Linear Multiuser Recelvers in Random

Environments®
David Tsef Ofer Zeitounit
Dept. of EECS Dept. of EE
University of California Technion
Berkeley, CA 94720, USA Haifa 32000, Israel
dtse@eecs.berkeley.edu zeitouni@ee.technion.ac.il
Abstract

We study the signal-to-interference (SIR) performance of linear multiuser receivers
in random environments, where signals from the users arrive in “random directions”.
Such random environment may arise in a DS-CDMA system with random signature
sequences, or in a system with antenna diversity where the randomness is due to
channel fading. Assuming that such random directions can be tracked by the re-
ceiver, the resulting SIR performance is a function of the directions and therefore
also random. We study the asymptotic distribution of this random performance in
the regime where both the number of users K and the number of degrees of freedom
N in the system are large, but keeping their ratio fixed. Our results show that for
both the decorrelator and the MMSE receiver, the variance of the SIR distribu-
tion decreases like 1/N, and the SIR distribution is asymptotically Gaussian. We
compute closed-form expressions for the asymptotic means and variances for both
receivers. Simulation results are presented to verify the accuracy of the asymptotic
results for finite-sized systems.

Keywords: multiuser detection, MMSE receiver, decorrelator, random signature se-
quences, multiple antennas, random matrices.

1 Introduction

In a direct-sequence code-division multiple access (DS-CDMA) system, each user mod-
ulates the information symbols onto its unique signature (or spreading) sequence. This

*Submitted to the IEEE Transactions on Information Theory.

tThe research of this author is supported by the Air Force Office of Scientific Besearch under grant
F49620-96-1-0199, and by an NSF CAREER Award under grant NCIR-9734090.

!The research of this author was done while visiting the department of EECS at Berkeley, under
partial support from grant TIRI 9310670.



spreading of information provide additional degrees of freedom for communication. To
fully exploit the available degrees of freedom, linear multiuser receivers have been pro-
posed to reduce or suppress the interference from other users. Prominent among these
receivers are the decorrelator [9, 10] and the minimum mean square error (MMSE) receiver
[27, 11, 15, 16].

A common performance measure for these linear receivers is the output signal-to-
interference ratio (SIR). Clearly, the performance of these linear receivers depend on the
signature sequences of the users. We focus on the common situation when the signature
sequences of the users are randomly and independently chosen. This model is relevant in
several scenarios: users may employ pseudo-random spreading sequences, or the transmit-
ted signals from the users are distorted by independent multipath fading channels which
randomize the received signature sequences. While the sequences are random, we assume
in this paper that they are known perfectly at the receiver. In practice, this knowledge is
obtained through adaptation, channel measurements or an initialization protocol. How-
ever, since the SIR performance of the users is a function of the signature sequences, it is
also random. We are interested in characterizing their distributions.

The random sequence DS-CDMA model is an example of a system where multiuser
receivers operate in a random environment. Another common example is a system with
multiple antennas at the receiver. If the fading from a user to each of the receive antennas
is independent, then diversity is achieved using multiple antennas to combat against the
possibility of deep fade at any single antenna. Moreover, by tracking the fading of different
users, linear multiuser receivers can be employed to suppress interference from other users
while demodulating one particular user. The SIR performance is again random, being a
function of the channel fading. This is very similar to the random signature sequence
scenario since in both cases, signals from different users arrive from “random directions”,
where the directions are given by the signature sequences in the DS-CDMA system and
by the fading patterns at the different antennas in the multi-antenna system. Indeed, one
can think of the random sequence model considered in this paper as a canonical model
for a multiuser system with diversity.

In this paper, we analyze the performance of both the decorrelator and the MMSE
receiver in a random environment. The MMSE receiver is particularly interesting as it
maximizes the SIR among all linear receivers. While it is known [11] that both receivers
have the same near-far resistance (ability to reject worst-case interference), the MMSE
receiver, by its definition, performs strictly better in terms of SIR when the powers of the
interferers are controlled or when they are relatively weak (such as from out of cell). The
performance of the decorrelator, on the other hand, does not depend on the interferers’
powers. The SIR performance of the MMSE receiver under power control will be studied.

In recent independent works [22, 25], it was shown that in a random environment,
the SIR of a user under both the MMSE receiver and the decorrelator converges to a
deterministic limit in a large system. The scaling is by letting the processing gain and
the number of interferers go to infinity, keeping the number of interferers per unit pro-
cessing gain fixed. In a finite system, however, the attained SIR will fluctuate around



this limit. Such fluctuations determine important performance measures such as aver-
age probability of error and outage probability, i.e. the probability that the SIR of a
user drops below a certain threshold. The main goal of this paper is to characterize such
fluctuations in various scenarios. We provide Central Limit theorems which show that un-
der appropriate scaling, the fluctuations are asymptotically Gaussian. Moreover, we give
closed-form formulas for the variances of the fluctuations in terms of system parameters.
Our results are obtained using techniques from random matrix theory. While the analysis
of the deterministic limit involves only the asymptotic eigenvalue distribution of certain
random matrices, the characterization of the SIR fluctuation requires understanding the
asymptotic distribution of the eigenvectors as well as the fluctuation of the eigenvalue
distribution around the asymptotic limit. Both of these are current research topics in
random matrix theory and indeed our proofs exploit several recent results.

In related work, [7] has studied the problem of performance variability of linear mul-
tiuser detection under random signature sequences. They derived a heuristic approxima-
tion of the SIR performance of the decorrelator, and provided simulation results for the
MMSE receiver. In contrast, our analytical results are justified by limit theorems and
they apply both to the MMSE receiver and to the decorrelator. In the context of sys-
tems with antenna diversity, [26] have obtained related results on the performance of the
decorrelator under flat Rayleigh fading. In this paper, our results apply to general fading
distributions, not necessarily Rayleigh, which are of particular interest for distributed
antenna systems, where the antennas can be placed at different locations of a room or a
floor. In this scenario, the fading experienced consists of both small-scale (multipath) and
large-scale effects, and cannot be accurately modeled as Rayleigh distributed. It turns
out that relaxing the Rayleigh assumption complicates the analysis considerably.

Much of our results make only very weak assumptions on the distribution of the ran-
domness and are therefore transparent to the specific random environment. For concrete-
ness, we will focus on the DS-CDMA system with random signature sequences throughout
most of the paper. In Section 2, we introduce the model. We analyze the performance
of the decorrelator and the MMSE receiver in sections 3 and 4 respectively, with our
main results being Theorems 3.3 and 4.5. Section 5 contains simulations validating the
accuracy of our asymptotic results. In Section 6, we briefly comment on the application
of our results to systems with antenna diversity. Section 7 contains our conclusions. The
proofs of the results are found in the appendices.

During the final stage of the preparation of this paper, we were informed of independent,
work by Muller et al [14] on the performance of the decorrelator. The relationship between
their results and ours will be discussed in Section 3. We were also informed of independent

work by Kim and Honig [8] who have presented a heuristic approximation for the variance
of the SIR under the MMSE.



