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Abstract

Curvature driven flows have been extensively considered from a deterministic point of view. Besides
their mathematical interest, they have been shown to be useful for a number of applicatiions including
crystal growth, flame propagation, and computer vision. In this paper, we describe a random particle
system, evolving on the discretized unit circle, whose profile converges toward the Gauss-Minkowsky
transformation of solutions of curve shortening flows initiated by convex curves. Our approach may
be considered as a type of stochastic crystalline algorithm. Our proofs are based on certain techniques
from the theory of hydrodynamical limits.

Keywords: Curvature driven flows, stochastic approximations, hydrodynamical limits, curve short-
ening, interacting particle systems.
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1 Introduction and statement of results

1.1 Curvature driven flows

Let C(p, t) : S1 × [0, T ) 7→ R2 be a family of embedded curves where t parameterizes the family
and p parameterizes each curve. In this paper, we will consider stochastic interpretations of certain
curvature driven flows, i.e., starting from an initial embedded curve C0(p) we consider the solution
(when it exists) of an equation of the form

∂C(p, t)

∂t
= V̂ (κ(p, t))N , C(·, 0) = C0(·) , (1.1)

where κ(p, t) denotes the curvature and N denotes the inner unit normal of the curve C(·, t) at p.

Of particular interest is the case in which V̂ (x) = ±xα.

The case V̂ (x) = x corresponds to the Euclidean curve shortening flow [7] while V̂ (x) = x1/3

corresponds to the affine curve shortening, which is of strong relevance in computer vision and
image processing [14]. The literature on these flows is extensive, for a recent review see [5].

We should note that these latter flows are particularly important since they are gradient flows.
Indeed, for α = 1 the equation may be shown to be direction in which curve length is shrinking as
fast as possible using only local information. The equation is also a geometric heat equation since
it may be written in terms of the Euclidean arc-length ds as

∂C

∂t
=
∂2C

∂s2
.

Similar remarks apply to the case α = 1/3 since here area is shrinking as fast as possible with
respect to affine arc-length, and one may formulate the flow as an affine invariant heat equation by
taking the two derivatives with respect to the affine invariant arc-length [14]. Since in both cases
we get gradient flows and resulting heat equations, a stochastic interpretation seems quite natural.

Since we will be dealing with convex curves in this paper, we employ the standard parame-
terization via the Gauss map, that is fixing p = θ, the angle between the exterior normal to the
curve and a fixed axis. It is well known that the Gauss map can be used to map smooth convex

curves C(·) into positive functions m(·) on S1 such that
∫

S1 e
2πiθm(θ)dθ = 0, and that this map can

be extended to the Gauss-Minkowsky bijection between convex curves with C(0) = 0 and positive

measures on S1 with zero barycenter; see [4, Section 8] for details. We denote by M0
+ the latter

set of measures.

Under this parameterization, a convex curve C(θ) can be reconstructed from a µ ∈ M0
+ by the

formula

C(θ) =

∫ θ

0
e2πiΘµ(dΘ) , (1.2)

using linear interpolation over jumps of the function C(θ). Further, whenever µ possesses a strictly
positive density m(θ)dθ then the curvature of the curve at θ is κ(θ) = 1/m(θ).
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Another useful property in working with measures µ ∈ M0
+ is that the evolution of the density

m(·) takes a particularly simple form: indeed, one gets (see e.g. [16, Eq. (1.1), (1.2)])

∂m(t, θ)

∂t
= −

∂2V (m(t, θ))

∂θ2
− V (m(t, θ)), V (x) := V̂ (1/x) . (1.3)

There are a number of interesting special cases. For example, when V̂ (x) = −x−1 gives the
linear evolution

mt = mθθ +m.

In this case, we may separate variables as in the usual analysis of the heat equation and see that
as t → ∞, m(θ, t) goes to constant, and thus the initial curve asymptotically approaches a circle
(of infinite radius) [12]. Hence, for this curvature driven flow there is no blow-up. (See also [2] for

various results about expanding flows.) For V̂ = 1, the equation becomes

mt = −1

which has solution
m(t, θ) = −t+m(0, θ).

Thus here we get blow-up in finite time (for the curve) when t = m(0, θ).

In general, for V̂ (x) = xα, α ≥ 0, the equation (1.3) becomes

∂m(t, θ)

∂t
= −

∂2m−α(t, θ)

∂θ2
−m−α(t, θ) . (1.4)

which is defined up to a finite time, at which singularities may develop. For α = 1, at the blow-
up time the curve has shrunk to a “circular point” (see [7]), for α = 1/3 it has shrunk to an
“ellipsoidal shaped” point (see [14]), whereas for α < 1/3 singularities may develop earlier. Indeed,
in this regime, the aspect ratio of the evolving curve goes to infinity as the curve shrinks [3, Theorem
2] for a generic initial curve. The regime α ∈ (1/3, 1) has been considered in [2, 15], with results
similar to those of α = 1. Since for α ≥ 0, the length of the evolving curve decreases, we will refer

to flows with speed functions of the form V̂ (x) = xα, α ≥ 0 as curve shortening flows.

1.2 Stochastic approximations

Our interest is in constructing stochastic approximations to the solutions of the equations (1.4).
Approximations corresponding to polygonal curves have been discussed in the literature under the
name “crystalline motion”, see [16] for a description of recent results and references. Our approach
is different and can be thought of as a stochastic crystalline algorithm: we will construct a stochastic
particle system whose profile defines an atomic measure on S1, such that the corresponding curve
is a convex polygon. Applying tools from hydrodynamic limits, we then prove that the (random)
evolution of this polygonal curve converges, in the limit of a large number of particles, to curve
evolution under the curve shortening flow. This approach is related in spirit but not in techniques
to recent work on particle systems which approximate the nonlinear filtering equations; see [6] and
references therein.

4



Our work is motivated by the fact (see [17]) that the uniform measure on the (finite) set of
convex polygons of area bounded by 1 which encircle the origin and possesses vertices on the lattice
n−1Z2 satisfies a large deviation principle with rate function related to the affine length of curves.
This suggests that natural (random) dynamics for these polygons should be related to evolution
according to affine curve shortening, i.e. to solutions of (1.4) with α = 1/3. The system we
construct here is a first step in the study of this relationship.

