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Abstract

Let T(x,r) denote the occupation measure of the ball of radius r centered at z for
Brownian motion {W;}o<i<1 in R?, d > 2. We prove that for any analytic set E in [0,1],
we have inf;e g liminf,_,o T(W;,r)/(r?/|logr|) = 1/ dim, (E), where dim,, (E) is the packing
dimension of E. We deduce that for any a > 1, the Hausdorff dimension of the set of “thin
points” x for which liminf,_o 7(x,r)/(r?/|logr|) = a, is almost surely 2 — 2/a; this is the
correct scaling to obtain a nondegenerate “multifractal spectrum” for the “thin” part of
Brownian occupation measure. The methods of this paper differ considerably from those
of our work on Brownian thick points, due to the high degree of correlation in the present
case. To prove our results, we establish general criteria for determining which deterministic
sets are hit by random fractals of ‘limsup type’ in the presence of long-range correlations.
The hitting criteria then yield lower bounds on Hausdorff dimension. This refines previous

work of Khoshnevisan, Xiao and the second author, that required decay of correlations.

1 Introduction

Let B(z,r) denote the ball in IR? of radius r centered at z. In this paper we study thin points

for Brownian motion, i.e., points  on the Brownian path such that for some sequence of radii
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ri — 0, the balls B(z,r;) have unusually small occupation measure pur(B(z,r;)). Here

T
pr(A) = /0 14(W,) dt

for any Borel sets A C IR?, where {Wi}t>0 is Brownian motion in IR®. Lévy’s uniform modulus
of continuity provides a lower bound on the size of sV (B(Wy,¢€)): there exists an absolute

constant 0 < ¢ < 0o, such that almost surely for all times 0 < ¢ <7 and all positive € < ¢y(w),
T (B(Wi,€)) > ce®/|log e (1.1)
ur t,€)) > ce”/|logel. .

Our first result shows that there actually exist times ¢ for which this lower bound provides the

right scale, and says precisely how small the occupation measure can get.

Theorem 1.1 Let {W;} be a Brownian motion in IR%, d > 2. Then, for any 0 < T < oo,
(Br(B(W, )

inf limi =1 as. 1.2
tel(Iol,T) = €2/|log €| a5 (12)
Furthermore, for any analytic set E C (0,T)
B(W, 1
inf lim inf ur(B(Wy, €)) = — a.s. (1.3)
tcE =0  €2/|loge| dim, (E)

Here dim, (E) denotes the packing dimension of the set E.

We refer to [10] for background on packing dimension. For any fixed T' € (0, 00) and a > 0, let

1 (BOWey ) _

Thing := T| limi =
ing:={0<t< im in 2/ log a},

(1.4)

Theorem 1.1 follows from our main result which also gives the dimension of Thin,:

Theorem 1.2 Let {W;} be a Brownian motion in IR%, d > 2. Fiz T € (0,00). Then, for all
a>1,

dim (Thing) =1—-1/a, as. (1.5)
whereas the packing dimension of Thing is a.s. 1 for all a > 1. Moreover, for any analytic set

E C (0,T) and any a > 1/ dim, (E), it holds that Thin,NE # & a.s., whereas a.s. Thin,NE = &
for all a < 1/dim, (E).



A time t > 0 is called a thin time if it is in the set Thin, of (1.4) for some a > 0 and 7' > 0.
Similarly, a point z € IR% on the Brownian path is called a thin point if z = W, for some thin

time ¢t > 0.

Remarks.

e In particular, Theorem 1.2 shows that the sets Thin, are empty for all ¢ < 1, but non-
empty (and of zero Hausdorff dimension) at the critical value a = 1, thereby implying
(1.2).

e In case d > 3, Theorem 1.2 applies also for T' = cc.

e Fix T'> 0 and a > 1. For any z ¢ {W; ‘ 0 <t < T} and € small enough, pr(B(z,¢€)) = 0.
Hence, (1.5) implies by the uniform dimension doubling property of Brownian motion,
due to Kaufman [7] (see also, [13, Eqn. (0.1)]) that

tim inf AT B2, €)

di ¢
im{z € R it = Mg €

=a}=2-2/a as.

Since dim, (Thing) = 1, we similarly deduce from the uniform doubling of packing di-
mension by Brownian motion in R%, d > 2, established by Perkins-Taylor [13, Cor. 5.8],

that
l B

. d
dimy {z € IR e~0  €2/|loge|

=a} =2 as.

e We shall also consider the set

ey = iny = im inf 22 B2, 9)
Thine, = L<J Thing = {0 <2 <T'| liminf =5 50

< a}. (1.6)
As in Theorem 1.2, dim (Thin<,) =1 —1/a and dim, (Thin<,) =1, as.

The upper bound in (1.5) is by now a relatively standard chore given the asymptotics of the
lower tail of the two-sided exit time of a ball recently obtained in [4]. The real novelty in our
paper lies in our method of obtaining the lower bound in (1.5). Typically, in obtaining lower
bounds on the Hausdorff dimension of a set A, one constructs a very regular subset of A and

shows that this subset has Hausdorff dimension equal to the upper bound obtained for A. In



constructing this regular subset, the ‘discrete limsup random fractal’ described in Section 3, one
builds the subset up from small pieces, which in the simplest cases are independent. In our work
[2], [3] where we studied thick points for Brownian motion, i.e., points on the Brownian path
that have neighborhoods with unusually large occupation measure at infinitely many scales,
we developed a general approach to handle dependence among the pieces of a discrete limsup
random fractal. In the present case of thin points, the dependence is much greater and has
necessitated a new approach: rather than construct a regular subset of Thin,, we construct a
discrete limsup random fractal which is ‘close’ to a subset of Thin, but whose ‘pieces’ have some
independence, the ‘quasi-locality’ of Section 3. Section 3 provides a general exposition of this
approach which we expect will be of use in many other situations with long range dependence.
The actual application to thin points in Section 4 illustrates the delicate balancing needed to
construct a discrete limsup random fractal that enjoys sufficient independence to give almost

sure results, yet is still sufficiently close to a subset of Thin,.

