, and hence that cov(f̄ , ḡ) = 0.
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We next bound P[f 6= f̄ ]. The functions f and f̄ can differ only if there is

an i ∈ {1, 2}, a j ∈ {1, . . . , d}, and an x ∈ Bs, such that λs,i
j (x) 6= λi

j(x). In

particular, for such i, j and x, λi
j(x) ≥ |s|/8d since diam(ULi(x)) ≤ dLi(x).

Consequently by Lemma 4, for appropriate c32,

P[f 6= f̄ ] ≤
2∑

i=1

d∑

j=1

∑

x∈Bs

P

[
λi

j(x) ≥ |s|
8d

]
≤ 16d2c3(#Bs)

|s| ≤ c32|s|dν−1 .

The same bound holds for P[g 6= ḡ]. Together with (67) and cov(f̄ , ḡ) = 0,
this implies (66), with γ = 1 − dν, and hence the lemma. �

We extend polynomial ν-mixing from the pair (a1, a2) to the collection
(a1, h1, a2, h2).

Lemma 16. For d ≥ 2 and 0 ≤ ν < 1/d, the collection ((a1, h1, a2, h2)(x))x∈Zd

is polynomially ν-mixing of order (1 − dν)(d − 1)/(2d − 1).

Proof. Fix δ = (1+ν(d−1))/(2d−1), and note that δ > ν because ν < 1/d.
For any G ⊂ Z

d and s ∈ Z
d, define the event

(69) As(G) =
⋂

x∈G

⋂

i=1,2

{
hi(x) < |s|δ

}
.

Also, set (a, h) = (a1, h1, a2, h2). By stationarity, P[As(Bs)] = P[As(Bs + s)],

where Bs is as in Definition 2. Hence, by (67), for any (f, g) ∈ M(a,h)
Bs

×
M(a,h)

Bs+s,

(70) |cov (f, g)| ≤
∣∣cov

(
f1As(Bs), g1As(Bs+s)

)∣∣ + 4 P[As(Bs)
c] .

To demonstrate that (a, h) is polynomially ν-mixing, we bound the two terms
on the right side of (70).

To bound the first term, we apply Lemma 15. For G ⊂ Z
d, set

Gs(G) = σ ((a1(y), a2(y)), y ∈ Ds(G)) , where

Ds(G) = {y ∈ Z
d | d(y, G) ≤ |s|δ + 1}.

In order to determine if hi(x) < |s|δ for x ∈ G, it suffices to check whether all
branches of Treei(x) terminate within Ds(G). These events are measurable
with respect to the ancestral functions ai restricted to Ds(G), and hence
measurable with respect to Gs(G); so, As(G) ∈ Gs(G). Similarly, the random
variables hi(x), x ∈ G, are determined by ai restricted to Ds(G). Therefore,
setting G = Bs and G = Bs + s, respectively, it follows that f1As(Bs) and
g1As(Bs+s) are Gs(Bs)- and Gs(Bs + s)-measurable, respectively. It is easy to
see that diam (Ds(Bs)) = diam (Ds(Bs + s)) ≤ c33|s|δ since δ > ν, where c33
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is allowed to depend on µ but not on s, f , or g. Consequently, by Lemma
15, for appropriate c34,

(71)
∣∣cov

(
f1As(Bs), g1As(Bs+s)

)∣∣ ≤ c34|s|−(1−dδ) = c34|s|−(d−1)(δ−ν),

where the last equality follows from the choice of δ.
To bound P[As(Bs)

c], we note that on As(Bs)
c, there exist x ∈ Bs and

i ∈ {1, 2} with hi(x) ≥ |s|δ. For each x′ ∈ Ray(x), hi(x
′) ≥ hi(x) ≥ |s|δ.

Ray(x) must intersect the boundary ∂Bs of Bs at some point y; thus, on
As(Bs)

c, hi(y) ≥ |s|δ. Consequently, for appropriate c35,

(72) P[As(Bs)
c] ≤ 2(#∂Bs) P

[
h1(0) ≥ |s|δ

]
≤ c35|s|−(d−1)(δ−ν) ,

where (3) of Theorem 2 was used in the second inequality. Substitution of
(71) and (72) into (70) implies the lemma. �

We next strengthen the above lemma by including Hi. Recall that the
definition of Hi in (24) depends on the parameter β ∈ Id = (0, (d − 2)/2d).

Lemma 17. For d ≥ 3, fixed 0 < ν < 1/d, and all β > 0 small enough, the
collection ((a1, h1, H1, a2, h2, H2)(x))x∈Zd is polynomially ν-mixing of order
γ = (1 − dν)(d − 1)/(2d − 1).