We conclude this introduction by describing a particular case of our general result Theorem 3:
fix ε > 0, consider the discrete torus TN and, at time 0, put at each site i, η0(i) particles. Evolve
the configuration ηt(·) in time such that each particle at site i jumps to one of its neighbors at

rate ε−2N2 if ηt(i) = 1 and ε−1N2/ηt(i) otherwise, dies at rate ε−2 if ηt(i) = 1, and gives birth

at rate ε−2/2 if ηt(i) = 2. Define the (random) measure µε,N
t = N−1

∑

i∈TN
ηt(i)δi/N on S1, add

(at most two) atoms at 0, π,±π/2 to create a µ̄ε,N
t with zero barycenter, and construct from that

measure a curve CN,ε(t, ·) as explained in (1.2). Then, if CN,ε(0, ·) converges as N → ∞ to a smooth

strictly convex curve C0(·), then as first N → ∞ and then ε → 0 it holds that CN,ε(t, ·) converges

(in Hausdorff distance, say) to the solution of the Euclidean curve shortening (1.1) with α = 1.

The structure of this paper is as follows: Section 2 presents some approximation results for
quasilinear parabolic equations and their relation to curve shortening. Section 3 introduces our
particle system, states the general hydrodynamic limit result Theorem 2 which is at the heart
of our approach, states the main curve convergence result Theorem 3, and provides a family of
stochastic evolutions which satisfy our assumptions and correspond to curve shortening equations
with 1/α integer. Finally, Section 4 presents the proofs of our claims.

2 PDE approximations

We present in this section a general result concerning the existence and uniqueness of a certain
class of quasilinear parabolic equations, and show how such equations are approximations of the
curve-shortening equations described above. Let Φ, V : R+ 7→ R satisfy the following:

Assumption C

(C–1) Φ ∈ C3(R+), V ∈ C1(R+).

(C–2) For every L > 0 there exist constants cL, dL > 0 such that

min
x∈[0,L]

Φ′(x) ≥ cL , max
x∈[0,L]

|Φ′′(x)| ≤ dL .

(C–3) V (·) is bounded and V (0) ≥ 0 .

Define the operator L : C1,2(R+ × S1) 7→ C(R+ × S1) as

Lρ(t, x) = −∂tρ(t, x) +
1

2
∂xxΦ(ρ)(t, x) + V (ρ(t, x)) . (2.1)

5



The basic existence and uniqueness result alluded to above is the following (classical) proposition,
whose proof is given for completeness in Appendix A.

Proposition 1 Suppose Φ, V satisfy Assumption C, and let m(·) ∈ C 2+β(S1), for some 1 ≥ β > 0,

be a strictly positive function. Then there exists a unique solution ρ ∈ C 2+β(S1) to the equation

Lρ(t, x) = 0 , ρ(0, x) = m(x) . (2.2)

Further, ρ(t, x) is strictly positive.

Note that the curve shortening flow (1.4) is not covered by Proposition 1, for the functions V (x) =

Φ(x) = −x−α do not satisfy Assumption C (and indeed, the curve shortening flow does possess a
finite blow-up time, contrary to the conclusion of Proposition 1). We thus wish to approximate this

flow, e.g. by using functions of the form Φα,ε(x) = 1/ε−1/(x+ε1/α)α and Vα,ε(x) = −x/(x+ε1/α)α+1

(see Section 3.3). We thus establish next a convergence result for solutions of quasilinear parabolic

equations that approximate curve-shortening equations. In what follows, set R0
+ = (0,∞).

Theorem 1 Suppose functions Φ ∈ C2(R0
+), V ∈ C1(R0

+) and m ∈ C2+β(S1) are given such that

m(·) is strictly positive and (2.2) holds on [0, T ) with ρ strictly positive. Let Φε, Vε satisfy Assump-
tion C and assume that Φ′

ε,Φ
′′
ε , Vε converge uniformly on compact subsets of (0,∞) to Φ′,Φ′′, V .

Let Lε denote the operator L with the functions Φε, Vε substituted for the functions Φ, V , and let
ρε(t, x) satisfy Lερε(t, x) = 0, ρε(0, x) = m(x). Then, for any δ > 0,

lim sup
ε→0

sup
(t,x)∈[0,T−δ]×S1

ρε(t, x)

ρ(t, x)
= lim sup

ε→0
sup

(t,x)∈[0,T−δ]×S1

ρ(t, x)

ρε(t, x)
= 1 . (2.3)

For the proof, we refer to Appendix A. Note that in Theorem 1, we did not assume that Φ, V
satisfy Assumption C. On the other hand, the existence and uniqueness of ρε(t, x) is assured by
Proposition 1.

3 Particle systems, hydrodynamical limits, and approximate cur-

vature flows

We construct in this section the particle systems alluded to above, prove their hydrodynamical
limits, and relate them to approximate curvature flows.

3.1 Birth and death zero range particle systems and hydrodynamic limits

Let TN = Z \ NZ denote the discrete torus. Let g : N → R+ (the jump rate, with g(0) = 0),
b : N → R+ (the birth rate), d : N → R+ (the death rate, with d(0) = 0) be given, and define the

Markov generator on the particle configuration EN = NTN by

(LNf)(η) = N 2(L0f)(η) + (L1f)(η) , f ∈ Cb(EN ) ,
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where

(L0f)(η) =
1

2

∑

i∈TN

g(η(i))
[

f(ηi,i+1) + f(ηi,i−1) − 2f(η)
]

,

(L1f)(η) =
∑

i∈TN

[

b(η(i))
[

f(ηi,+) − f(η)
]

+ d(η(i))
[

f(ηi,−) − f(η)
]]

,

and

ηi,i±1(j) =







η(j) + 1, j = i± 1, η(i) 6= 0,
η(j) − 1, j = i, η(i) 6= 0,
η(j), else

,

ηi,+(j) =

{

η(j) + 1, j = i,
η(j), else

, ηi,−(j) =

{

η(j) − 1, j = i, η(i) > 0,
η(j), else

.

In words, under LN , each particle at location i jumps to one of its neighboring locations at rate
N2g(η(i))/η(i), dies at rate d(η(i))/η(i), and a new particle is created at location i with rate b(η(i)).
Thus, we deal here with zero range processes in the presence of births and deaths.

We use SN
t to denote the associated Markov semigroup, and we denote by µt,N the law of the

process at time t, with initial law µ0,N , under this Markovian semigroup. We also use µN to denote
the law of the trajectory of the process.

In order to state our main limit result, we need to introduce the appropriate equilibrium

measure, as in [9, Chapter 2.3]. Define Z : R+ → R+ ∪ {+∞} by Z(ϕ) :=
∑

k
ϕk

g(k)! where

g(k)! = g(1) · · · g(k) and g(0)! = 1. Set Dg = {ϕ ∈ R+ : Z(ϕ) < ∞}, and ϕ∗ = sup{ϕ : ϕ ∈ Dg}.
For any ϕ ∈ Dg, we define the probability measure pϕ on N by,

pϕ(k) =
ϕk

g(k)!Z(ϕ)
,

and set R(ϕ) := ϕZ′(ϕ)
Z(ϕ) , ϕ ∈ Dg (see [9, pg. 28–31] for background).