Our upper bound on the dimension of Thin<, is obtained by establishing an upper bound
on a superset of times which we call the bilateral fast times, BiFast<,, and our lower bound on
the dimension of Thin<, is obtained by establishing a lower bound on a subset of times which
we call the times of quick escape, Qscape.,. Turning first to the upper bound, note that for
pr(B(Wy,€)) < ae?/|loge| it is clearly necessary for the two-sided path segment {W;, s, —t <
s < T'—t} to have a small two-sided first exit time from the ball of radius e. To be more precise,
let

7 (t) := inf{s > 0 ‘ [Wits — Wi >}

denote the amount of time needed for the path to reach a distance r from its position at time

t. Similarly, with {W;}*, denoting two-sided Brownian motion in IR¢, let
7o(£) == inf{s > 0 ‘ Wies — Wi > 1}

denote the amount of time, running backwards, needed for the two-sided path to reach a distance
r from its position at time ¢, and define 7,(¢) := 7,.(t) + 7-(t) to be the corresponding bilateral
first exit time. Define the random set

t
BiFast, :=={0<t<T liminfLU =
e—0 €2/|loge|

at, (1.7)



A time ¢ > 0 is called a bilateral fast time if it is in the set BiFast, of (1.7) for some a > 0 and
T > 0, and a point z € IR? on the Brownian path is called a bilateral fast point if z = W, for
some bilateral fast time ¢ > 0. Finally, define

. . - Te(t)
BiFast<, := aga BiFasty ={0<t<T hg(?fm <a}, (1.8)

and note that Thin<, C BiFast<,.

Turning next to the lower bound, we observe that ur(B(W;,¢€)) < ae?/|loge| will surely
hold if two-sided path segment {W;,,, —t < s < T — t} has a quick two-sided escape from the

ball of radius € (never returning again). To be more precise, for any ¢ > 0 and ¢ € IR, let
o&(t) := sup{s € [0,£] | [Wiys — Wy| < 7}

denote the amount of time till the last visit of B(W},r) by the path killed at time ¢ + &,
with o8 (¢) := sup{s € [0,€]||Wi—s — Wi| < r} the corresponding time-reversed object, and
SM4(t) = 57(t) + ot (t), denoting the length of the minimal time interval containing all visits to
B(Wy,r) within [t —n,¢ + £]. Define

L SIT()

Qscape, :={0<t<T llgglfm =a}. (1.9)
A time ¢ > 0 is called a time of quick escape if it is in the set Qscape, of (1.9) for some a > 0
and T > 0, and a point z € IR? on the Brownian path is a point of quick escape if z = W, for

some time of quick escape ¢t > 0. Finally, define

L SET .
QSCapeSa = a’L<Ja Qscapea, = {0 <t<T lliri}glfm S G} g ThlnSa - (1.10)
We thus have the set inclusions
Qscape<, C Thing, C BiFast<, , (1.11)

Theorem 1.2 will be obtained by showing:

Theorem 1.3 The conclusions of Theorem 1.2 and the remarks which immediately follow it
remain true if the sets Thing, Thinc, are replaced by the sets Qscape,, Qscape<, or BiFast,,
BiFast<,.



Remarks.

e The set BiFast<, of (1.8) can also be written as

I (Wi — Wiin| A Wi — Wi p|
im sup

1
> .
b 20 V2(h + k)| log(h + h')] _2\/5}
sh!>

BiFast<, = {0 <t < T

Thus, Theorem 1.3 is to be contrasted with Orey and Taylor results about the dimension

of the set of fast times (see [12]),

lim sup [We = Wil > L
h—0 +/2h|logh|] — 2Va

and that of the set of two-sided fast times (see also [8] for some finer calculations),

}=1-1/(4a) as.

dim{0<t<T

dim{0 < ¢ < T'| limsup Woih = W] > ! }=1-1/(4a) as.
wiso 20+ W) log(h+ W)~ 2va
!>

e A slight modification of the proof of Theorem 1.3 shows that actually, for all a > 1,
BiFast, \ Qscape, # .

Our next result is about the coarse multifractal spectrum. It is the analog of [2, Corollary
1.5]. Unfortunately, we have not been able to extend it to the case d = 2: Recurrence of planar
Brownian motion yields extreme long-range dependence, and one of the steps in our proof, see
(5.5), fails. The techniques we use for proving Theorems 1.2 and 1.3 allow us to establish (1.12)
only when either the Lebesgue measure on [0, 37'] is considered there, or when the limit in € is

replaced by the lim inf.

Theorem 1.4 Let {W;} be a Brownian motion in R¢, d > 3, and denote Lebesque measure
on IR' by Leb. Then, for any T € (0,00) and a > 1,

log Eeb{O <t<T ‘ pr(B(Wi,e)) < ae?/|log e|}
lim

lim Tog e =2/a as. (1.12)

These conclusions of remain true if pur(B(Wy, €)) is replaced by To(t) or ST (¢).



Upper bounds on Hausdorff dimensions in Theorems 1.2 and 1.3 are proved in Section 2.
Section 3 adapts the approach of [9, Section 3] to the computation of the Hausdorff and packing
dimension of discrete limsup random fractals. Based on the general results of this section we
complete the proof of Theorems 1.2 and 1.3 in Section 4. Finally, Theorem 1.4 is proved in

Section 5.