2 Linear Receivers for DS-CDMA Systems

In a DS-CDMA system, each of the user’s information or coded symbols is spread onto a
much larger bandwidth via modulation by its own signature or spreading sequence. The
following is a sampled discrete-time model for a symbol-synchronous DS-CDMA system:

K
y= Z bisi + z, (1)
i=1

where b; € ® and s; € R are the transmitted symbol and signature sequence of user m
respectively, and z is N(0,02I) background Gaussian noise. The length of the signature
sequences is IV, which is the number of degrees of freedom, and K is the number of users.
The received vector is y € Y. We assume the b;’s are independent and that E[b;] = 0
and E[b?] = P;, where P; is the received power of user i (energy per symbol).

We view multiuser receivers as demodulators, extracting good estimates of the (coded)
symbols of each user as soft decisions to be used by the channel decoder [16]. From this
point of view, the relevant performance measure is the signal-to-interference ratio (SIR)
of the estimates. We shall now focus without loss of generality on the demodulation of
user 1, assuming that the receiver has already acquired the knowledge of the spreading
sequences. For user 1, the MMSE receiver c; generates a soft decision by = cty which
maximizes the output signal-to-interference ratio (SIR):

(chs1)’Py
(cher)o? + 371, (cts:)? P,

(See [11, 15, 16].)

The formulae for the MMSE demodulator and its performance are well known [11]:

. P,

bmmse = t IS TSt 2[ 1 )
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and the signal to interference ratio § for user 1 is

B = Pst(S,TS! +0*I) s, 3)

where S; :=[sy, ... ,sk| and T := diag(Ps, ... , Pk).

We observe that the MMSE receiver depends on the received powers of the interferers.
The decorrelator is a simpler but sub-optimal linear receiver that operates without the
need of knowing the received powers of the interferers. It simply nulls out the interference
from other users by projecting the received signal onto the subspace orthogonal to the
span of their signature sequences. The vector of symbol estimates Daee generated by the
decorrelator for all users is given by:

baee := (51S) 1Sty



where S := [sy, ... ,sk]. Here, the inverse is replaced by the pseudo-inverse if S*S is not
invertible. Observe that if there were no noise, the estimates will be exactly the original
symbols, and hence it is the multiuser analog of the zero-forcing equalizer. Assuming that
S'S is invertible, the SIR 7 of user 1 under the decorrelator is given by

P
T S T a

where the denominator is the (1,1) entry of the matrix (S*S)~!. Note that the perfor-
mance of the decorrelator does not depend on the powers of the interferers.

The formulas above for the SIR performance of various receivers can be numerically
calculated given specific choices of the signature sequences. In this paper, however, we
focus on the scenario when the sequences are randomly and independently chosen. In this
case, the SIR performance of a receiver is a random variable, since it is a function of the
spreading sequences, and we are interested in analyzing its statistics. We will assume that
though the sequences are randomly chosen, they are known to the receiver once they are
picked. In practice, this means that the change in the spreading sequences is at a much
slower time-scale than the symbol rate so that the receiver has the time to acquire the
sequences. (There are known adaptive algorithms for which this can even be done blindly;
see [6].) However, the performance of linear receivers depends on the initial choice of the
sequences and hence is random.

The model for random sequences: let s; = \/LN (v, - - ,ij)t, j=1, ... K. The random
variables v;;’s are i.i.d., having zero mean, variance 1 and a distribution symmetric about
0. The normalization by ﬁ ensures that F[||s;||?] = 1, i.e. maintain a constant average
power. In practice, it is quite common that the entries of the spreading sequences are 1
or —1, but our results hold for general distributions, which are useful when we look at
other random environments such as systems with antenna diversity. We will also make
the technical assumption that E[v};] < co. This last assumption can be relaxed (it is
probably enough to assume the 4th moment is finite), but we chose this slightly stronger
assumption in order to simplify the proofs.

3 Performance of the Decorrelator

We shall begin by studying the performance of the decorrelator, before proceeding to the
MMSE receiver, which requires a more sophisticated analysis. The following result shows
that in a system with large processing gain and many users, the random SIR of a user
converges to a deterministic limit. It is proved independently in [22] and [25].

Theorem 3.1 Let v be the (random) SIR of the decorrelating receiver for user 1 when
the spreading length is N and the number of users K = |aN|, where a > 0 is a fized
constant. Then vV) converges to v* in probability as N — oo, where v* is given by

’7* — { L;a) a<l

g

0 a>1



In the scaling considered, the number of users per degree of freedom (or, equivalently,
per unit bandwidth) « is fixed while the number of degrees of freedom grow. This scaling
makes sense as more users can be supported by a larger bandwidth. The parameter o can
be thought of as the system load. Observe also that the above result holds regardless of
the powers of the interferers, as the decorrelator nulls out all interferers and therefore its
performance does not depend on the interferes’ powers. Intuitively, this result says that
for random signature sequences, the loss in SIR due to interference from other users is
proportional to the number of interferers per degree of freedom.

Theorem 3.1 can be viewed as a law of large numbers. Though it gives the asymptotic
limit, this result does not provide any information about the fluctuation around the limit
for finite-sized system. This is the main consideration in this section. It is of interest
to consider only the case when the number of users is less than the number of degrees
of freedom, i.e. a < 1, because otherwise the limiting SIR is zero. Moreover, since the
performance of the decorrelator does not depend on the powers of the interferers, we can
just focus on the case when the interferers have equal received power P, i.e. T = PI.

The first step is to obtain a formula for the SIR performance under the decorrelator,
equivalent to but more useful for analysis than (4). It is known [11] that for the same
signature sequences, the asymptotic efficiency of the decorrelator and MMSE receivers
are identical, i.e.

lim ’)/(N)O'Q = lim Mg?,

20 a2—0
where 3(V) is the SIR under the MMSE receiver in a system with processing gain N.
Using eqn. (3) and (4), we therefore get

1
— = 1j st (PS, St 2N tsy.
G8) Ty~ i SPSISi o) s
Let PSSt = OFO! be the spectral decomposition of PS;St, where F' = diag(\, ..., An)
is a diagonal matrix with decreasing eigenvalues and O is an orthogonal matrix of the
eigenvectors of S;St. Putting this in the above expression and evaluating the limit, we
get

1 t
— =5'0DO's 5
(EE T ®)
where D = diag(0,...,0,1,...,1) and the number of 1’s in the diagonal of D is the
number of zero eigenvalues of S;S?.

To provide some background for our analysis of the random SIR performance for
finite-sized systems, it is helpful to see first how Theorem 3.1 can be derived from the
representation (5). The essence is based on the following lemma, proved in [13].

Lemma 3.2 Let s = \/LN(UI,... ,on)" where v;’s are i.4.d. zero mean, unit variance
random variable with finite 4th moment. Let A be a deterministic N by N symmetric



positive-definite matriz. Then

E[s'As] = %tr A

and .
Var [s'As] < NC& [Amax(A4)]2.

for some constant Cy which depends only on the fourth moment of v;.

This lemma holds for any deterministic matrix A. Applying this Lemma by condi-
tioning on A = ODO! and observing that A and s; are independent, we obtain that

E[stODO',]| = %E[tr D).