Throughout this section, we always make the following hypotheses on g(·).

Assumption A

(A–1) infk≥1 g(k) > 0, and lim supk→∞
g(k)

k = 0.

(A–2) Z(ϕ) ↗ϕ↗ϕ∗ ∞.

(A–3) There exists a constant C1 <∞ such that lim supk→∞

[

g(k)b(k − 1) − b(k) + d(k+1)
g(k+1) − d(k)

]

≤

C1 and supk |b(k)| ≤ C1, supk |d(k)| ≤ C1.

The following basic properties of pϕ, proved in [9, pp. 28–31], are crucial in the sequel.
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Lemma 1 Let Assumption (A–1) hold. Then,

(a) ϕ∗ > 0, R(ϕ) ↗ϕ↗ϕ∗ ∞, and for each ϕ < ϕ∗ there exists a θ(ϕ) > 0 such that pϕ possesses

exponential moments with parameter θ(ϕ).

(b) Set Φ(α) = R−1(α) and pα = pΦ(α). Then, Φ(·) is a smooth function with strictly increasing

derivative, Φ′(0) ∈ (0,∞), and

Epα(X) = α, Epα(g(X)) = Φ(α)

(c) Set να = p⊗Z
α and let να,N denote the restriction of να to TN . Then να,N is reversible, and hence

invariant, for the Markov generator LN
0 .

In the sequel, for any function h defined on N, we set h̃(α) := Epα(h(X)). In particular, by

Lemma 1, g̃(α) = Φ(α). We need below the following assumption on the initial law of our Markov
evolution:

Assumption B There exists a δ > 0 and an m ∈ C2+δ(S1) strictly positive such that

1

N
H

(

µ0,N

∣

∣

∣

∣

∣

N−1
∏

i=0

pm( i
N )

)

−→
N→∞

0

Set
V (α) = V+(α) − V−(α) := b̃(α) − d̃(α) .

Let ρ(t, x) : [0, T ] × S1 7→ R+ denote a C1,2+δ strictly positive solution of the PDE

∂tρ(t, x) =
1

2
∂xxΦ(ρ)(t, x) + V (ρ)(t, x) , ρ(0, x) = m(x) . (3.1)

(When Assumption A is in force, such a solution exists and is unique by Proposition 1 above
since ∞ > Φ′(·) > 0 and V (·) is a smooth bounded function). We are now ready to state the
hydrodynamic limit result for the laws µt,N :

Theorem 2 Let Assumptions A and B hold. Then, for any function G ∈ C(S1), any δ > 0, and
any t ∈ [0, T ],

lim
N→∞

µt,N







η :

∣

∣

∣

∣

∣

∣

1

N

∑

i∈TN

η(i)G

(

i

N

)

−

∫

S1

G(x)ρ(t, x)dx

∣

∣

∣

∣

∣

∣

> δ







= 0 .

Remark: We note that in the terminology of [9], g satisfies a SLG assumption but does not satisfy
the FEM assumption and is not attractive. This requires some additional work in deriving the
hydrodynamic limits.
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3.2 Stochastic curve shortening convergence

We begin by explicitly constructing random polygons from particle configurations. Each particle
configuration η(·) defines a positive measure on S1 by µη =

∑

k∈TN
η(k)δ2πk/N . Unfortunately, this

measure does not possess necessarily a zero barycenter, and thus does not correspond a priori to a
closed convex curve. To remedy this situation, set

bη = bRη + ibIη =
∑

k∈TN

e2πk/Nη(k),

and define
µ̄η = µη + |bRη |δπ/2+(π/2)sign(bR

η ) + |bIη|δ−(π/2)sign(bI
η) .

Then µ̄η ∈ M0
+, and it defines a curve by a linear interpolation between the jump points of the

function Cη(θ) =
∫ θ
0 e

2πiΘµ̄η(dΘ).

Fix next α > 0, consider the functions Φα(x) = −x−α, Vα(x) = −x−α, and define the oper-
ator Lα as in (2.1). Fix an m satisfying Assumption B, and let ρα denote the solution of (2.2)
with operator Lα, with blow-up time Tα, and associated curve Cα(t, θ). Let gα,ε, bα,ε, dα,ε satisfy
Assumption A, set Φα,ε and Vα,ε as in Section 3.1. The following assumption is needed in order to
relate the particle system with the curve shortening flow:

Assumption D

(D–1) Φα,ε, Vα,ε satisfy Assumption C.

(D–2) Φ′
α,ε,Φ

′′
α,ε, Vα,ε converge uniformly on compact subsets of (0,∞) to Φ′

α,Φ
′′
α, Vα.

Our main result is the following:

Theorem 3 Let CN
α,ε : R+×S1 7→ R+ denote the curve corresponding to the particle system defined

above. Fix δ, δ′ > 0. Then,

lim
ε→0

lim sup
N→∞

P

(

sup
(t,θ)∈[0,Tα−δ]×S1

|CN
α,ε(t, θ) − Cα(t, θ)| > δ′

)

= 0 . (3.2)

If further Cα(t, θ) →t→Tα 0, Cα(t, θ) := 0 for t > Tα, and there exists a z0 = z0(α) such that
Φ′

α,ε(z) ≥ 0, Vα,ε(z) < 0 for all 0 < z < z0, then Tα−δ in (3.2) can be replaced by any deterministic

constant T > 0.

Proof of Theorem 3: Equation (3.2) is a straightforward consequence of Theorems 1 and 2,

the fact that the function e2πiθ is continuous, and the regularity of Cα(t, ·). To see the second part
of the claim, let ρε,α(t, x) denote the solution of (3.1) with the functions Φα,ε and Vα,ε, and set

µα,ε(t) := maxx∈S1 ρα,ε(t, x). We claim first that there exists a δ1 and an ε0 such that for all ε < ε0,

µα,ε(t0) < δ1, some t0 =⇒ µα,ε(t) < µα,ε(t0) < δ1,∀t > t0 . (3.3)
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This implies the second part of the claim since by Theorem 2,

lim sup
N→∞

P ( sup
(t,θ)∈[0,T ]×S1

|CN
α,ε(t, θ) − Cα,ε(t, θ)| > δ′) = 0

while limε→0 limt→Tα µα,ε(t) = 0 .

To see (3.3), note that by the assumptions, one may find a ε0 and a δ1 such that

∀ε < ε0, 0 < z < δ1 : Vα,ε(z) < 0,Φ′
α,ε(z) ≥ 0 .