Notations: throughout, we shall use 7, 7, T, 0%, 6" and S"¢ to denote the corresponding
random variables 7., 7., T, ot , o7 and S for r = 1, and omit the argument ¢ when its exact

value does not matter.

2 Upper bounds in Theorems 1.2 and 1.3

Of course there is no need for an upper bound on the stated packing dimensions of Theorems
1.2 and 1.3. Moreover, fixing a > 1, d > 2 and T € (0, 00|, all the sets considered there are
contained in the set BiFast<,. Hence, it suffices to establish the upper bound on the Hausdorff
dimension of the latter set, where by the monotonicity in 7" and Brownian scaling, we may and

shall consider only the case of T' = 1.

Turning to this task, we use the notations h(e) := €2/|loge| and T¢(t) := T¢(t)/h(e). Fixing
d >0 and ¢, = (1 — §)", we note that for any € € [e,,e,—1] and t € IR

n—1 - - n oo
(1= 0P T < T < (1= 0P (1) 21)
Therefore,
BiFast<, C D, := {t € (0,1) 1inginf”r€n (t) < (1—46)"2a} (2.2)
- n—oo
Let p, = 62h(e,)/20, N, = o', and tjn = jpn, Vag = [tjm — Pn/2:tjm + pn/2] for j =
0,1,...,N,. By Lévy’s uniform modulus of continuity, we have that a.s. for some finite ny =
no(w,d) > 6! and all n > ny,
Ny,
max sup |Wy— Wy| < ey, . (2.3)

=0 stev, ;



Thus, whenever ¢ € V, ;, both {Ws | s € [t,1;,]} and B(Wy; ,, €,41) are contained in B(Wy, €,),
implying that

Consequently, with A,, denoting the set of j, 0 < j < N, such that
Fona(tin) < (1—8) %, (2.5)
clearly, Up>m Ujed, Vn,j forms a cover of D, of (2.2) by sets of maximal diameter py,.

Combining [4, Theorem 4] with the Ciesielski-Taylor identity in law between p (B(0,1)),
and the hitting time of the unit ball by a Brownian motion in IR%~2 (see [1, Theorem 2]), it
follows that for any d > 1,

1%3:‘1/2—161/(%@(7(0) < z) =242 T(d/2) . (2.6)

Similarly, the corresponding two-sided result of [4, Theorem 1] leads to

Eﬁ)md—l-%?/mp(T(O) < z)=V8rl(d/2)2. (2.7)

By Brownian scaling and (2.7), for any § > 0 and n > n1(d, a)
(A=9)"% _ 21-57/a

P(7; <(1-6)%)=P < < : :
(Touis(0) < (1=8)"%) = P(T(0) < Tty < & (2.8
Thus, for some ¢; = ¢1(d,a) and all n,
| Ay < Np2(707/0 < ¢y 20-0%a2 (2.9)

Since V,, ; have diameter py, it follows from (2.9) that for y = 1 — (1 — §)?/a > 0 and some

co = c2(d,a) < oo,

o0 o0
BY S Wal' <o 3 09 < oo,
n=m

n=m je A,
Thus, Y07, > e, [Vayl7 is finite a.s. implying that dim(BiFast<,) < dim(D,) < v as.
Taking § | 0 completes the proof of the upper bound

dim(BiFast<,) <1—-1/a as. (2.10)
O

We conclude this section with the following lemma, needed in Section 4.



Lemma 2.1 For any a > 0 and any analytic set E with dim,(F) < 1/a, we have that

P(BiFast<,NE # @) =0.

Proof. We use the same notations as in the last proof. By regularization (see [10]) it suffices
to prove the lemma for sets E such that dim,,(E) < 1/a. Then, by the definition of upper

Minkowski dimension, for any § small enough and all n > ng = ng(9),
#{j=0,...,Np: Vo NE # @} < p;1-0"/a (2.11)

Define
AP ={j € Ay :Vn;NE # 2} .

Then, Up>m Uje a2 Vn,j form a cover of D, N E. But, using (2.8) and (2.11), we have that for

all ¢ small enough, uniformly in n > n; = ny(d),
EJAZ| < p, 49" /acll 0710 < (3o,

Hence, using only m > ng V nq,

o
P(BiFastcu NE £ 2) < > /" =500,

n=m

completing the proof of the lemma. O

3 Discrete Limsup Random Fractals

Throughout, let us fix an integer N > 1. For every integer n > 1, let D,, denote the collection
of all hyper-cubes of the form [N, [k;27", (ki +1)27"] C R", where k = (ki,...,ky) € NV
is any N—-dimensional positive integer. In words, D,, denotes the totality of all N—dimensional
dyadic hyper-cubes. For each integer n > 1, {Z,(I); I € D,,} denotes a collection of random
variables, each taking values in {0,1}. By a discrete limsup random fractal, we mean a

random set of the form A := limsup,, A(n), where,



where I° denotes the interior of I. Adapting the approach of [9, Section 3], we shall determine
hitting probabilities for a discrete limsup random fractal A, under the following conditions on
the random variables {Z,,(I); I € D,,}. These conditions are particularly well suited for dealing

with thin points of Brownian motion.

Condition I: the index assumption. For n > 1, suppose that p, := IE[Z,(])] is indepen-
dent of I € D,, and that

.1
lim —logy pn = —7,
n—oo N
for some v > 0, where log, denotes the base 2 logarithm.

We shall refer to v as the index of the limsup random fractal A.