(Note that E[tr D] is just the average number of non-zero eigenvalues of S15%.) Also,
Amax(ODO?) < 1 and an application of Chebychev’s inequality yields:

1
stODO's; — ~irD 5o (6)

(Here and in the sequel, the notation % denotes convergence in probability, while the

notation = denotes convergence in distribution, or more generally weak convergence of
probability measures.) Furthermore, Bai and Yin [1] showed that the smallest eigenvalue
of the random matrix S!S; converges almost surely to a positive number, when a < 1.
This implies that almost surely for large N, the signature sequences of the other users are
linearly independent and the number of 1’s in D is N — K + 1. This together with (6)
and (5) immediately yields Theorem 3.1.

Geometrically, ||s;ODO's; ||? can be interpreted as the amount of energy of s; in V, and
the above result says that in a large system, this amount is approximately proportional
to the dimension of that space. This is what one would expect from the i.i.d. nature of
the components of s;.

Observe that the above derivation of the asymptotic limit makes use of the convergence
of tr D (i.e. the dimension of the subspace V') but not any properties of O, the eigenvectors
of 51 5¢. In fact, it depends only on the randomness of s;. However, when we are interested
in characterizing the fluctuations of the SIR around the asymptotic limit, asymptotic
properties of the eigenvectors are needed. The mathematical apparatus to deal with this
is established in Appendix A. The solution depends on pp(-), the asymptotic empirical
distribution of the eigenvalues of O DOY; this is given by up(z) = ad(z) + (1 —a)d(z —1).
Applying Corollary A.2 to this problem, we can then conclude that

1
VN [SmDOts1 -t D] 2 N(0,a).
where

0 = Q/xmp(dxH(E(v;)—?)) </qu(dx))2
— 21— a)+ (k) - 3)(1 - 0)?



This together with the fact that tr D converges almost surely to N — K + 1 yields the
following theorem:

Theorem 3.3 When the system load oo < 1, as N — o0,

VN (7(1") - %(1 - a)) qq = N (0, (%)ZCL)

where
a=2(1—a)+ (Epy]—-3)1 - a)?

This theorem says that the fluctuation of the SIR around the limit is approximately
Gaussian with variance +-(2%)%a, decreasing like 1/N and with a depending only on the
system load o and the fourth moment of v1;. Observe also the variance increases with
E[v?], and hence is minimized when the entries take on +1 or —1 values only. It should
be noted that while the asymptotic limit depends only on the second moment of v;;’s, the
amount of fluctuation around the limit depends on the fourth moment, and thus varies

from one distribution to another.

Since the truth of Theorem 3.3 depends entirely on the machinery developed in Ap-
pendix A and the proofs there are rather technical, we would like to give some intuition
as to why it holds. Define

1
u= ﬁ(ul’ .uy)t = O';.
Assuming that the signature sequences of the interfering users are linearly independent
(which holds with probability 1 in a large system), we have

P 1
(G 2
r}/ _O_QNZI(U'Z

First consider the special case when the entries v;; of the spreading sequences of user
1 are Gaussian. Then the u;’s are i.i.d. Gaussian N(0,1). In this case, 7(*) is Chi-square
distributed. This is basically the main result of [26], except that they considered complex
Gaussian v;; for their Rayleigh fading model. For large N, a direct application of the
Central Limit Theorem yields Theorem 3.3, with E[v{,] = 3.

We observe that in the special case of Gaussian v;;, the Central Limit approximation
is actually not necessary as the explicit distribution of 4™ can be obtained for finite
N. Moreover, the properties of the eigenvectors O play no role here, other than the fact
that O is independent of s;. The key reason is that an i.i.d. Gaussian random vector is
1sotropic, i.e. its distribution is invariant to orthogonal transformations, so that whatever
a deterministic O is , O's; has the same distribution as s;. In particular, this means that
s1/||s1]| is uniformly distributed on the N — 1-sphere of radius 1.



Let us now consider the general case where the v;;’s are not necessarily Gaussian so
that the random vector s; may not be isotropic. In this case, O's; has a complicated
distribution dependent on both the distribution of O and s;, and need not be isotropic.
To analyze this problem, we need to exploit a special property of the eigenvectors of
S18¢. In particular, we show that even though s; may not be isotropic, as N — oo, the
random vector v := O%(s;/||s1]|) will be asymptotically uniformly distributed on the unit
sphere and moreover independent of ||s;||. (This fact is made precise in Theorem A.1 of
Appendix A.) In essence, we show there that there is enough randomness in O to make
O'(s1/||s1]|) close to being uniformly distributed.

Any isotropic random vector with fixed norm 1 can be generated by an i.i.d. Gaussian
random vector normalized to be on the unit sphere. It then follows that

|| ||(7'1,..., N) (7)

where the r;’s are i.i.d. Gaussian N (0, 1) and independent of ||s;||, and ~ means that the
distributions of the random variables in both sides of (7) are “close” in a sense which will
be made precise later. Thus,

and

Using the Central Limit Theorem, it can be seen that

Nlsi ~ 1+ o)
I~ 1+ o (10)

1 1

N;rf ~ (1—a)+ﬁ¢3 (11)

where the ¢;’s are zero-mean jointly Gaussian and ¢; independent of ¢o and ¢3. The
second moments of these random variables can be calculated as:

E[¢]l=Elv]-1;  El¢3]l=2  E[¢3] =2(1-)?
and
Elgats] = 2(1 — o).

Using (9), (10), (11), we can perform a Taylor-series expansion of (8), keeping the first
and second order terms only, and obtain

7<N>Nf; |« +\/1—N((1—a)¢1—(1—a)¢2+¢3)



Direct computation reveals that the variance of the Gaussian fluctuation (1 — «)(¢; —
¢2) + ¢3 is precisely a given in Theorem 3.3.

The essence of the above argument is based on the fact that the eigenvector matrix O
of 515! itself is in some sense asymptotically isotropic. A version of this phenomenon has
been proved by Silverstein [18]: he showed that given any deterministic vector s; whose
entries are either +1/ V/N or —1 / V/N, the random vector O's; is asymptotically isotropic,
to the accuracy of the Central-Limit approximation. We show that this is true also when
s; is a random vector with i.i.d. elements of general distribution, but independent of
O. This fact is made precise in Theorem A.1 in Appendix A, using the theory of weak
convergence.

An interesting observation from the above heuristic derivation is that the asymptotic
distribution of the SIR under the decorrelator depends on the distribution of vj;s only
through that of ||s;||?, i.e. the fluctuation of the received energy of the signal from user
1. In the special case when the signature sequence entries takes on +1/ V/N or —1 / VN,
ls1||* = 1, and eqn. (8) simplifies to

N
P 1
(N) 2L _ 2 2
Y ~ T, .
o? ||r||2§ '

A similar approximation was proposed independently in [14]. However, the assumption
of O's; being asymptotically isotropic was made without justification. As was pointed
out, this matter is rather subtle as the property depends both on the distributions of O
and s;.