Suppose (3.3) does not hold. Then there exists a t1 ∈ (t0, t), s1 ∈ S1 with ∂tρα,ε(t1, s1) = 0,

∂xρα,ε(t1, s1) = 0, ∂xxρα,ε(t1, s1) ≤ 0 while V (ρα,ε(t1, s1)) < 0, contradicting (3.1).

Remark: Note that for Theorem 3 we have that Cα(t, θ) →t→Tα 0 when α ∈ [1/3, 1].

3.3 Approximate curvature flows

We now present different candidates for the functions b, d, g defining the particle systems of Section
3.1. The first two relate to an approximate version of the Euclidean curvature flow, while the last
one relates to a general curve shortening flow of parameter α with 1/α integer. Throughout, ε > 0
is a fixed parameter, and we set W (ϕ) = V (R(ϕ)).

I. Approximate Euclidean curvature flow. Set

Φε,1(r) =
1

ε
−

1

r + ε
.

Then, Rε,1(ϕ) = ε(1/(1 − εϕ) − 1), and Zε,1(ϕ) = (1 − εϕ)−ε. Expanding, one finds that

gε,1(1) = ε−2, gε,1(k) =
k

ε(k − 1 + ε)
, k ≥ 2 . (3.4)

Choosing now Vε,1(r) = −r/(r + ε)2, one may compute the functions b, d by noting that with

Wε,1(ϕ) = Vε,1(Rε,1(ϕ)) = −ϕ(1 − εϕ), it must hold that

Wε,1(ϕ) = −ϕ+ εϕ2 =
1

Zε,1(ϕ)

∞
∑

k=0

(bε,1(k) − dε,1(k))
ϕk

gε,1(k)!
.

Expanding, one finds that a possible choice for the birth and death rates is

bε,1(0) = bε,1(1) = 0 , bε,1(k) =
(1 − ε)k

ε(ε+ k − 1)(ε+ k − 2)
, k ≥ 2 . (3.5)

and
dε,1(0) = 0 , dε,1(1) = ε−2 , dε,1(k) = 0 , k ≥ 2 . (3.6)
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Note that for fixed ε > 0, the coefficients gε,1(·), 1/gε,1(·), bε,1(·), dε,1(·) are uniformly bounded, and
hence satisfy Assumption A.

II. A simpler approximate Euclidean curvature flow. The jump rate, birth and death coefficients
described above suggest a further approximation of the Euclidean curvature flow: Set

ḡε,1(1) = ε−2, ḡε,1(k) = ε−1k/(k − 1), k ≥ 2,

b̄ε,1(2) = 2ε−2, b̄ε,1(k) = 0, k 6= 2,

d̄ε,1(1) = ε−2, d̄ε,1(k) = 0, k 6= 1 . (3.7)

Note that the coefficients in (3.7) are globally bounded, and hence satisfy Assumption A. Further,

one finds that Z̄ε,1(ϕ) = 1 − ε log(1 − εϕ), and thus that

R̄ε,1(ϕ) =
ε2ϕ

(1 − εϕ)(1 − ε log(1 − εϕ))
.

Defining Φ̄ε,1(r) = R̄−1
ε,1 (r), one sees that again, for ε small, Φ̄ε,1(r) ∼ ε−1 − 1/r, in the sense that

for each r0 > 0,

lim sup
ε→0

sup
r>r0

∣

∣

∣

∣

Φ̄ε,1(r) −
1

ε
+

1

r

∣

∣

∣

∣

= 0 .

One further notes that

Φ̄′
ε,1(r) =

1

r2
·

ε2Φ̄2
ε,1(r)

1 − ε2Φ̄ε,r(r) − ε log(1 − εΦ̄ε,1(r))
,

concluding that

lim sup
ε→0

sup
r>r0

∣

∣

∣

∣

Φ̄′
ε,1(r) −

1

r2

∣

∣

∣

∣

= 0 , lim sup
ε→0

sup
r>r0

∣

∣

∣

∣

Φ̄′′
ε,1(r) +

2

r3

∣

∣

∣

∣

= 0 .

Further, recalling the definition W̄ε,1(ϕ) = V̄ε,1(R̄ε,1(ϕ)), one finds that

W̄ε,1(ϕ) = −R̄ε,1(ϕ)(ε−1 − ϕ)2 ,

and hence, V̄ε,1(r) = −r(1 − εΦ̄ε,1(r))
2/ε2 , implying by the above that

lim sup
ε→0

sup
r>r0

∣

∣

∣

∣

V̄ε,1(r) +
1

r

∣

∣

∣

∣

= 0 .

III. An approximate curve shortening flow. Fix L := 1/α an integer, and set

Φε,α(r) =
1

ε
−

1

(r + εL)α
.

Then, Rε,α(ϕ) = εL(1/(1 − εϕ)L − 1). We also fix Vε,α(r) = −r/(r + εL)1+α, and hence

1

Zε,α
(ϕ)

∞
∑

k=0

ϕk(bε,α(k) − dε,α(k))

gε,α(k)!
=

1

ε

(

(1 − εϕ)L+1 − (1 − εϕ)
)

=
1

ε
Pα(εϕ) ,
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where Pα is a polynomial of degree L+ 1 in ϕ. Expanding, one finds that

bε,α(k) − dε,α(k) =

k
∑

`=1

d`ε
`−1gε,α(k − `+ 1) · · · gε,α(k) , (3.8)

where

d` =







0 ` = 0,
−L ` = 1,
(L+1)L···(L+2−`)(−1)`

`! ` ≥ 2,

(3.9)

and one notes that the sum in (3.8) is over at most L+1 terms since L is an integer and thus d` = 0
for ` > L + 1. It thus only remains to compute the functions gε,α(k), a task considerably more

involved than in the Euclidean case. Write logZε,α(ϕ) =
∑∞

`=1 a`ϕ
`, with a` = L(L + 1) · · · (L +

`− 1)ε`+L/``!. Expanding Zε,α(ϕ) =
∑∞

k=0 tkϕ
k, it holds that gε,α(k) = tk−1/tk, with

tk =
∑

λ`k

1

|λ|!

|λ|
∏

i=1

aλi
, (3.10)

where the summation is over the set Nk of all partitions λ = (λ1, . . . , λ|λ|) of k, i.e. tuples of

integers with λ1 ≥ λ2 ≥ . . . ≥ λ|λ| ≥ 1 such that
∑

λi = k. We now have the

Lemma 2 There exist constants cε,α, Cε,α such that for all k,

cε,α ≤ gε,α(k) ≤ Cε,α .

Due to Lemma 2 and (3.8) (recall L is an integer!), the functions bε,α(·) and dε,α(·) are also uniformly
bounded, and Assumption A holds for the corresponding particle system.