Definition. We say that the family Y = {Y,(I); I € D,, n =1,2,...} of random variables
is quasi-localized if for any sequence C; C |J,, Dp, i = 1,2,... with inf,; dist(C;, C;) > 0, we
have that the tail o-algebras F; = (,, Up>m 0(Yn(I) : I € C;), i =1,2,... are independent.

Remark: All results of this section apply when the assumption that the o-algebras F; are
independent in the preceding definition is relaxed to the following (somewhat technical) condi-
tion:
My
lim inf{P(| J4i) : P(4) > a, 4; € F;, inf dist(C;, C;) =1} =1,
rl0 i1 i#£]j

for any a > 0 and M, such that lim,_,qlog M, /|logr| > 7.

Condition II: quasi-local approximation. Suppose there exist a quasi-localized family of
random variables, Y, (I) € {0,1}, n=1,2,...; I € D, such that

Gn = Sup {P(Ya(I) # Zn(D)/TE(Yn (D)) } — 0. (3.1)

10



Condition III: a bound on second moments. Suppose that the family Y,,(I) € {0,1} of
Condition II is such that with

Tie(n) = max #{.] € Dy = BYa(D)Ya()) > KEY(DIEY,()] }.

we have

1
lim limsup - logy fx(n) =0. (3.2)

K—00 pn—ooo

We are ready to state and prove the main result of this section.

Theorem 3.1 Suppose A = limsup,, A(n) is a discrete limsup random fractal which satisfies

Condition I with index vy, and Conditions II and III. Then for any analytic set E C Ri\_],

1, ifdim,(E) >~y

PANE#2) = {0, if dim, (E) <7

Proof. We adapt the proof of [9, Theorem 3.1] to the present setting. First, we show that
dim, (E) < v implies that AN E = &, a.s. By regularization (see [10]), it suffices to show that
whenever dim, (E) < v, then AN E = @, a.s. Fix an arbitrary but small > 0 such that
dim,, (E) <y — 7. By the definition of upper Minkowski dimension, we can find § € (0, — 7),
such that for all n > 1,

#{IeDn: IﬁE;«éQ} < onf. (3.3)

On the other hand, by Condition I, for all n large enough,
pn < 27707, (3.4)
It follows from (3.3) and (3.4) that for each n > 1
P(E N A(n) £ @) < 2" max P(I N A(n) # 2) = 2"p,, < 2770710,

Since 6 < vy — 7, the Borel-Cantelli lemma implies that there exists a random variable ng, such

that a.s., for all n > ng, EN A(n) = @. This shows that AN E = &, a.s.

11



It remains to show that if dim,(E) > -y, then AN E # &, a.s. Indeed, suppose dim, (E) >

v + 26 for some § > 0. By [5], we can find a closed E, C E, such that for all open sets V,
whenever E, NV # @, then

dim,, (E, NV) > v + 24. (3.5)

It suffices to show that with probability one, A N E, # &. Define the open sets B(n) :=
U, A(k), n > 1. We claim that for all n > 1, the relatively open set B(n) N E, is a.s.
dense in (the complete metric space) E,. If so, Baire’s category theorem (cf. [11]) implies that
E. NN, B(n) is dense in E, and in particular, nonempty. Since A = NpB(n), the result
follows. Fix an open set V' such that V N E, # @. It suffices to show that A(n) NV N E, # @
for infinitely many n, a.s. Indeed, this will imply that B(n) NV N E, # & for all n a.s.; by
letting V' run over a countable base for the open sets, we will conclude that B(n) N E; is a.s.

dense in F,.

Thus fix an open set V such that V N E, # &. Define T}, := ) 7 Z,(I), where the sum is
taken over Z={I € D,, : INV NE, # &}. In words, T,, is the total number of hyper—cubes
I € D, such that INV N E, N A(n) # &. We need only show that almost surely 7;, > 0 for

infinitely many 7.

Since dim,, (VNE,) > 0, we can find constants M, — oo and z; € VNE,,i=1,...,M = M,
such that min;z; [z; — z;| > 4r. Fix some r > 0. Let E; = B(z;,r) NV NE,, i=1,...,M and
N denote the total number of hyper-cubes I € D,, such that I N E; # @. Fixingi =1,..., M,
by (3.5), dim,, (E;) > v + 26, hence N > 27429 for infinitely many integers n > 1. In other
words, # (M) = co, where

N = {n >1: Ni> 2"<7+25>}. (3.6)

For each i, we set T! := >z, Zn(I) and S = >z, Yn(I), where both sums are taken over
Z,={I € D, : INE; # @}. It follows from (3.1) that for all 7 and all n,

Z P(Yn(I) # Zn(I)) < gn/n-
n) I1E€Dy:
INE;#£2

P(S;, — T, > nIE(S},)) < "

Thus, choosing ny; € N such that Dok, <ocofori=1,..., M and {ng} := U;j{ng;}, by the
Borel-Cantelli lemma, almost surely, Sfbk — bek < n]E(Sflk) for all 7 and all large k. Hence for

12



eachi=1,..., M
(T}, >0 io} D{S;, >nE(S,,) io.} (3.7)

Note that with 4; := {S;, > nIE(S% ) i.0.} we have

M M M
P(T, >0 io)>P(Y Ti >0 i0)>P(|J4)=1-][[1-P4)),

where we used in the last equality the fact that the events A; € ,, U,>m 0(Ya(I) : I € ;) and
inf;+; dist(Z; , Z;) > r, and hence are independent by the quasi-locality of the family {Y;,(I)}.