4 Performance of MMSE Receiver

We now turn to analyzing the performance of the MMSE receiver. In [22], it is shown that
in a large system, the SIR under the MMSE receiver converges to a deterministic limit.
While the results there apply to the general setting of users with unequal received powers,
we focus here on the case when the users are controlled to equal received power. This
would be the case when users are all in a single cell and have the same SIR requirements.
In this case, the limiting STR has a simple closed-form expression, which is also obtained
independently in [25].

Theorem 4.1 [22] Let 3™Y) be the (random) SIR of the MMSE receiver for user 1 when
the spreading length is N. Suppose the received powers of the users are all equal to P.
Then BN) converges to B* in probability as N — 0o, where (* is given by:

, (1-—a)P 1 \/ (1-a)2P2 (1+a)P 1
— = - 12
b 202 2 + 40t + 202 + 4 (12)

10



To provide some background in understanding our approach to analyzing the random
performance in a finite-sized system, it helps to first give the basic intuition behind the
proof of Theorem 4.1. Recall from eqn. (3) that the SIR of user 1 under the MMSE
receiver is given by:

B = Pst(S,TSt + oI 's,

where S} = [Sg,...,8k] and T = PI. In terms of the spectral decomposition PSS* =
OFO" introduced in the previous section, where F' = diag()y,. .., Ay), we have

B = PstO(F +o*1)71O';.

Comparing this to the performance of the decorrelator:
P
v = —s{0DO';,
o

where D = diag(0,...,0,1,...,1), we see that the expression for the MMSE receiver is
more complicated as it depends on the random eigenvalues of P.S;S? as well. This reflects
the fact that the MMSE receiver attains a better performance by taking into account the
strength of the interferers rather than just nulling them out.

Nevertheless, Theorem 4.1 can be proved by, first, using Lemma 3.2 to show that for
large N

P
BN Ntr (F +o%1)7 1.
Second, using results from random matrix theory [13, 17|, it can further be deduced

that the empirical distribution of the eigenvalues of S;T'St converges to some limiting
distribution G*. Combining these facts, we obtain that 3™ converges in probability to

1
P ().
//\+U2dG (A

In [22], it is further shown how this limit can be explicitly computed to be (12).

Following this train of thought, the random fluctuation of 3™ around the limit 3*
can be dealt with by decomposing into three terms:

B — %tr (F+o°I)7! (13)
and
P 27\—1 (N)
Ntr(F—i—o I - FE[pYY], (14)
and
E[B™] - p* (15)

Note that the first term depends on s; and the eigenvector matrix O, while the second
and third terms depend only on the fluctuation of the empirical eigenvalue distribution

11



of §;7TS; around the limiting distribution G*. Just as for the decorrelator, the first
fluctuation can be characterized using the theory developed in Appendix A. Applying
Corollary A.2 there, we obtain:

Lemma 4.2

VN (5(N) _ %tr (F + 021)‘1) 2 N(0,b)

where
- 2/ {ﬁ} TG O) 4 (Bl — 3) [/ X fgz dG*(/\)] 2 (16)
Note that
/ A fasz*()\) =F
and

P dpg*
——dG*(\) = ———.
/ (A + 02)? ) d(o?)
Thus, to compute the second integral, we need only to differentiate eqn. (12) with respect
to o2. We therefore get

_ 251+ )
- F+8) +a

+ (Elvi,] = 3) (87)*.

The above lemma says that the fluctuation of the first term (13) is of the order of
1/vV/N. Regarding the fluctuation of Ltr (F + 0I)~!, we have the following result, the
proof of which can be found in Appendix B.

Lemma 4.3

lim sup Var < 00

N—oo

>
i—1 /\i+02

This says that the fluctuation of £ tr (F + o)™ around its mean is of the order at
most 1/N, negligible compared to the first source of fluctuation (13).

Finally, concerning the deviation of the mean SIR from the limit 3*, we have the
following result, proved in Appendix C.

Lemma 4.4
lim sup N (E[ﬁ(N)] - ") <

N—o

This shows that the mean SIR is of order at most 1/N from the limit 8*. Combining
lemmas 4.2, 4.3 and 4.4, we have the following main result characterizing the asymptotic
distribution of the performance under the MMSE receiver.

12



Theorem 4.5 As N — oo,
VN(B™ - 57) B N(0,b)

where

26" (1 + 6°)? " 2
b= — + (Elv| — 3
5 (BP9 ()
and
. (1-aP 1 \/(1—a)2P2 (1+a)P 1
b= 207 2 * 40t * 202 * 4
Moreover,

lim sup NV (E[ﬂ(m] — ﬂ*) < 00

N—oo

This theorem says that while the asymptotic limit §* can be expected to be a very
accurate approximation of the mean SIR for reasonably sized system (difference of order
1/N) , the fluctuations can be significantly larger (of order 1/v/N). This will be validated
by the simulation results in the next section.

We would like to give some intuition underlying the proof of this result. This is similar
to our heuristic discussion on the decorrelator. Because O's; is asymptotically isotropic,
we can write

Ols: ~ [[s1]] ¢

S1 =~ (7'1 T‘N)
fefl >

where the r;’s are i.i.d. Gaussian N(0,1) and independent of ||s;||. Thus,

2
(N) o [[s1]] 2 17
p BE 12:1: )\i+0.2TZ' (17)

Using a process-level Central Limit argument together with the fact that the random
eigenvalue fluctuation is small, it can be shown that

1

Nllsi[* =~ 1+ﬁ¢1 (18)
1

Iol? & 1+ ——g, (19

VN
P 2

1 1
Ni:l /\i+02ri ~ P +ﬁ¢3

(20)

where the ¢;’s are zero-mean jointly Gaussian and ¢; independent of ¢, and ¢3. The
second moments of these random variables can be calculated as:

BSI-Ebtl-1 E#=%  B=2 [ || 460

13



and
E[¢2¢3] = 23"

Using (18), (19), (20), we can expand (17) in the Taylor-series expansion, keeping the first
and second order terms only, and obtain the Gaussian approximation given in the main
theorem.

It was mentioned in Section 3 that the exact (non-asymptotic) distribution of the
SIR under the decorrelator can be computed to be Chi-square when the chip distribution
is Gausstan. Due to the dependency on the eigenvalue distribution, however, no such
simple non-asymptotic expression seems possible for the SIR under the MMSE receiver.
Even in the Gaussian case, the marginal distribution of the eigenvalues of S;.5; is quite
complicated, expressed in terms of Laguerre polynomials [21].

5 Simulations and Numerical Results

To see how accurate the limit theorems are for finite-sized system, we compare the the-
oretical results with actual values obtained by simulations. All simulation results are
obtained by averaging over 10, 000 independently generated samples, and will be consid-
ered as the actual values of the statistics. Users are received at equal power P, and the
SNR P/o? is set at 20dB. The chips of the signature sequences have values +1/ VN or
—1/\/N. Fig. 1 and 2 display results for the MMSE receiver. In Fig. 1, we plot the
limiting SIR * (given by formula (12)), the mean SIR B%N), and the actual and theoret-
ical SIR level at one standard deviation below the mean. These curves are plotted as a
function of the system load o (number of users per degree of freedom) for different system
sizes: N = 16,32, 64,128. The theoretical SIR level 1 standard deviation from the mean
is given by

b

5=\~

where b is given by eqn. (16).