We conclude this paragraph with the

Proof of Lemma 2: Since for λ ∈ Nk it holds that
∑

λi = k, we have that for k ≥ 2,

gε,α(k) =
tk−1

tk
=

1

ε

Ek−1

(

1
|λ|!

∏|λ|
i=1Qε,α(λi)

)

Ek

(

1
|λ|!

∏|λ|
i=1Qε,α(λi)

)

Nk−1

Nk
,

where Nk = |Nk|, Ek denotes the uniform measure over Nk and Qε,α(·) is a rational function, hence

sup
n∈N

Qε,α(n+ 1)

Qε,α(n)
<∞, sup

n∈N

Qε,α(n)

Qε,α(n+ 1)
<∞ .

Construct an injection I of Nk−1 into a subset of Nk by increasing the first component λ1 ≥ 1 of
λ by 1, i.e. I(λ1, . . . , λ|λ|) = (λ1 + 1, . . . , λ|λ|). In particular, I leaves |λ| unchanged. Then,

gε,α(k) ≤
1

ε

∑

Nk−1

1
|λ|!Qε,α(λ1)

∏|λ|
i=2Qε,α(λi)

∑

Nk−1

1
|λ|!Qε,α(λ1 + 1)

∏|λ|
i=2Qε,α(λi)

≤
1

ε
sup
n∈N

Qε,α(n)

Qε,α(n+ 1)
,

12



yielding the claimed upper bound on gε,α(·). To see the complementary lower bound, for any

(λ1, . . . , λ|λ|) ∈ Nk, set jλ such that λ1 = λ2 = . . . = λjλ
> λjλ+1 , with jλ = |λ| if λ1 = . . . = λ|λ|.

Construct a map J from Nk to Nk−1 by reducing the λjλ
part by one, i.e.

J(λ1, . . . , λ|λ|) = (λ1, . . . , λjλ
− 1, λjλ+1, . . . .

Note that the map J is two to one. Since |J(λ)| ≤ |λ|, we have by an argument as above that

gε,α(k) ≥
1

2εmax(1, Qε,α(1))
inf
n∈N

Qε,α(n− 1)

Qε,α(n)
,

completing the proof of the complementary lower bound.

Remark: In the case of α = 1/3 (affine curve shortening [14]), one checks that gε,1/3(k) ≤ 1/ε.

4 Proof of Theorem 2

As mentioned above, the strategy parallels that of the proof of the standard hydrodynamic limit
for zero range processes, as described in [9], with some additional elements, adapted from [11], due
to the presence of birth and death events. Set νρ(t,·),N :=

⊗

i∈TN
νρ(t, i

N ). The main step in the

proof of Theorem 2 consists of establishing the:

Proposition 2 Let Assumptions A and B hold. Then,

lim sup
N→∞

1

N
H
(

µN
t |νρ(t,·),N

)

= 0 .

Indeed, let A denote the event

A =







η :

∣

∣

∣

∣

∣

∣

1

N

∑

i∈TN

η(i)G

(

i

N

)

−

∫

S1

G(x)ρ(t, x)dx

∣

∣

∣

∣

∣

∣

> δ







.

Note that, by an inequality of Varadhan, see [11, Pg. 367],

µN
t (A) ≤

1
N log 2 + 1

NH
(

µN
t |νρ(t,·),N

)

1
N log(1 + 1/νρ(t,·),N )

.

In view of Proposition 2, it thus suffices to show that

lim sup
N→∞

1

N
log νρ(t,·),N (A) < 0 . (4.1)

The later estimate is a consequence of the product structure of νρ(t,·),N and of the existence of

exponential moments as described in part (a) of Lemma 1. Indeed, the random variables Zi =
ηi − ρ(t, i/N) are, under νρ(t,·),N , independent, centered, and there exists a θ∗ such that

sup
i,t<T

Eνρ(t,·),N
(eθ

∗|Zi|) <∞ .
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Therefore, for any G ∈ C(S1), there exists a C > 0 such that for all a < a0(G),

sup
i,t<T

Eνρ(t,·),N
(eaG(i/N)Zi ) . (4.2)

Thus, by Chebycheff’s inequality, we conclude that for every a > 0,

νρ(t,·),N (A) ≤ e−NaδEνρ(t,·),N

(

e
a

P

i∈TN
η(i)G(i/N)−

R

S1 G(x)ρ(t,x)dx
)

.

Approximating the last integral by a Riemann sum, we conclude that for every ε > 0 we can find
a N0(ε) such that for N > N0(ε),

1

N
log νρ(t,·),N (A) ≤ −aδ + ε+

1

N

∑

i∈TN

logEνρ(t,·),N
(eaG(i/N)Zi )

≤ −aδ + ε+ Ca2 ,

where the second inequality is due to (4.2). Choosing a < δ/C one deduces (4.1), which concludes
the proof of Theorem 2 modulo that we still need to prove Proposition 2.

The proof of Proposition 2 is provided in Section 4.2, after we first present in Section 4.1 a
replacement lemma appropriate to our needs.

4.1 Replacement lemma

The main a priori estimate needed in our derivation is the following replacement lemma (compare
with [11, Proposition 2.1]).

Proposition 3 Let Assumptions A and B hold. Suppose h : N → R is sub linear at infinity, i.e.
lim supk→∞ h(k)/k = 0. For k ∈ N, set

ηk(i) =
1

2k + 1

∑

|j−i|≤k

η(j) , Vk(η)(i) =

∣

∣

∣

∣

∣

∣

1

2k + 1

∑

|i−j|≤k

h(η(j)) − h̃(ηk(i))

∣

∣

∣

∣

∣

∣

.

Then,

lim sup
k→∞

lim sup
N→∞

EµN

{

1

N

N−1
∑

i=0

∫ T

0
Vk(ηs)(i)ds

}

= 0 . (4.3)

Proof: Following the proof of [11, Lemma 2.2], we have that

H(µt,N |ν1,N ) ≤ H(µs,N |ν1,N ) + sup
U∈Cb(TN ),U≥0

log

[

∫

SN
t−sU(η)ν1,N (dη)
∫

U(η)ν1,N (dη)

]

. (4.4)
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Recall that

d

dt

∫

SN
t U(η)ν1,N (dη) =

N−1
∑

i=0

∫

[

g(η(i))b(η(i) − 1) − b(η(i))

+
d(η(i) + 1)

g(η(i) + 1)
− d(η(i))

]

U(η)ν1,N (dη) . (4.5)

Hence, using (A–3), (4.4) and the Gronwall lemma, one concludes that for any 0 ≤ s ≤ t ≤ T ,

H(µt,N |ν1,N ) ≤ H(µs,N |ν1,N ) + (t− s)C2N . (4.6)

We thus conclude that ft,N = dµt,N/dν1,N exists.