Proof. Assume that β ∈ Id. We use (a, h, H) as shorthand notation for

(a1, h1, H1, a2, h2, H2); let (f, g) ∈ M(a,h,H)
Bs

× M(a,h,H)
Bs+s , for s ∈ Z

d. For

i = 1, 2 and x ∈ Z
d, we set

H̄i(x) = sup
{
hi(y) | x ∈ B

(
y, hi(y)β

)
, d(y,Bs) ≤ |s|ν

}
,(73)

H̄+
i (x) = sup

{
hi(y) | x ∈ B

(
y, hi(y)β

)
, d(y,Bs + s) ≤ |s|ν

}
.

The quantities H̄i and H̄+
i are “localized” versions of Hi, which was defined

in (24).
Let f̄ be defined the same way as f , except that one uses the random vari-

ables (a1, h1, H̄1, a2, h2, H̄2) instead of (a, h, H). Similarly, let ḡ be defined
the same way as g, except that one uses (a1, h1, H̄

+
1 , a2, h2, H̄

+
2 ) instead of

(a, h, H). Note that f̄ (respectively, ḡ) is measurable with respect to the
random variables (a1, h1, a2, h2)(y) with |y| ≤ (µ + 1)|s|ν (respectively, with
|y − s| ≤ (µ + 1)|s|ν). Therefore, by Lemma 16,

(74) sup
s, β∈Id

sup
f∈M

(a,h,H)
Bs

, g∈M
(a,h,H)
Bs+s

|s|γ|cov(f̄ , ḡ)| < ∞ .

In order to show that (66) holds, we use (67) to compare cov(f, g) with
cov(f̄ , ḡ). So, we still need to bound P[f 6= f̄ ] and P[g 6= ḡ]. By the
definition of f and f̄ , f 6= f̄ can only occur if there exist i, y, and x with
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i ∈ {1, 2}, d(y,Bs) > |s|ν, and x ∈ B(y, hi(y)β) ∩ Bs. For such y and x,
hi(y)β ≥ |y − x| > |s|ν, and therefore Hi(x) ≥ hi(y) > |s|ν/β. Consequently,

P[f 6= f̄ ] ≤ P
[
Hi(x) ≥ |s|ν/β for some x ∈ Bs and i ∈ {1, 2}

]

≤ 2(#Bs) P
[
H1(0) ≥ |s|ν/β

] (25)

≤ c36|s|dν−((1−β)d−1)ν/β(75)

for appropriate c36. (We remind the reader that c36 is allowed to depend on

β, µ and ν, but not on the specific choice of functions (f, g) ∈ M(a,h,H)
Bs

×
M(a,h,H)

Bs+s .) For β chosen small enough, the right side of (75) decays to 0 with
exponent larger than γ. An upper bound for P[g 6= ḡ] is obtained similarly.
Together with (74) and (67), this completes the proof of the lemma. �

The next lemma shows that the triple (α, H1, H2) is polynomially ν-
mixing. Since the ancestral function α was defined only on T1 ∪ T2 (in
(29)), we find it convenient to extend the definition, setting α(x) = ∆ for
some ∆ 6∈ Z

d and all x 6∈ T1 ∪ T2.

Lemma 18. For d ≥ 3, β > 0 small enough, and all 0 ≤ ν ≤ 1/8d, the
collection ((α, H1, H2)(x))x∈Zd is polynomially ν-mixing of order 1/10.

Proof. Since polynomial ν-mixing is monotone in ν, it suffices to show the

statement for ν = 1/8d. Let β ∈ Id, and fix (f, g) ∈ M(α,H1,H2)
Bs

×M(α,H1,H2)
Bs+s

for s ∈ Z
d. By the definition of α, f is a measurable function of the ran-

dom variables (ai(x), Hi(x), 1x∈Ti
)i=1,2;x∈Bs

and g is a measurable function

of (ai(x), Hi(x), 1x∈Ti
)i=1,2; x∈Bs+s.

We proceed to “localize” the variables 1x∈Ti
; this will allow us to apply

(67) the same way as in the previous lemmas. For (i, j) = (1, 2), (2, 1), set

Si(x) =
⋂

0≤n≤|s|6ν

⋂

y∈B(an
i (x),hi(an

i (x))β∧|s|6ν)

{
Hj(y) < hi(a

n
i (x))

}
.