We show below that

n>m

P(A;) =P(S;, >nE(S, ) io.)>a>0 (3.8)

for some a > 0 independent of ¢ and r > 0. Hence, taking r — 0, so that M = M, — oo it
follows that almost surely, T, > 0 for infinitely many values of n, as needed to complete the

proof of the theorem.

Thus it only remains to prove (3.8). We have

E[(S)% = ) > EBYa(I)Ya(])).
I{WEE‘?;:Z Ji\%?;;a

By Condition ITI, we may and shall set K < oo large enough so that

limsuplog, frx(n) < 4. (3.9)

n—oo

For each I € D,, let B, (I) denote the collection of all J € D,, such that

(i) JNVNE,# o, and
(i) (Yo (1)Yn(J)) > KE[Y, (D]E[Y,(J)].

Then,
E[(S)Y] < KE[S P+ Y ) EYu(D)Ya())).

IED,:  JeBy(I)
INE; £

13



To handle the last sum, we note that by the definition of g, in (3.1) we have that

Pn
1+ gn

an
Since all Y;,(I)’s are either 0 or 1, this shows that IE(Y,,(I)Y,,(J)) < E[Y,(I)] < pn/(1 — qpn)-
Thus, in the notation of Condition III, we deduce that

Pn
1—

<Y, ()] < (3.10)

i\2 i12 i _Pn i12 i Pn
[(57)7] < KE[S, + N 77 max #B (1) < KTB[S ] + N7 fre(n)

By Conditions T and ITI, there exist a,, | 0 and b, — 0 such that fx(n) < 2"0+b2) and, for all
n large,

2 n(rtan) < p, < (11— gy)2 "0
Recall, using (3.10), that IE[S}] > N} pn/(14¢,) > 0. Thus, using (3.6), (3.9) and [6, Inequality
I1, page 8], we see that for all n € 91’ large enough and 7 € (0,1),

(1- 1)’ E[(51)?] Gant0s)
_ - < L < K + 2"\28nT0n <K+1.
P(S; > qE(sL) — (BSL)? — s

Hence,
P(S;, > nIE(Sy;)) > « (3.11)

for some a = a(n, K) > 0, alln € (0,1), alli =1,..., M and n € N’ large enough.

Recalling the ny; € N and {ny} := U;{ny;} introduced above, an application of Fatou’s
lemma to (3.11) yields that for all 4,

P(S., > nIE(SL,) i.0.) > liminf P( S5, . > nE(S, ) >a > 0. (3.12)
k—r00 3 i
which completes the proof of (3.8) and hence of our theorem. O

As in [9], we obtain the following useful corollary by a co—dimension argument.

Corollary 3.2 Suppose A is a discrete limsup random fractal satisfying Condition I with index
v and Conditions II and III. Then, for any analytic set E C Rﬁ,

dim(E) — vy <dim (AN E) <dim,(E) — v, a.s. (3.13)
In particular, dim(A) = N — v, a.s.

14



Remark. Whereas we do not need it here, one can easily check that [9, Theorem 3.2] also

holds for discrete limsup random fractals satisfying Conditions I, IT and III.

Proof. The right-hand inequality in (3.13) is verified by the following direct first-moment

calculation involving only the index Condition I. By regularization, it suffices to prove that
dim (AN E) <dimy,(E) —v a.s. (3.14)

Let N, denote the total number of hyper-cubes I € D, such that I N E # &. Define T,, :=
> -7 Zn(I), where the sum is taken over Z = {I € D,, : IN E # @}. Then

E(Tn) < ann < 2n(§+€n)2n(en—7)

where ¢ = dim,,(E) and €, — 0. Thus EY" 7,27 < oo for any 6 > ¢ — 5. Finally, for any
ng, the intersection A N E has a cover consisting of T}, intervals in D,, for each n > ng. By

picking ng large, we see that the #-dimensional Hausdorff measure of A N E vanishes, whence
(3.14) follows.

The left-hand inequality in (3.13) follows from Theorem 3.1 by the co—dimension argument
of [9, Lemma 3.4]. O

Definition. An analytic set E is y-regular if there exists a closed set E, C FE such that
dim, (E, N V) =« for any open set V that intersects E,.

Any analytic set E C [0,1]" with dim,(E) > v is y-regular . (This follows from the
arguments of [5].) Also, [0,1]" is N-regular. The following corollary uses the machinery

developed in [9] and in Theorem 3.1.

Corollary 3.3 Suppose A, € [0,1]Y, m € IN, are discrete limsup random fractal sets satisfying
Condition I with indezx vy 1 7, and Conditions II and III. Let Ay = (74 Am and B =
A\ (UL, where Ty, are Borel subsets of [0,1]N such that, a.s., Ty NE = @ for all analytic
sets E satisfying dim, (E) < . Then, for any y-regular analytic set E, it holds that BNE # &,

a.s.. Further, dim(B) = N — v and dim,(B) = N, a.s..

Proof. Let Ap(n) := U2, Ap(k). Since E is y-regular, there exists a closed E, C E such
that dim, (E, N'V) = v for any open set V such that E, NV # @. For such V and all m we
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thus have that dim,, (E, N V) > v, implying as in the proof of Theorem 3.1 that A, (n) N E,
is a.s. dense in the complete metric space E,. Consequently, by Baire’s theorem it follows
that E, N (N2, N®_; Apy(n)) is dense in E,, a.s., and in particular is non-empty. Obviously,
dim, (E,) = v, so by our assumptions I'y, N E, = &, a.s.. It follows that BN E # @, a.s. as

claimed.