Define, for any f defined on TN , the Dirichlet form D0[·], as

D0[f ] =
1

4

∑

i∼j
(i,j)∈TN×TN

g(η(i))

[

√

f(ηi,j) −
√

f(η)

]2

ν1,N (dη) .

A repeat of the proof of [11, Lemma 2.3] yields

N2D0

[

1

t

∫ t

0
fs,Nds

]

≤
1

t
H(µ0,N |ν1,N ) + C3N . (4.7)

Let

AN,C =
{

fN : NTN 7→ R+ |

∫

fN (η)ν1,N (dη) = 1,

D0[f
N ] ≤

C

N
,

∫

η(0)fN (η)ν1,N (dη) ≤ C , fN is shift invariant
}

Copying the argument of [11, p. 370], it follows that Proposition 3 holds as soon as one can show
that for any C > 0,

lim sup
k→∞

lim sup
N→∞

sup
fN∈AN,C

∫

Vk(η)(0)f
N (η)ν1,N (dη) = 0 . (4.8)

Since on AN,C it holds that
∫

η(0)fN (η)ν1,N (dη) ≤ C, it follows that (4.8) holds as soon as for any
a > 0,

lim sup
k→∞

lim sup
N→∞

sup
fN∈AN,C

∫

fN(η)
[

Vk(η)(0) − aηk(0)
]

ν1,N (dη) ≤ 0 . (4.9)

Note that due to Assumption (A–2), it holds that Epα(1X<k) →α→∞ 0 for any fixed k. Using

this and the sub-linear assumption on h, it follows that lim supα→∞ |h̃(α)|/α = 0. Using again the
sublinearity of h, one concludes that

lim sup
ηk(0)→∞

Vk(η)(0)

ηk(0)
= 0 . (4.10)
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and hence, (4.9) holds as soon as we show that for any constant C ′ > 0,

lim sup
k→∞

lim sup
N→∞

sup
fN∈AN,C

∫

fN (η)Vk(η)(0)1ηk(0)<C′ν1,N (dη) = 0 . (4.11)

To prove (4.11), we proceed by conditioning. Let ν1,k,N (respectively, νc
1,k,N ) denote the restriction

of ν1,N to the (respectively, complement of the) box Bk := [−k, k] (we assume N > 2k + 1 such

that Bk is identified as part of the torus TN ), and note that ν1,k,N = ν1,k because ν1,N is a product
measure. Set

fN
k (ξ) =

∫

fN (η)1{η|Bk
=ξ}dν

c
1,k,N (dη)

and define the Dirichlet form Dk on functions ζk : NBk → R by

Dk[ζ
k] =

1

4

∑

j,j+1∈Bk

∫

g(ξ(j))

(

√

ζk(ξj,j+1) −
√

ζk(ξ)

)2

ν1,k(dξ)

+
1

4

∑

j,j+1∈Bk

∫

g((ξ(j + 1))

(

√

ζk(ξj+1,j) −
√

ζk(ξ)

)2

ν1,k(dξ)

then, as in [11, p. 372], using that Vk depends on η only through its restriction to Bk, it follows
that

sup
fN∈AN,C

∫

Vk(η)(0)f
N (η)1ηk(0)<C′ν1,N (dη) ≤ sup

ζk∈Ak
N,C

∫

Vk(η)(0)ζ
k(η)1ηk(0)<C′ν1,N (dη)

where

Ak
N,C =

{

ζk : ζk ≥ 0,

∫

ζk(η)ν1,k(dη) = 1, Dk[ζk] ≤
2k

N2
C,

∫

η(0)ζk(η)ν1,k(dη) ≤ C

}

Consider Ak
N,C as a set of densities, and hence identify it with a subset of M1(N

2k+1). Then, Ak
N,C

is compact under the weak topology of M1(N
2k+1), and the lower semicontinuity of Dk[·] yields

that

lim sup
N→∞

sup
ζk∈Ak

N,C

∫

Vk(η)(0)ζ
k(η)1ζk(0)<C′ν1,k(dη) ≤ sup

ζk∈Ak
0

∫

Vk(η)(0)ζ
k(η)1ηk(0)<C′ν1,k(dη) =: Ak

where

Ak
0 =

{

ζk : ζk > 0,

∫

ζk(η)ν1,k(dη) = 1, Dk[ζk] = 0,

∫

ηk(0)ζk(η)ν1,k(dη) ≤ C

}

.

We thus need to prove that lim supk→∞Ak = 0. Toward this end, we do not use the argument in [11]

but rather adapt [9, p. 89]. Indeed, let ν j
1,K denote the law ν1,k conditioned on ηk(0) = j · (2k+1).

Then,

Ak ≤ sup
j≤(2k+1)C′

∫

Vk(η)(0)ν
j
1,k(dη) . (4.12)

Noting (4.10) and repeating verbatim the equivalence of ensemble argument in [9, pg. 89–90], we
conclude that lim supk→∞Ak = 0, completing the proof of Proposition 3.
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4.2 Relative entropy convergence: proof of Proposition 2

We adopt the relative entropy method, as described in details in [9, Ch. 6]. We emphasize in this
presentation the ingredients which differ from the derivation there.

Set ψN (t) := dνρ(t,·),N/dνα,N , α > 0 arbitrary. Repeating the computation in [9, pg. 120–121],

taking into account the birth-death rates, we conclude that

γt :=
d

dt
H
(

µN
t |νρ(t,·),N

)

≤
∑

x∈TN

∫

F
(

t,
x

N

){

g(η(x)) − Φ
(

ρ
(

t,
x

n

))

− Φ′
(

ρ
(

t,
x

N

))(

η(x) − ρ
(

t,
x

N

))}

ν1,N (dη)

+
∑

x∈TN

∫
[

d(η(x) + 1)

g(η(x) + 1)
Φ
(

ρ
(

t,
x

N

))

− d(η(x))

]

ν1,N (dη)

+
∑

x∈TN

∫

[

b(η(x) − 1)

Φ
(

ρ
(

t, x
N

))g(η(x)) − b(η(x))

]

ν1,N (dη)

−
∑

x∈TN

∫

(

η(x) − ρ
(

t,
x

N

)) Φ′
(

ρ
(

t, x
N

))

Φ
(

ρ
(

t, x
N

)) V
(

ρ
(

t,
x

N

))

ν1,N (dη) + o(N)

=: I + II + III + IV + o(N),

where F
(

t, x
N

)

=
∆Φ(ρ(t, x

N ))
Φ(ρ(t, x

N ))
, and where the o(N) term is uniform in α in compacts. Note next

that
1

Z(ϕ)