Let f̄ (respectively, ḡ) denote the same function as f (respectively, g), ex-
cept that the random variables 1x∈Ti

are replaced by 1Si(x). Note that
{x ∈ Ti} ⊆ Si(x), because one recovers the event {x ∈ Ti} by altering
the definition of Si(x) by removing the restriction n ≤ |s|6ν and not truncat-
ing the radius of the ball around an

i (x) at |s|6ν . The event Si(x) is local in the
sense that Si(x) is an element of the σ-field generated by (ai(y), hi(y), Hj(y))
with |y−x| ≤ 2|s|6ν . (The event {x ∈ Ti}, of course, does not have this prop-
erty.) Consequently, f̄ is measurable with respect to the σ-field generated
by (ai(y), hi(y), Hi(y)), where d(y,Bs) ≤ 2|s|6ν and i ∈ {1, 2}. Similarly, ḡ
is measurable with respect to the σ-field generated by (ai(y), hi(y), Hi(y)),
where d(y,Bs + s) ≤ 2|s|6ν and i ∈ {1, 2}.
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We use the localized functions f̄ and ḡ together with (67) to prove poly-
nomial ν-mixing. For small β, Lemma 17 implies that for appropriate c37,

|cov(f̄ , ḡ)| ≤ c37|s|−(1−6dν)(d−1)/(2d−1) = c37|s|−(d−1)/4(2d−1)

≤ c37|s|−1/10 ,(76)

where d ≥ 3 is used in the last inequality. To estimate P[f 6= f̄ ] and P[g 6= ḡ],
we use {x ∈ Ti} ⊆ Si(x) and translation invariance to obtain

P[f 6= f̄ ] ∨ P[g 6= ḡ] ≤ P

[ ⋃

x∈Bs, i=1,2

Si(x)\{x ∈ Ti}
]

≤
∑

x∈Bs, i=1,2

(
P

[ ⋃

n>|s|6ν

⋃

y∈B(an
i (x),hi(an

i (x))β)

{Hj(y) ≥ hi(a
n
i (x))}

]

+ P

[ ⋃

0≤n≤|s|6ν

{hi(a
n
i (x))β > |s|6ν}

])
(77)

≤ (#Bs)
∑

i=1,2

(
P

[ ⋃

n>|s|6ν

{an
i (0) /∈ T̃i}

]
+

∑

|y|≤|s|6ν

P
[
hi(y) > |s|6ν/β

])

≤ c38

(
|s|dν+6ν((2β−1)d+2) + |s|6dν+6ν(1−d)/β

)
,

for appropriate c38. The last inequality uses (27), and (3) of Theorem 2. For
β > 0 small enough, the second term in the right side of (77) decays faster
than the first. The exponent of |s| in the first term is −5/8+3(1+βd)/(2d),
which is less than −1/10 for d ≥ 3 and β > 0 small enough. Together with
(76) and (67), this proves the lemma. �

We are finally ready to prove that the environment ω is polynomially
mixing. This result is used in the proof of Theorem 3.

Lemma 19. For d ≥ 3, with β > 0 and ν > 0 both small enough, (ω(x))x∈Zd

is polynomially ν-mixing of order 1/13.

Proof. Fix (f, g) ∈ Mω
Bs

×Mω
Bs+s. For G ⊆ Zd, denote by As(G) the event

that Hi(x) < |s|1/8d for all x ∈ G and i = 1, 2. Set f̄ = f1As(Bs) and
ḡ = g1As(Bs+s). By Lemma 6,

P[As(Bs)
c] ≤ 2(#Bs) c17|s|(1−(1−β)d)/8d ≤ c39|s|−(d−1)/8d+dν+β/8

d≥3

≤ c39|s|−1/12+dν+β/8 ≤ c39|s|−1/13

for β > 0 and ν > 0 small enough, and appropriate c39. So, in order to show
polynomial ν-mixing of order 1/13, it suffices to bound the first term on the
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right side of (67). For this, we will show that f̄ and ḡ are measurable with
respect to Hs(Bs) and Hs(Bs + s), respectively, where

Hs(G) = σ
(
(α(x), H1(x), H2(x)), d(x, G) ≤ c40|s|1/8d

)

and c40 = 4dc31, where c31 is as in (58). Since the arguments are the same,
we will only do this for f̄ . It will then follow from Lemma 18, that the
first term in (67) is bounded above by c41|s|−1/10 for appropriate c41 not
depending upon f, g or s.

We note that As(G) ∈ Hs(G) for G ⊂ Z
d, and so As(Bs) ∈ Hs(Bs). For

G ⊂ Z
d, write NG for the set of functions that are measurable with respect

to Hs(G). Since it is assumed that f ∈ Mω
Bs

, in order to show f̄ ∈ NBs, it is
clearly enough to show that for x ∈ Bs,

(78) ω(x)1As(Bs) ∈ NBs .

That is, on the event As(Bs), ω(x) is a (measurable) function of the random
variables generating Hs(Bs).

We first recall how ω(x) was constructed. Whether x ∈ C1, x ∈ C2,
or neither holds, is determined by Z(x). (Recall that z ∈ Z(x) exactly
when x ∈ InsRay(z). For Z(x) 6= ∅, the direction of InsRay(z) for any
z ∈ Z(x) determines whether x ∈ C1 or x ∈ C2.) If Z(x) = ∅, then
the components of ω(x) all equal 1/2d. If Z(x) 6= ∅, with x ∈ Ci, one
computes the random variables nz(y), rz(y), and sz(y) for all z ∈ Z(x) and
y ∈ B(x, c31Hi(x)) ∩ InsRay(z), with c31 as in (58). From these random
variables, one determines the quantities ωz(y) as in (46). One then computes
Ez(x), which one uses to determine z(x); one then sets ω(x) = ωz(x)(x).