Since any analytic set E with dim, (E) > vy is y-regular, it thus follows form [9, Lemma 3.4]
(with E = [0,1]") that a.s., dim(B) > N — v, while by Corollary 3.2, almost surely,

dim(B) < dim(A;) < dim(A;;,)) =N — 7y J N — .

Turning to the last assertion of the corollary, fix « = N —y. We use two independent copies
Ap, Al and Ty, T'1 . Construct a random closed set T = T, as in [9, Remark after Lemma 3.4],
of law P, independently of all other random sets considered here. That is, consider the natural
tiling of the unit cube [0, 1] by 2V closed cubes of side 1/2, let Z; be a random subcollection
of these cubes, where each cube has probability 27% of belonging to =1, and these events are
mutually independent. At the k-th stage, if 2, is nonempty, tile each cube Q € Zj, by 2% closed
subcubes of side 27%~1 (with disjoint interiors) and include each of these subcubes in Z;; with

probability 27 ¢, independently. Finally, let

TN Ue

k=1 QEEk

Recall that a.s. dim,(Y) = dim(Y) = v (see [9, Lemma 3.5]), and thus by our assumptions,
P XxPo((Unl'm)NY #2) =P x Po((Unl),) NT # @) =0. (3.15)

Moreover, the closed set Y is such that a.s., dim, (Y NV) = v for any open set V such that
TNV # 2.

Hence, taking T, = T on the set of P, full measure with the above property, as in the proof
of Theorem 3.1, {A! (n) N Ty, n,m > 1} U {A,,(n) N YTy, n,m > 1} is a collection of open,
dense subsets of the complete metric space T,, P x P’-almost surely. By Baire’s theorem, one

concludes that A, N A, N Y, # &, P x P’ x P, a.s.. Combined with (3.15), one concludes that

BNB'NYT#2, PxP' xP, as.
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Since B’ ¢ A!, and 7, 1 v, it follows from Theorem 3.1 that P'(B'NE # &) = 0 for any
analytic set E C IRY such that dim,(E) < . Considering E = BN Y, we see that

P xP,(dim,(BNY)>~v) =1.

Applying [9, Lemma 3.5] for the analytic set B C [0,1]" such that dim,(B) > dim(B) = «

almost surely, we see that
dim,(B) > a+dim,(BNY)>a+vy=N

apart from a P X P,-null set, as needed to complete the proof. O

4 Lower bounds in Theorems 1.2 and 1.3

Let D, denote the collection of dyadic intervals {[(i — 1)27™,i2-"]}?", and h(e) = €/|loge].
By Brownian scaling we may and shall set 7" = 1 throughout this section. The next lemma is

the key to our proof.

Lemma 4.1 Fizing a > 1 and d = 2, almost surely, the set QscapeSa contains a discrete
limsup random fractal A = A(a) (of dimension N = 1) that satisfies Conditions I, II and III
with indez 1/a.

Proof of Theorems 1.2 and 1.3: Fixing a > 1 let A, := A(a+ 1/m) be the discrete limsup

random fractals of Lemma 4.1. Then, for d = 2, almost surely,

o0 o
A= () Am C () Qscapec,y1/m = Qscape,

m=1 m=1
Considering the IR%-valued Brownian motion as the first d coordinates of a Brownian motion
in RY, d' > d, it is easy to see that o%(t), o7 (t) and S7*(t) are decreasing in d, hence the sets
Qscape., are increasing with d. Let I'y, := Thing, 1/(2m) a Borel subset of [0,1]. By the set
inclusions of (1.11) it follows that for all d > 2,

B:=(Ay\ |J T'm) € Thingg \ | J T'm = Thin, .
m=1

m=1
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By Lemma 2.1 and (1.11) we know that a.s., I';, N E = @ for any analytic set £ such that
dim,(E) < 1/a < 1/(a —1/(2m)). Since the discrete limsup random fractals A,, are of indices
Ym 1T 1/a, we have by Corollary 3.3 that for any d > 2, almost surely,

dim(Thing) > dim(B) =1—-1/a,
dim, (Thing) > dim,(B) = 1 and Thin,NE D BNE # @ if E C IR is an analytic set such that
dim, (E) > 1/a.

To get the corresponding conclusions for BiFast, we apply the same argument but with
I'm = BiFast<,_1/(2m), Whereas for Qscape, we use I';, = Qscapec,_; /(2m)- Finally, since
Qscape, C Qscapec, we conclude the proof of our theorems via Lemma 2.1 and the set inclusions
of (1.11). O

Proof of Lemma 4.1: Take ¢, =n%2 "2 n=1,2,... and 8, = 1+ |loge,| 2. Let A = A(a)
be the discrete limsup random fractal corresponding to N =1 and Z,(I) € {0,1} such that

Zn(I) =1 iff S2% () < ah(en),

for I = [t,t +27"] € Dy. By Lévy’s uniform modulus of continuity, there exists an a.s. finite

random variable ng(w), such that for all n > ng(w),

sup{|Wy — Wy| : t,t' € [0,1],|t — | < 27"} < 2y/2 " 1og(2") < €,(Bn — 1),

so that B(Wy,e€,) C B(Wy, €,0,) and in particular the path has not escaped B(Wy,e€,06,) by
time t. Using these facts, we see that for all n > ng(w), if I € D,, and Z,(I) = 1, then
Sty < Sffﬁn (t) < ah(e,) for every t' € I. Hence we have that A C Qscape., a.s. Let
T, = a|loge,| 16,2 and p, := 2(€,3,) 2. With p, > 2z, we have by Brownian scaling and
(2.7) that for some Cy = Cy(a) < 00
pn = P(Zy(I) =1) =P(S2% (t) < ah(en))
= P(S""(0) < z,) <P(T(0) < z,) < Coz;;*Pe=2n (4.1)