∞
∑

k=0

d(k + 1)

g(k + 1)

ϕk

g(k)!
=

1

ϕ
Epϕ

(d),

and
1

Z(ϕ)

∞
∑

k=1

b(k − 1)g(k)
ϕk

g(k)!
=

1

ϕ
Epϕ

(b),

and thus

˜(

d(· + 1)

g(· + 1)

)

(a) =
V−(a)

Φ(a)
, (4.13)

˜(

b(· − 1)g(·)
)

(a) = V+(a)Φ(a). (4.14)

We next wish to replace functions depending on η by functions depending on ηk. Toward this
end, note that by (4.6),

H(µt,N |ν1,N ) ≤ C3N

and hence, for any bounded test function β(x),

Eµt,N
β ≤ logEν1,N

(eβ) + C3N .
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Note next that for some γ > 0,

lim sup
N→∞

1

N
logEν1,N

(

e
γ

P

i∈TN
η(i)
)

= logEν1,N

(

eγη(0)
)

<∞ .

Hence, by dominated convergence,

lim sup
N→∞

sup
t∈[0,T ]

Eµt,N

1

N

∑

i∈TN

η(i) <∞ . (4.15)

In particular, for any smooth test function `(x), for each fixed k,

lim sup
N→∞

∑

x∈T N

∫

`
( x

N

) [

η(x) − ηk(x)
]

µt,N (dη) = 0 (4.16)

with the convergence rate depending only on the modulus of continuity of `(·).

We next note that the functions g(·), d
g (·), b(· − 1)g(·), b(·) satisfy the assumptions of Proposi-

tion 2. Using the (uniform) space regularity of ρ(t, ·), the smoothness (C 2 property) of Φ(·) assured
by Lemma 1[(b)], and summation by parts using (4.16), we conclude, using (4.13), that

γt ≤
∑

x∈TN

∫

F
(

t,
x

N

){

Φ(ηk(x)) − Φ
(

ρ
(

t,
x

N

))

− Φ′
(

ρ
(

t,
x

N

))(

ηk(x) − ρ
(

t,
x

N

))}

µt,N (dη)

+
∑

x∈TN

∫

V−(ηk(x))

[

Φ
(

ρ
(

t, x
N

))

Φ(ηk(x))
− 1

]

µt,N (dη)

+
∑

x∈T

∫

V+(ηk(x))

[

Φ(ηk(x))

Φ
(

ρ
(

t, x
N

)) − 1

]

µt,N (dη)

−
∑

x∈TN

∫

(

ηk(x) − ρ
(

t,
x

N

)) Φ′

Φ

(

ρ
(

t,
x

N

))

V
(

ρ
(

t,
x

N

))

µt,N (dη)

+ o(N) (4.17)

where the error term in (4.17) is uniform in t ∈ [0, 1].
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Rearranging the terms in (4.17), and setting M(a, b) = Φ(a) − Φ(b) − Φ′(b)(a− b), we get

γt ≤
∑

x∈TN

∫

F
(

t,
x

N

)

M
(

ηk(x), ρ
(

t,
x

N

))

µt,N (dη)

−
∑

x∈TN

∫

V−(ηk(x))

Φ(ηk(x))
M
(

ηk(x), ρ
(

t,
x

N

))

µt,N (dη)

+
∑

x∈TN

∫

V+(ηk(x))

Φ
(

ρ
(

t, x
N

))M
(

ηk(x), ρ
(

t,
x

N

))

µt,N (dη)

−
∑

x∈TN

∫

[

V−(ηk(x)) − V−

(

ρ
(

t,
x

N

))] [

ηk(x) − ρ
(

t,
x

N

)] Φ′

Φ
(ρ
(

t,
x

N

)

)µt,N (dη)

−
∑

x∈TN

∫

V−(ηk(x))

Φ(ηk(x))

Φ′

Φ
(ρ
(

t,
x

N

)

)
[

ηk(x) − ρ
(

t,
x

N

)] [

Φ
(

ρ
(

t,
x

N

))

− Φ(ηk(x))
]

µt,N (dη)

−
∑

x∈TN

∫

[

V+(ηk(x)) − V+

(

ρ
(

t, x
N

))]

Φ
(

ρ
(

t, x
N

))

(

Φ(ηk(x)) − Φ
(

ρ
(

t,
x

N

)))

µt,N (dη)

+ o(N) :=

∫

∑

x∈TN

6
∑

i=1

Ai(x, η)µt,N (dη) + o(N) (4.18)

where again the error term is uniform in t ∈ [0, T ], and we have used (4.13) to assert that

supx
V−

Φ (x) <∞.

The proof of the following proposition follows the proof of [9, Proposition 6.1.6] and is therefore
omitted. Note that introducing the supremum over t in the statement does not modify the proof
due to the uniform bound on ρ(t, x), t ∈ [0, T ], x ∈ S1.

Proposition 4 Let G(·, ·, ·) : [0, T ] × S1 × R+ → R+ be continuous, such that for some C0 > 0
(a) sup

(t,u)∈[0,T ]×S1

G(t, u, λ) ≤ C0 + C0λ, λ ∈ R+

(b) sup
(t,u)∈[0,T ]×S1

|λ−ρ(t,u)|<δ

G(t, u, λ) ≤ C0δ
2.

Then, there exists a γ0 = γ0(C0) such that

lim sup
k→∞

lim sup
N→∞

sup
t∈[0,T ]

1

N
logEνρ(t,·),N

exp







γ0

∑

x∈TN

G(t, x, ηk(x))







≤ 0 .

Equipped with Proposition 4, let us complete the proof of Proposition 2. Indeed, note that

3
∑

i=1

Ai(x, η) ≤ C0,1

∣

∣

∣
M
(

ηk(x), ρ
(

t,
x

N

))∣

∣

∣
(4.19)
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while
6
∑

i=4

Ai(x, η) ≤ C0,2

∣

∣

∣
ηk(x) − ρ

(

t,
x

N

)∣

∣

∣
Q
(∣

∣

∣
ηk(x) − ρ

(

t,
x

N

)∣

∣

∣

)

, (4.20)

where Q is a smooth function, bounded by 1, with Q(0) = 0, and we used the fact that V− is
bounded which is assured by Assumption (A–3). Fixing γ1 small enough, and with a term o(N)
uniform in t,

γt − γ0 ≤ o(N) +
1

γ1

∫ t

0
γsds

+
1

γ1

∫ t

0
ds logEνρ(t,·),N



exp







γ1

∑

x∈TN

6
∑

i=1

Ai(x, η)











Using Proposition 4 and (4.19), (4.20), it follows that

lim sup
k→∞

lim sup
N→∞

sup
t∈[0,T ]

1

N
logEνρ(t,·),N



exp







γ1

∑

x∈TN

6
∑

i=1

Ai(x, η)









 ≤ 0

and thus, Gronwall’s lemma yields that

lim sup
N→∞

sup
t∈[0,T ]

γt

N
= 0 .