We make several observations. First, the mean V) is very close 3*, and their differ-
ence is much smaller than 1 standard deviation. For N = 32 and greater, the #* and (V)
curves are almost indistinguishable. This confirms our theoretical results, which predict
that 3* — BY) is going to zero at least as fast as 1/, while the standard deviation goes
to zero like 1/v/N. Second, the theoretical prediction y/b/N of the standard deviation is
quite close to the actual standard deviation. Again, the two corresponding curves are al-
most indistinguishable for N > 32. Third, the standard deviation compared to the mean
SIR is small where there are few users per unit processing gain, but quite significant when
there are many users. This is true even for N = 64.

Next, we investigate how accurate the Central-Limit results are in predicting the tail of
the SIR distribution. In Fig. 2, we compare the actual 1%-outage SIR with that predicted
by Theorem 4.5. (The 1% outage level is the value z such that Pr(SIR < z) = 0.01. )
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We see that while the theoretical result is accurate when the system load « is small (less
than 0.5), it tends to be over-pessimistic for « larger, when the achieved SIR is small. The
accuracy of the theoretical results becomes good for the entire range only when N = 128.

For the decorrelator, as we mentioned in Section 3 and was also independently pointed
out in [14], an alternative approximation is suggested by the heuristic (8). This does not
assume a Gaussian approximation to the various sums, but is only based on the fact that
O's, is asymptotically isotropic. The random variable

Zfik Tz‘2

N
Zz’:l Ti2

follows a Beta distribution, since the r;’s are i.i.d. N(0,1). (See for example [3].) Hence
an approximation to v¥) is a product of the independent random variable ||s;||? and a
Beta distributed random variable. In the special case of +1, —1 sequences, ||s1]|> = 1 and
this approximation simply becomes a Beta distribution. The approximation is applied
to calculate the 1%-outage level for the decorrelator in Fig. 3. The result is compared
to the actual 1%-outage level, as well as the Central-Limit approximation provided by
Theorem 3.3. We see that even for N = 16, the Beta distribution approximation is very
accurate, and in fact indistinguishable from the actual values for N > 32. On the other
hand, the Central Limit approximation, while accurate for small «, tends to be over-
pessimistic for « close to 1. This suggests that for moderate N, O's; is already very
close to perfectly isotropic. On the other hand, the Gaussian approximation to Zf;l r?
and Zf\i « T2 introduces errors which are only negligible when N is quite large. Thus,
when N = 128, all three curves (actual, Beta distribution approximation, Central Limit
Theorem approximation) merge.

i

6 Antenna Diversity

In the previous sections, we have focused on the DS-CDMA system with random signature
sequences. Another example of a random environment in which linear multiuser receivers
operate is a system with multiple antennas for providing spatial diversity. These antennas
can be arranged in an array located at a single base-station, or they can be distributed
in geographically different locations in which case they provide macro-diversity. Antenna
elements co-located in an array mainly serves to combat multipath fading, while a dis-
tributed antenna system can combat larger scale fading effects. In any case, performance
can be improved by adaptive combination of signals received at the various antenna ele-
ments depending on the channel strengths. A general baseband model for such a system
with flat fading is given by:

K
y= Z b;h; + z,
i=1

where b; is the transmitted symbol of the ¢th user, and y is a N-dimensional vector
of received symbols at the antennas. The vector z is i.i.d. complex circular symmetric
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Gaussian noise with variance per component 0. The vector h; represents the (flat) fading
of the ith user at each of the antennas. Let h; = (v;/V/N,...vy;/V/N)!. We will assume
a fading model in which v;; are i.i.d. circular symmetric random variables with variance
E[|v;;]?] normalized to be 1, to keep the total received energy at the antennas constant,
irrespective of the number of antennas. The circular symmetry arises naturally when
shifting from a high carrier frequency to the baseband. We will also assume the signal
constellation is circular symmetric as well, so that b; is circular symmetric. The average
received power of all users are assumed to be the same, E[|b;|?] = P. We let a = | K/N |
be the number of users per antenna element.

Assuming that the receiver can track the fading perfectly, the MMSE receiver is the
optimal linear receiver in maximizing the SIR of each user 1. The decorrelator nulls out
the interference from other users. The performance of both of these receivers is a function
of the channel fading at the current time, and is therefore random.

The similarity of the multi-antenna model with the DS-CDMA system is obvious,
with the signature sequences replaced by the channel fading vectors. The only difference
is that the entries of H are now complex rather than real as in the signature sequences.
Rigorously speaking, Theorem A.1 which we used for analyzing the DS-CDMA problem
is only proved for real v;;. (The proof of Lemmas 4.3 and 4.4 carries over verbatim to
the complex case, c.f. for a similar argument [2]). The extension of Theorem A.1 to the
complex case is straight-forward, once Theorem 4.1 in [18] is extended to the complex case,
which is also straight forward, albeit tedious. Carrying out these extensions explicitly is,
however, beyond the scope of this paper. Thus, we believe that Theorem A.1 generalizes
to the case when v;; is complex circular symmetric, but we do not provide a detailed proof.
Assuming this generalization, the performance of the decorrelator in the multi-antenna
system can be approximated by (in analogy to (8)):

P ||y
f)/(N)RJ)_“ 1” Z|Ti|2
i=K

a? |||

where r;’s are i.i.d. zero-mean complex circular symmetric Gaussian random variables
with E[|r;|?] = 1. This assumes o < 1. Note that in the case of the Rayleigh fading
model, v;;’s are circular symmetric Gaussian and the approximation becomes exact, and
this specializes to the result of [26]. For large N, applying the Central Limit Theorem,
™) can be further approximated by a Gaussian random variable with mean (1 — a) P/o?
and variance

% <£) {2(1 — @) + (E[lvu ] = 3)(1 — )?} .

For the MMSE receiver, the SIR performance can be approximated, for large NV, by a
Gaussian random variable with mean #* and variance

i{2mu+WV

N %u+my+d+ﬁmm]—SWﬁ},
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where 3* is given by eqn. (12).

Figures 4 and 5 show simulation results which support the theory, for the case when the
channel gains v;;’s are circular symmetric and magnitude distributed as lognormal with
standard deviation 8dB. This is a model for large-scale fading effects due to shadowing
effects, as would be appropriate for a distributed antenna system where the antennas
are physically spaced far apart. For a randomly located user, it is reasonable to model
the fading to each of the antennas as independent. Similar to the results for the binary
spreading sequences, the mean and variance approximations are quite accurate, even for
small N, while the approximation for the tail tends to be conservative except for N large.

7 Conclusions

In this paper, we studied the SIR performance of the decorrelator and the MMSE re-
ceiver in a random environment. Such random environment may arise in a DS-CDMA
system with random signature sequences, or in a system with antenna diversity where
the randomness is due to channel fading. We showed that for the two receivers consid-
ered, the variance of the SIR distribution decreases like 1/N, and the SIR distribution
is asymptotically Gaussian. We computed closed-form expressions for the variances for
both receivers, and observed that the relative amount of fluctuation is large when there
are many users per degree of freedom and the achieved SIR is low.