We next prove the corresponding lower bound: for some ¢; > 0, and all n large enough,

P = P(SPP(0) < ) > crate 2/ (4.2)
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To see this, first note that by radial symmetry

PY( inf |W,| > 1) :=
(inf, Wl > 1) 5= g1(fu)

is a function of |u|, with g;(r) nonincreasing in ¢ > 0 and nondecreasing in r > 0. Choosing
u = (|u|,0) and denoting Wy = ( 5(1), §2)) we see that for y(t) := v/tlog(e? +t) and all ¢ > 0,

guy(t) +1) 2 P( nf W > —y(2)) =1 2P(W;" < —1(1)) 2 1~ 1/log(e” +1).
s€|0,

With ¢ := inf{s > 0 : |W,| > v(t) + 1 or |W,| < 1}, it follows by the strong Markov property
of Brownian motion (at the stopping time ¢) that for all 7 = |u| > 1 and ¢ > 0,

logr 1
>PYU|Wy| >~(t) +1 t)+1) > 1-— . 4.3
gt(T) = (| ¢| = ’Y( )+ )gt(FY( )+ ) = log(y(t) + 1)( 10g(62 +t)) ( )
Note that for all ¢ > 2z,
2
t,t < > . = _ . '
P(S"(0) < 22) > P(_inf [W| > 1) [P(séﬁf’t] Wil > 1)] (4.4)

where by (4.3),

. log(1l + z
P inf, W] > 1) > Bl (Wl Wal > 140) > 51 +7)

sE[z,t = mp(lwx| >1 +-’E) . (45)

Recall that P(|W,| > 1 + ) = exp(—(1 + z)%/(2z)). We apply the above with z = x,,/2 and
t = pn- Since n™!log p, — log2 and nz, — c(a) € (0,00), (4.2) follows.

Clearly, p, = IE(Z,(I)) is the same for all I € D,,. Moreover, with e/ w“e%/ “ 51, nx, =
c(a) € (0,00), and 2/ = pSlag—n/a it follows from (4.1) and (4.2) that

lim n~'logy p, = —1/a, (4.6)
n—oQ
so that A satisfies Condition I with index 1/a.
We next introduce the family of random variables Yy, (I) € {0,1} such that

Yo(I) =1 iff S (t) < ahen),

for I = [t,t +27"] € D, and &, = n~!. Since Y,(I) € (W, — Wy : |s — t| < 2¢,) for
I=1It,t+2 " €D,and, |0, we see that the family Y, (I) is quasi-localized.
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It will be convenient to verify condition III before condition II. We note that the same proof
will show that the family Z,(I) satisfies the second moment bound of condition III. The sole

reason for introducing the family Y;,(I) is to have quasi-locality. To verify condition III, let

tn = 26n(€nfBs) "2 and
pzt(0) := P(S(0) < z,58"(20) < ). (4.7)

Note that when the distance between I,J € D, is 20(e,3,)? for some § € [0,t,), then by
Brownian scaling,

E(Y,(I)Yn(J)) = Pzy tn 9), (4.8)

while Cov(Y,(I),Y,(J)) =0 in case 8 > t,. Since for any 6 > 0, t € (0, ),
PY(8%(0) < z) = P(SYY(0) < z)

is independent of the value of Wy = y, it follows by the Markov property of Brownian motion
that for any t > 6 > 0,

P(S"(0) < z,8"(20) <2) < P(SY(0) < z,8%%(20) < z) (4.9)
= E(E"?(8%(0) < 2);8%°(0) < z) = P(8"%(0) < z)?

where E denotes expectation with respect to {W}, a Brownian motion independent of {W}

and 8% denote the random variables S corresponding to {W} Note that
E(Y,(I)) = P(S™™"(0) < z,). (4.10)
We claim that for any @ € [2207t,]
P(S™(0) < 2| S™0(0) < m) > 6. (4.11)
Assuming this for the moment and using (4.7)-(4.11), we see that
E(Y, (1Ya (7)) < KEYa(DJEY, ()] (4.12)

for K = K(§) = =2 and all n large enough when the distance between I and J is at least
27247 For K = K (§), thus,
1
lim sup — log, fx(n) < 46

n—oo T
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which gives Condition IIT when considering § | 0.
We now prove (4.11). Let 1(6) := v0(log#)~%. Note that for all t > 6 > 1,

P(Stn,tn(o) < 37' Stn,H(O) < .’E)

\%

> (g, (W) | 8(0) < z)
> g1, (W(0)P([Wo| > (8) | S™°(0) < &)  (4.13)

Since PW=(|Wy_,| < 1(0)) is a nonincreasing function of |[W,|, by the strong Markov property

of Brownian motion, it follows that for ¢ > 6 > z,

P(Ws| < %(0) | $"(0) <o) < P('Wio‘éiﬁ((?)’ 2 (3 =

P((Wy—g| <4(0))P(T(0) < z)
P(SH(0) < z)

<
Thus, by (4.1) and (4.2), for some Cy,Cs < 00, all n large enough and 8 € [2207,t,],
P(|Wy| < 4(0) | S™2(0) < z,) < Crz;*SP(|W1| < 2(log#)~%) < Cyn™', (4.14)
while g, (¥(0)) > 1.56 by (4.3). This proves (4.11) and hence Condition III .
Moving on to check Condition II, we note that Y, (I) > Z,(I) with
P(Yy(I) # Zn(I)) < 2E(Y,(1))P(S"#(0) > x| 8" (0) < ).
Using the fact that g < 1, we have as in the derivation of (4.13) that

P(§"P(0) > 2 | ™ (0) < @) < 1= TE(g, (IWe,]) [ S (0) < @)

< 1= gp ($(ta)) + P(IWe, | < 9(tn) | S (0) < ).