To show (78), we therefore proceed as follows.

(a) We show that on As(Bs), for x ∈ Bs, the random set Z(x) is a
(measurable) function of the random variables generating Hs(Bs),
i.e., for z ∈ Z

d, 1z∈Z(x)1As(Bs) ∈ NBs .
(b) We next show that on As(Bs), x ∈ Bs ∩ Ci, z ∈ Z(x) and y ∈

B(x, c31Hi(x)) ∩ InsRay(z), the random variables nz(y), rz(y), and
sz(y) are functions of the random variables generating Hs(Bs).

(c) Finally, we show that on As(Bs), x ∈ Bs ∩Ci, and z ∈ Z(x), Ez(x) is
a function of the random variables generating Hs(Bs).

The following inclusion, whose justification we defer to the end of the
proof, is used for all three steps. For all x ∈ Bs, z ∈ Z(x), and y ∈
B(x, c31|s|1/8d) ∩ InsRay(z),

(79) {αn(z) | 0 ≤ n ≤ nz(y)} ⊆ B
(
x, c40|s|1/8d/2

)
on As(Bs).

In particular, (a) is an immediate consequence of (79) with y = x, and the
definition of InsRay(z).
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To see (b), first note that by (79), on As(Bs), the variables nz(y), αnz(y)(z),
and αnz(y)+1(z) are functions of the random variables generating Hs(Bs).
(The set B(x, c40|s|1/8d/2) was enlarged to B(x, c40|s|1/8d) in order to include
αnz(y)+1 in Hs(Bs).) Since rz(y) and sz(y) are determined by αnz(y)(z) and
αnz(y)+1(z), (b) follows.

To see (c), recall that for x ∈ Ci, Ez(x) = Ex
ωz [Tz; Tz ≤ c31Hi(x)]. The

RWRE is nearest neighbor and so, starting at x, will not escape B(x, c31|s|1/8d)
by time c31|s|1/8d. On As(Bs), Hi(x) ≤ |s|1/8d. Consequently, on As(Bs),
Ez(x) is a function of ωz on B(x, c31|s|1/8d) and of InsRay(z). By (79), (46)
and (b), the claim in (c) holds.

It only remains to show (79). First observe that on As(Bs), for any z ∈
Z(x),

|z − x| ≤ |z − αnz(x)(z)| + |αnz(x)(z) − x| ≤ nz(x) + nz(x)β(80)

≤ 2nz(x) ≤ 2(H1(x) ∨ H2(x)) ≤ 2|s|1/8d.

The second inequality follows from the definitions of nz(x) and InsRay(z) in
(34) and (31); the fourth inequality follows from the definition of H in (24)

and the inclusion x ∈ B(αnz(x)(z), nz(x)β).
Since B∞(x, 2c31|s|1/8d) ⊆ B

(
x, c40|s|1/8d/2

)
, and since the path αn(z),

n = 0, . . . , nz(y), is directed, it suffices to show that both endpoints z and
αnz(y)(z) are contained in B∞(x, 2c31|s|1/8d). This holds for z because of (80).
For αnz(y)(z), first note that

nz(y)β ≥ |αnz(y)(z) − y| ≥ |αnz(y)(z) − z| − |z − x| − |x − y|
≥ nz(y) − (2 + c31)|s|1/8d.

The first inequality follows from the definition of InsRay(z); the last inequal-
ity follows from (80), since y ∈ B(x, c31|s|1/8d). Since β < 1, this implies
nz(y)β ≤ |s|1/8d for |s| large. Therefore,

|αnz(y)(z) − x|∞ ≤ |αnz(y)(z) − x| ≤ |αnz(y)(z) − y| + |y − x| ≤ 2c31|s|1/8d

for |s| large, where we used y ∈ InsRay(z) in the last inequality. This
demonstrates (79) and completes the proof of the lemma. �

Remark. The only place where the explicit structure of the function a is
used is in the proof of Lemma 15. Given any ancestral functions āi, i = 1, 2,
that are directed in opposite directions, and for which the conclusion of
Lemma 15 holds, Lemmas 16-19 will continue to hold. In particular, the
environment ω̄, that is constructed from such ā1, ā2 by using the pruning
and insulation recipe leading up to (61), will be polynomially ν-mixing of
order 1/13.
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Minneapolis, MN 55455, USA Auf der Morgenstelle 10
bramson@math.umn.edu 72076 Tübingen, Germany
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