Simulation results show that the asymptotic mean and variance computed from the
theory are very accurate approximations for even moderate system size and for a wide
range of o (number of users per degree of freedom). On the other hand, when the
achieved SIR is small and system size only moderate, the Gaussian approximation is not
very good for approximating the tail of the SIR distribution (1% outage, for example.)
Based on insights gained from the theory, an alternative approximation based on the
Beta distribution is derived for the performance of the decorrelator. This approximation,
observed independently in [14], is very accurate for moderate system size and for the
whole range of «.

There are several interesting directions for future work. One remedy to offset the
random fluctuation of the SIR is through power control. The interesting question is then
to characterize the distribution of power required to keep the SIR at a desired level. The
problem is complicated by the fact that all users will vary their powers simultaneously to
achieve their individual desired SIR. However, we conjecture that in the scaling considered
in this paper, the performance of a user is insensitive to the power variations of other users
and depends mainly on its own power. This would then imply that the power distribution
can be computed as that of the reciprocal of the SIR calculated in this paper.

Another interesting question is to characterize the empirical distribution of SIR levels
of the users across the system. Contrast this with the SIR distribution of a particular
user, which is what we computed in this paper. We conjecture that in a large system,
some kind of “weak asymptotic independence” between users will hold and with high
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probability the two distributions are very close.
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Appendices

A Asymptotically Isotropic Eigenvectors

In this section, we develop the machinery required to prove Theorem 3.3 and Lemma 4.2.
Theorem A.1 quantifies precisely what it means to say that the eigenvectors of a random
matrix are asymptotically isotopic. Its proof uses heavily ideas from Silverstein [18] and
so we adopt his notations.

Notations We let x, = (21, ,z,) denote random vectors with ||x,|| = /> i, 27 =
1, and let z, = (z1, -, 2z,) denote arbitrary random vectors in R”. As in [18], we let

{vi]-},-_fl,... be i.i.d. random variables with Evfj =1, Ev;; =0, Evfj < oo and symmetric

=T
distribution. With V,, = {v;;}"_, , let M, =

j=1,s(n)

LV, V! and define 2 — vy €
s(n) n s(n) n — 0o

(0, 00).

Let M, = O,A,O! denote the spectral resolution of M, with A, a diagonal ma-
trix whose entries, the eigenvalues of M,,, are arranged in nondecreasing order, and O,
denoting an orthonormal matrix consisting of the eigenvectors of M,,.

Let z1, 29, - - - denote a sequence of i.i.d., independent of {v;} random variables, with
Ez; =0, E2? =1, Ez} < oo, with symmetric distribution. Let

1 &K, D
h=—=) (5 —1) —n

where 7 denotes a Gaussian random variable with zero mean and variance o = Ezf —1,
and the convergence, due to the CLT, is in the sense of distributions. Letting W°(-)
denote a Brownian bridge, that is the zero mean Gaussian process on [0, 1] with covariance
E(W°(s)W°(t)) = min(s, t) — st, define y, = (y1, - - yn)" = Oz, where z,, = (21, , 2p,).

Introduce the process
)=V z (#-1)

The main result of this section is the following theorem. We refer to [5] for the basic
definitions and properties of the Skorohod topology and of weak convergence of probability
measures on D0, 1].

Theorem A.1

n
Ny , 21
G Feero,n (21)

where W° and n are independent and the convergence is in the sense of distributions in

D|0, 1], the space of right continuous functions with left limits (RCLL), equipped with the
Skorohod topology.

{Zn() bico] — {W° +
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To see why this says that the vector y,, is asymptotically isotropic, consider the special
case when z, is an i.i.d. Gaussian random vector, i.e. isotropic to start with. Then y, is
also an i.i.d. zero-mean Gaussian vector which is clearly isotropic. It is not difficult in this
case to verify by a standard functional Central Limit Theorem that Theorem A.1 holds.
What Theorem A.1 says is that y, will be asymptotically isotropic even in the general
case when the z;’s are not. It’s truth depends on the asymptotic isotropic property of the
eigenvector matrix O,.

A consequence of Theorem A.1, of use to us in this paper, is the following. Suppose
D,, is a diagonal matrix (possibly random) with entries monotone on the diagonal and
eigenvalue distribution LY := 2 3" §p.y., = pp, such that pp possesses a continuous
c.d.f. Fp(x) with support on some compa



Since F,(z) converges to the continuous Fp(z), the weak convergence of Z,(-) is carried
over to that of Z,(F,(-)), and the latter converges in distribution to the Gaussian process

(W (Fo(@)) + 5 Fo(@)}acioce)

Hence,

\/L_(an —trDy) /0 z [ (Fp(z)) + %dFD(x)]
f/ (zdFp(z +/ (W"(FD( ))

The convergence (22) and the value of the variance in (23) follow from evaluating the
variance of the limiting Gaussian process. []

Proof of Theorem A.1 The proof is a modification of the argument presented in [18].

Let LA = 1 3™ §a,)us and FX(z) = [ LA»(dy) denote the number of eigenvalues of

n
A, smaller than z. It is Well known that LA» 2 1a, in the sense of weak convergence of

distributions, with F*(y fo pa(dy) denoting the appropriate distribution function.
Then FA(x) — FA(x), unlformly, c.f. the argument in [18, pg. 1176].

By Theorem 4.1 in [18], for any fixed sequence of vectors with

n
||Xn|| = 17 ;mi,z n:)OO 07

we have that

{itsm - Luwam)} | = {[rar(ea)}

in the sense of convergence of laws in R*°. In particular, it follows that for any sequence
€n — 0,

d:= (24)

1 = *
sup de ({\/E (xflM;xn — —tr (M;)) } : {/x’dW” (FA(x)) } ) — 0,
{%nl[%n||=1,50_; &4 ;<en} 2 n 1 r—1/ M — 00

where d(a, b) denote the distance between the laws of the random variables a, b in, say, the
Lévy-Prohorov metric (see [5] for the definition; any metric between probability measures
which is compatible with weak convergence can be used here).
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Next, note that

2n

I OV NV - 1675 ) R
- { oo (e e~ )} el

trM’ =
(]| )}

r=1

— (2L Mz, — tr (M’"))}

EEES

1>

Zy+ 22,
where Z! are random variables taking values in R*.

Let e, =77, and let A, = {x, : [|x,] = 1, Y i1 Tp; < €n}. Note that

Z( )4: DL
S \lzll) -t 2,22

and further

P(n:"n““) <OT S0

Let L§* denote the law of Z} conditioned on z,, let L' denote the law of { [ z"dW°(F(z))}>,.
Then, using (24),

dE(Lfn,LW)gP< eA)+E — 0. (25)

||z || n — 00

This, together with the convergence = — [ z"dF2(z) and W 2, N(0,7), imply

that
7+ 72 2, {/x’"dW" (FA(:U)> }: + {\%/MFRA@)}; (26)

where 7 is a N (0, 0,,) random variable independent of W°.