Now, P(|Wy,| < 4(tn) | St (0) < z,) — 0 by (4.14), while by (4.3) we see that

logt
n

thus establishing Condition II. O

5 The coarse multifractal spectrum

By Brownian scaling we may and shall fix 7 = 1. Fixinga > 1 and § > 0, let ¢, = (1 — §)",
pn = 82h(e,)/20, Ny = [p; 1], tjmn = jpn be as in Section 2. Turning to the lower bounds in
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(1.12), recall that by (2.1) and (2.4), we have that a.s. for some finite ng = ng(w,d) and all
n>ng, € € [en,en—1] and |t —t; 5| < pn/2,

(1 - 5)6ﬁn+1(tj,n) < (1 - 6)37;” (t) < 't(t) .

For j € {0,...,N,} let I; = 1 when j € A, of (2.5) and I; = 0 otherwise. Thus, for any

€E [ena en—l]a

Nn
Eeb{O <t<1 ‘ Tt) < aﬁ(e)} < palnl = pa 315 . (5.1)
=0
Recall that by (2.8) for any n > n1(d,a) and all 7,
2(1—-6)7/a

P(I] = 1) < €n+1 = Pn

Fix an integer £ > 40ad~2(1 — §)™* > 2. Since {I,} is a stationary sequence, for all n,

Ny {Np—1 Np—1
P(Y L > 26paNy) SP( Y 1 > 2puNo) <EP( Y Lje > 2pnNy)
j=0 j=0 =0

With £p, > 2(1 — 6)~%ah(ent1), it follows that {I;} are i.i.d. Bernoulli random variables.
Hence, by standard tail estimates for Binomial(NN,,, p,,) random variables, for some C' > 0 and

all n,
Np—1

P() Ty >2p,Ny) <e “Pnin
j=0

As " exp(—CppNy,) < 00, it follows from (5.1) by the Borel-Cantelli lemma that a.s. for all

n large enough and € € [e,, €, 1]
ceb{0 <t <1|T(t) <ah(9)} < 3tpn,

so that
log /.',eb{O <t<l1

Tt) < ah()}
lim inf >2(1-0)"/a a.s.
e—0 log €

Recall that
{Sel’l(t) < aiz(e)} C {/A/V(B(Wt,e)) < aﬁ(e)} C{Te(t) < ail(ﬁ)} (5.2)

provided ¢ A (1 —t) > ah(e). Therefore, taking § | 0 results with the lower bound 2/a for all

sets considered in Theorem 1.4.
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By (5.2) it suffices to prove the complementary upper bounds for the set
Cle,a) = {t €]0,1] : SH'(t) < ah(e)}.

To this end, recall that a.s. (2.3) holds for all n > 2/§ large enough, implying, with § := §°°,
that for all |t —¢;,| < p,/2 and € € [ep42, €nt1],

Sf(t) < Sén(tj,'fl) <(1- 6)_586An (tj,n) )

~ ~

h(e) = h(e) h(e€n)

Taking hereafter N,, = |p,,' —0.5], for j € {1,...,N,}let J; = 1 when S, (;.,) < (1—8)%ah(e,)

and J; = 0 otherwise. Then, for any € € [€y42, €41,

Nr
Eeb(C(e,a)) > pn ZJ]- = pn M, . (5.3)
j=1

Set 7y, 1= en™/% and L, = Z;V:"l I;, with I; = 1 when 8™ (t;,,) < (1 — 8)%ah(e,) while

I; = 0 otherwise. It follows from (4.4) and (4.5) with t = &, = nue;? and 2z = 2z, =
(1 —6)5a/|log €|, that for some ¢; = c1(a,d) > 0 and all n,

qn = P(Ij =1)= P(Sén’én 0) <z,) > 0162(1_6)_6/(1 (5.4)

n

Note that K; := I, — J; are non-negative and &, > 2z, > 0 for all n > n;(a,d). Therefore, by

(2.7), for some cg, c3,c4(a,d) < oo and all n,
< 025771/2P(7—(0) <) < 0357:1/22771.56—2/% < c4€%a+3)/(2a) (5.5)

(It is here that we used the fact that d > 3). Since E(I;Ij) — ¢2 < g5, and the random variables

I;, I}, are pairwise independent whenever |j — k|p, > 27y, it follows that

Nn
Var(Ln) = ) [E(IjIx) = g7] < Nugn(2[20/pn] +1) < 5Npgneyt/* < 5Nz gnel 2/
dk=1
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where the last inequality used a > 1. Recalling that M, = Z;V:”l Jj, we see by (5.4) and (5.5)

that for some ¢5 = ¢5(a,d) < oo and all n,

N,
1 2 = 1
P(My < 2Nngn) < P(Lyp < 2Nagn) + PY_K; > 2 Noan)
j=1
gvaur(Ln) 3Nn’l"n < c5ez(a,6)/a , (56)

NHQq% Npgn —

where v(a,d) := (a +3)/2 — 2(1 — §) % is positive for all § > 0 small enough. For any such
value of d, by (5.4), (5.6) and the Borel-Cantelli lemma, we have that a.s.

1 1 =7
pnMn > gpnNnQn > ZQn > 6121(1 9~"/a ,

for all n large enough. It follows then that a.s.

log(pnMy)

lim su <21-46)"/a,
n—)oop log €, o ( ) /
which in view of (5.3) yields the upper bounds of (1.12) when considering § | 0. O
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