5 Conclusions and future research

In this paper, we formulated certain stochastic approximations to planar shortening flows for convex
curves. More precisely, we constructed a stochastic particle system whose profile defines an atomic
measure on the unit circle such that the corresponding curve is a convex polygon. We then showed
that the evolution of this polygonal curve converges (in the limit of a large number of particles) to
curve evolution under the given curve shortening flow.

We would like to suggest several possible research directions to extend these results. First of all,
one can consider evolutions of non-convex curves. More precisely, it is known that for α = 1, 1/3
a smooth non-convex embedded curve becomes convex under the corresponding curve shortening
flow, and then converges to a point of appropriate “shape” (circular for α = 1 [8], and elliptical for
α = 1/3 [1]). It would be quite interesting to see if one could extend our stochastic framework to
non-convex curves in this setting.

Further, as alluded to above, our work here is partially motivated by the result that the uniform
measure on the set of convex polygons of area bounded by 1 which encircle the origin and possesses
vertices on the lattice n−1Z2 satisfies a large deviation principle with rate function related to affine
arc-length [17]. Hence we believe that natural (random) dynamics for these polygons should be
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related to evolution according to affine curve shortening. In our approach here, there does not
seem to be anything special about the exponent α = 1/3. Thus, more research is necessary to see
if one can indeed find “affine invariant” stochastic approximations to the affine curve shortening
evolution.

Appendix A Proofs of Proposition 1 and Theorem 1:

We begin by recalling the following maximum principle, which is a straightforward adaptation to
the periodic setting of [13, Theorem 12, Pg. 187]:

Lemma 3 Assume Φ, V satisfy Assumption C and let m1(·),m2(·) ∈ C2+β(S1) satisfy m1 ≤ m2.
Let ρi(t, x) satisfy ρi(0, x) = mi(x), i = 1, 2, and Lρ1(t, x) ≤ Lρ2(t, x), for all t ≤ T . Then,

ρ1(t, x) ≤ ρ2(t, x) for (t, x) ∈ [0, T ] × S1.

The only issue preventing one from applying directly classical existence and uniqueness results for
quasi-linear parabolic equations is the fact that Φ′(·) is not bounded away from 0 at infinity, and
hence L is not a strictly parabolic operator. To circumvent this difficulty, assume 0 ≤ µ1 ≤ m(x) ≤
µ2 <∞ for some constants µi, i = 1, 2, and let µi(t) satisfy the ODE

dµi(t)

dt
= V (µi(t)) , µi(0) = µi . (A.1)

Since V is Lipschitz, bounded and V (0) ≥ 0, it holds that 0 < µ1(t) ≤ µ2(t) ≤ µ2 + ||V ||t
for all t ≥ 0. An application of Lemma 3 then yields that any solution ρ(t, x) of (2.2) satisfies
0 < µ1(t) ≤ ρ(t, x) ≤ µ2(t). Fix T <∞ and δ > 0 such that δ < mint∈[0,T ] µ1(t) < µ2+||V ||T < 1/δ,

and set Φδ be a smooth function with Φδ(u) = Φ(u) for u ∈ [δ, 1/δ], such that minx∈R+(Φδ)′(x) > 0.

Let Lδ denote the operator L of (2.1) with Φδ replacing Φ. By [10, Theorem 12.14], the equation

Lδρδ(t, x) = 0, ρδ(0, x) = m(x) possesses a unique solution (the hypotheses of [10, Theorem 12.14]

are checked to hold for the operator Lδ considered as an operator defined on C1,2([0, T ] × R),
with the initial condition m extended by periodicity to R, with the resulting unique solution being

periodic and defining uniquely a periodic solution ρδ which then can be considered as defined on

[0, T ] × S1). By Lemma 3 and the argument above, ρδ(t, x) ∈ [δ, 1/δ] for t ≤ T . Hence, ρδ satisfies
(2.2), establishing the claimed existence since T > 0 is arbitrary. The uniqueness follows by noting

that any solution of (2.2) satisfies, by the above a priori bounds, that Φ(ρ(t, x)) = Φδ(ρ(t, x)) for

t ≤ T , and hence is the (unique) solution of the equation Lδρδ(t, x) = 0.

Proof of Theorem 1: Fix γ ∈ (0, 1] and set ρ̄(t, x) = ρ(t, x)eγt . A direct computation yields
that

Lε(ρ̄) =
[

∂xxρe
γt
(

Φ′(ρ) − Φ′
ε(ρ̄)

)]

+
[

(eγt∂xρ)
2
(

e−γtΦ′′(ρ) − Φ′′
ε (ρ̄)

)]

+
[

eγtV (ρ) − Vε(ρ̄)
]

+ γρ̄

=: I1 + I2 + I3 + γρ̄ . (A.2)

21



We can find a constant C = C(δ) > 0 independent of the values of γ and ε such that

min
(t,x)∈[0,T−δ]×S1

ρ(t, x) ∧ ρ̄(t, x) ≥
1

C
, max

(t,x)∈[0,T−δ]×S1
ρ(t, x) ∨ ρ̄(t, x) ≤ C ,

max
(t,x)∈[0,T−δ]×S1

[

|∂xxρ̄(t, x)| + |Φ′(ρ(t, x))| + |Φ′
ε(ρ̄(t, x))|

]

≤ C.

One therefore concludes the existence of a constant C1 = C1(δ) independent of ε or γ such that

lim sup
ε→0

max
(t,x)∈(0,T−δ]×S1

|I1 + I2 + I3|

s
≤ C1γ .

Setting T1 = (T − δ) ∧ 1/2CC1, one concludes the existence of a function ε0(·), depending on C
and the rate of convergence of Φ′

ε,Φ
′′
ε , Vε only, such that for all ε < ε0(γ),

0 = Lερε(t, x) ≤ Lερ̄(t, x) , (t, x) ∈ [0, T1] × S1 .

The maximum principle (Lemma 3 above) then yields that for ε < ε0(γ), and t ∈ [0, T1], it holds

that ρε(t, x) ≤ eγtρ(t, x). Repeating the argument with γ ∈ [−1, 0), and noting that T1 does not

depend on ε, the conclusion of the theorem follows on [0, T1]×S1. The extension to [0, T − δ]× S1

is immediate by noting that the constants C,C1 do not depend on ε, and repeating the argument
above d(T − δ)/T1e times.
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