The next step consists of inverting the time change in (26). In view of the argument
in Page 1191 of [18], (21) follows from (26) as soon as some tightness holds, that is as
soon as one shows that for some C > 0,

5(2,(F.0)) < cB(R.0) (27)

and for any 0 < z; < o,

2

E(Zn(Fn(xg)) . Zn(Fn(xl))>4 < C’E(Fn(xg) . Fn(x1)> , (28)
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(compare with Theorem 4.2 of [18]). In fact, the proof of these facts follows closely
the proof in [18], whose notations we adopt here. Since the proof of (27) is similar, we
consider below only the proof of (28). Let P" = {F,;} denote the projection matrix on
the subspace of R™ spanned by the eigenvectors of M,, having eigenvalues in [z1, z2]. One
checks immediately that

1

Zn (Fn(@)) —Z, (Fn(x1)> = \/ g5 (@ P 20 — tr P").

With v,; = z;2;, one sees that the LHS of (28) satisfies

E(Zn(Fn($2)) — Zn(Fn(xl)))4

4
1 Z Z

i
4 n 4
C
< 5 |E (Z %‘jPz'j> +E (Z(zz? - 1)Pz'z'>
i#i i=1
é C(Il + ]2) y

for some constant ¢ independent of n.
Following the same argument that led to (4.10) in [18], one finds that
n—1

h = — (12(n — 2)EZ{(E2)* E(P;,Pi3) + 3(n — 2)(n — 3)(E2})  E(P;, Py)

+12(n — 2)(n — 3)(E2})* E(Pia Py Psy Pry) + 2E(P{*2)(Ezf)2)

Using the fact that P is a projection matrix, we have that

Py = PyPij+ Py Py + PPy + PP

j24

Using the fact that expectations are invariant with respect to permutations, we conclude,
as in [18], that

(n —2)(n — 3)E(P1aPa3PsyPy) < EPE + 2E(Pyy Py P2) + 2EPE P
< EP\ Py, + 2E(P}, P},)) + 2E(P,1 P», P})
< EPy1 Pyy + 2E(Py1 Pyy) + 2E(Py1 Pao)
= 5E(Py1Pyy)

where we made repeated use of P4 < Py Py and Py > max(Piy Pao, P?). Similarly,

(n — 2)E(PLPL) < E(PiPY) < E(P]Py) < E(P11Py)

25



and
(n— 3)E(P},P;,) < E(PfyPs3)

leading to
(n—2)(n —3)E(P,P5) < (n— 2)E(Pi,Ps) .

However, using the identity

Ps3 (Z I:)ijl:)ij+P11P11+P13P13) = P33Py,

J#1,3
we obtain
(n — 2)E(Ps3Pl,) + EPY Pss + EP4Ps3s = EP; Pss,
leading to
(n —2)EPs3P% < EP,1 P33 = EP1 Py .
Hence,

(n—2)(n—3)E(PLP}) < EP, Pyy.
Combining the above, we conclude that
I < KW E(Py1 Py)
for some constant K; which depends on Ez{ only. Similarly, for some constant K, inde-
pendent of n,

1 2

12 S _]EP141+
n

1
< ~ EP}, + KoE(Py1 Pyy) .

0= w2 ) (B2 - 1))

Hence, for some K3 independent of n,

n—1
C(Il + 12) S K3 (ﬁ EP141 (ni)]E(PHPQQ))

as required. O

B Proof of Lemma 4.3

Throughout this proof, we follow the notations of Section 4, while for simplicity taking
P = 1. That is, we consider the matrix S; := [s,...,Sk], and denote by {\;}X, the
eigenvalues of S;S!. The case for general P follows directly from a rescaling of o2
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We use various constants C, C;, whose values may change from line to line and are
always independent of N (but may depend on o). We also use constants K, whose values
may change from line to line, and which are independent of N and o.

Before starting, we recall the Burkholder inequality, c.f. [4]: If {6;} is a martingale
difference sequence with respect to an increasing filtration G;, i.e. #; is G; measurable and
E(6;]G;—1) = 0, then, for any p > 1,

k p/2

>

=1

p
E < K,E (29)

k
2
=1

Using the fact that if {6;} is square integrable then 62 — F(6%|G;_1) is again a martingale
difference sequence, and iterating [log,p| times this inequality, one also gets that for
P22,

k p

>0

=1

E

=1 =1

k k p/2
<SKpBY 0|+ KB (Z E(0§|gi_1)> . (30)

We emphasize that in (29) and (30), K, does not depend on k. Let A := (5151 + o?I)~*.
Noting that

K
t __ E t
=2

we let Aj := (5157 + oI —s;s%)~". Since

I |
trA:;f_i_OQ’

we need only estimate E(tr A — Etr A)2.
Let F; = 0(s;,2 <1 < j), and write Ej(-) = E(-|F;). Using the identity

t A2
s; Ajs;

trA, —trA= ——"—
' J g 1+S;A]‘Sj’

we have that

K
trA— FEtrA = Z EjtrA—FE,;_tr A

Jj=2
K K t A2
st A<s;

= (E] — E]-_l)tr A] + (Ej —_ E'_l)ij 977

K t A2

st A%s;

= (E; — E._l)ﬂiﬂ‘

]_;2 J J 1 + S;-Aij
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We now define

1
a;j = 5tr (A7), oy =siAls;—a; w;=

1 1
As’ NTIINIBwA;’
1 -+ Sj ij 1 -+ tr j

Cj = S;-Aij — N_lEtI' Aj CAj = S;Aij — N_ltI' Aj .

Using some algebra, one arrives at

(B —Bja)7—t5r— = by ) Ejoy—by ) Ejog
e 1+ SjAij =2 =
K
_b?\f Z(E] — E]-_l)(oszJ S AZS](A}]C )
=2
= W1 — W2 — W3 . (31)

Hence, since 0 < o < 0o and by is uniformly bounded due to ¢ > 0, it will be enough to
estimate E(W,/by)?, E(W;/b%)?%, i = 2,3.

Recall the following Lemma, which represents a variant of Lemma 3.2:

Lemma B.1 (/2, Lemma 2.7]) There ezists for each p > 2 a universal constant K,
such that, for any deterministic matriz D, and any vector of i.i.d. random variables
x = (Z1,--- ,T,) with Ex; =0 and Ez? =1,

E|x'Dx —tr D? < K,(E(|z1|*r DDt)p/2 + E|x1|*tr (DDt)p/Q) .

Turning to the first term in (31), note that E;(c;) is a martingale difference sequence,
i.e. E;_1(Eja;) = 0. Hence, by Burkholder’s inequality (30), for each p > 2, there exists
some universal constant K, such that

K p/2 K
E(W,/by)? = E( Z (Ejoy)) (Z _1(Ejay) ) +E (Z(Ejaj)f’>

=2

(32)

Then, since the eigenvalues of the matrices A; are bounded above by o =2 we have for

any p > 2 by Lemma B.1 (take x = s;VN, D = A2 and the expectation with respect to

s;, and use the independence of A; and s; together with tr A’c < No~= %),
K K
E Y (Ejo)"| <) Eof < KC5/N*/?, (33)
i= =2

and similarly
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Combining the above estimates, with p = 2, one gets that
E(W,/by)* < C.
The estimate for Wj is similar, modulo the following auxiliary results, valid for p = 2, 4:
E(|GP) < CoNT2, E(IG = GIP < CaNTP2, (34)
implying that
E(|¢;P) < CsN?/2. (35)

To see (34), take in Lemma B.1 p = 2,4, x = s;V N, D = A, and the expectation with
respect to s;, and use the independence of A; and s; together with tr A¥ < No=%* to
obtain that

Ej 1(|¢P) < CoN P2, (36)

and hence E(|(;|?) < C;N=?/>. On the other hand, letting for any j > 2 Ay; = (4;* —
s’s;)”", and noting that still tr A5; < No—?*,

K p
BlG -Gl = BlG-&GP=EB|S N D (Ejtr Ay — Ej_ytr Ay)
1 K JZS p
= E NZ (Bjtr (A — Agj) — Ej_ytr (Ay — Ayj))
j=3
_ gL 1 iE 5 s’ A3;s; 8
B 123 -1) 14 s%Ay;s;
< stAzs;, [ 1
< KoysF B =B hg| < Comm

where the Burkholder inequality (29) was used in the next to last step.

Returning to the estimate on W, /b%;, recall that all a;-s are deterministically bounded,
uniformly in N. Therefore, using Burkholder’s inequality (30) in the first step, and (36)
in the third,

E|Y  Ej(a;()P < (

=2
S (

proving the desired estimate on Ws.

Ej( a]CJ +ZE|E a]CJ >

N+ \E(iﬂ) < CulKN ),

HMN ||Mw
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The argument involving W3 is similar, only simpler: First, note that szg-A s; 1s
bounded uniformly, and so is w;. Therefore, using again Burkholder’s inequality (29) in
the first step,

2
J

K 2
EWs/03)* = E|Y (Bj—Ej1)(a;¢ - SE'A?sjijf))

K
< 0 (3 (8- 5ot - )

Jj=2
K
< Cu) (Blog)” + B(()) = (K = 1)(E(03¢) + B(G))
j=2
In view of (35), we need only to recall from (33) that E(aj3) < CisN P. ]

Remark Another possible route to the proof of Lemma 4.3 is as follows. Note that the
function (1 +



C Proof of Lemma 4.4

Define
SZ' = [Sl,SQ,. <o 98i—15,Si41y - - - ,SK]
and
S :=[s1,89,...,8k].

As in Appendix B, we will for simplicity take P = 1. The general result follows from a
rescaling of o2. Now,

BN = s4(S;S! + o217 1s; . (38)

is the SIR attained by user i. In [22, Eq. (27)], a key equation relating the achieved SIR’s
of the users and the trace of (SS*+ ¢%I)~! was derived:

1 o BKN) o’ t 2 1\—1

It follows from Lemma 3.2 that
G = B(™M) = B [N~Yr (SiS¢ + 021)71] .
Let B
BN .= B[N~ (SS" + o) 7] .

It follows from lemmas 4.2 and 4.3 that for large N, each of the ﬂi(N) is close to BZ-(N), which
in turn is close to 3¥). Moreover, N~ tr (5S* 4+ ¢2I)~" is also close to 5). Substituting
these approximations into (39) gives us an approximate fixed point equation in 3(V):

3

~1— o280
al‘f‘B(N) 1 =06

The ezxact fixed point equation has a unique positive solution, which is precisely the
limiting value 3*. (In fact, the formula (12) for 3* is obtained by solving this quadratic
equation.) Thus, to estimate how far 5V) is from 3*, we need estimates on how far each

of the ﬂi(N) deviates from SY). This is the main idea of the following development.

One can write
BN = g 4 5t

7

2

1
s — ~E [tr (S;Sf +0”I)™ —tr (SS* +0°1)7'] .
By the matrix-inversion lemma,

(S;Sf+ o)™ — (SS' 4+ 0%1)™! = (S;SE + 1) 'sisk(SS" + 1) !
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SO

1
68 = [ E [tr ((Si8; + 0" 1) T sisi(SS" + 0°1) )] |

_ %E [tr (sL(SS" + o21) 7 (SiS! + 0°1)'sy)]

N
< 4B |Hls]
1
o*N

Also,

2

Varlg) = B [(5% - Nt (S8t + o)+ N e (S804 00) = )]
2
= F [(ﬂi(m — tr (S;S) + 021)_1) ]

L9 [(ﬂi(N) Nl (Sisf_i_o)[)—l) (N—ltr (S:S! +o2I) ™" — B(N)ﬂ

_ 2
+E [(N—ltr (S;8t + 0%I)~" — ﬂfm) }

By Lemma 3.2, the first term above is bounded by C,0*/N for some constant C; that
depends only on the fourth moment of v11, and the second term is 0. By Lemma 4.3, the
third term is bounded by C,/N? for some constant Cy independent of N and i. Hence

Var[ﬁi(N)] < C3/N for some constant C3 independent of N and 3.

Combining this with (40), we can now write:

B = B+ A%, (41)
where
1
BN < 5% (42)
and o
N 4
El(AM)) <
for some constant Cy independent of N and i.
Substituting (41) into the key equation (39),
K
K 1 1 o’ e 91

1 1 1 1
14+ 3™ + AN 145 4 ) 14 W)

1
(1_Vi+V'2
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for some &; := &(I/i(N)) satisfying &; € [0, VZ-(N)] U [VZ-(N), 0]. Note that

SN B — )
: 1+ BW)
1 . (N)
> - - S >
> -1+ 15 5 since 3,7’ >0
2 —
> -1+ 502 since AV) < 1/02.

Hence (1+&;)~! < Cs for some deterministic constant Cs independent of N. Substituting
in (43) and taking expectations, using the fact from (42) that

1
EAM < —
[E[AT]] < N
and that
E[N"!tr (SS*+ o?I)7! = gV,

we get, for some Cy independent of NV,

E__ K 4 pepm %
N N1+ pW) N
and hence, for some C; independent of N,
e 2O
‘a 15 5 14073 SN'

But * := [(A + 0?)7'dG*()) is the unique solution of the equation

(6
a————14+0’8=0,
1+ 06 b

and moreover, it can be easily seen that the solution of this equation is a differentiable
function of the right-hand side at 0. Hence,

limsup N(8Y) — %) < 0o

N—oo

The lemma now follows from (40). L
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asymptotic limit §*.

simulated mean SV,
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Figure 1: Asymptotic limit, mean, and SIR at one standard deviation below the mean,
theory and actual, for the MMSE receiver.
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Figure 2: Comparison of 1% outage SIR, theory and actual, for the MMSE receiver.
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Figure 4: Asymptotic limit, mean, and SIR at one standard deviation below the mean,
theory and actual, for the MMSE receiver in a lognormal fading environment.
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SIR in dB ——————————>
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Figure 5: Comparison of 1% outage SIR, theory and actual, for the MMSE receiver in
the lognormal fading environment.
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