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Abstract. Convolutive mixtures of images are common in photography
of semi-reflections. They also occur in microscopy and tomography. Their
formation process involves focusing on an object layer, over which defo-
cused layers are superimposed. Blind source separation (BSS) of convolu-
tive image mixtures by direct optimization of mutual information is very
complex and suffers from local minima. Thus, we devise an efficient ap-
proach to solve these problems. Our method is fast, while achieving high
quality image separation. The convolutive BSS problem is converted into
a set of instantaneous (pointwise) problems, using a short time Fourier
transform (STFT). Standard BSS solutions for instantaneous problems
suffer, however, from scale and permutation ambiguities. We overcome
these ambiguities by exploiting a parametric model of the defocus point
spread function. Moreover, we enhance the efficiency of the approach by
exploiting the sparsity of the STFT representation as a prior.

1 Introduction

Typical blind source separation (BSS) methods seek separation when the mix-
ing process is unknown. However, loose prior knowledge regarding the mixing
process often exists, due to its physical origin. In particular, this process can
be represented by a parametric form, rather than a trivial representation of raw
numbers. For example, consider convolutive image mixtures caused by defocus
blur. This blur can be parameterized, yet the parameters’ values are unknown.
Such mixtures occur in tomography and microscopy [1, 2]. They also occur in
semi-reflections [1], e.g., from a glass window: a scene imaged behind the semi-
reflector is superimposed on a reflected scene [3, 4]. Each scene is at a different
distance from the camera, thus differently defocus blurred in the mixtures.

We claim that BSS can benefit from such a parametrization, as it makes
the estimation more efficient while helping to alleviate ambiguities. In the case
of semireflections, our goal is to decompose the mixed and blurred images into
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the separate scene layers, by minimizing the mutual information (MI) of the
estimated objects. An attempt by Ref. [1] used exhaustive search, hence being
computationally prohibitive. Ref. [5] attempted convolutive image separation
by minimization of higher order cumulant. That method suffers from a scale
ambiguity: the sources are reconstructed up to an unknown filter. Moreover, the
method’s complexity increases fast with the support of the separation kernel.

The complexity of convolutive source separation has been reduced in the
domain of acoustic signals, by using frequency methods [6,7]. There, BSS is de-
composed into several small pointwise problems by applying a short-time-Fourier
transform (STFT). Then, standard BSS tools are applied to each of the STFT
channels. However, these tools suffer from fundamental ambiguities, which may
reduce the overall separation quality. Ref. [8] suggested that these ambiguities
can be overcome by nonlinear operations in the image domain. However, this
method encountered performance problems when simulated over natural images.

We show that these problems can be efficiently solved by exploiting a para-
metric model for the unknown blur. Moreover, we use the sparsity of STFT
coefficients to yield a practically unique solution, which is derived fast. The
algorithm is demonstrated in simulations of semi-reflected natural scenes.

2 Problem Formulation

Let {s1, . . . , sK} be a set of K independent sources. Each source is of the form
sk = sk(x), k = 1, . . . , K, where x = (x, y) is a two dimensional (2D) spatial
coordinate vector in the case of images. Let {m1, . . . , mK} be a set of K measured
signals, each of which is a linear mixture of a convolved version of the sources

mi(x) = ai1 ∗ s1(x) + . . . + aiK ∗ sK(x) , i = 1, . . . , K . (1)

Here ∗ denotes convolution and aik(x), k = 1, . . . , K, are linear spatially invari-
ant filters. Denote {ŝ1, . . . , ŝK} as the set of the reconstructed sources. Recon-
struction is done by applying a linear operator W on {m1, . . . , mK}. Each of
the reconstructed sources is of the form

ŝk(x) = wk1 ∗ m1(x) + . . . + wkK ∗ mK(x) , k = 1, . . . , K , (2)

where wik(x) are linear spatially invariant filters. Our goal is: given only the
measured signals {m1, . . . , mK}, find a linear separation operator W that in-
verts the mixing process, thereby separating the sources. The mixing process is
inverted by finding W that minimizes the MI of {ŝ1, . . . , ŝK}.

MI is expressed by using the marginal entropies Hŝk
and the joint entropy

of the estimated sources Hŝ1,ŝ2 as Iŝ1,ŝ2 =
∑K

k=1 Hŝk
−Hŝ1,...,ŝK . However, esti-

mation of the joint entropy may be unreliable. It can be avoided if the mixtures
are pointwise, rather than convolutive. In pointwise mixtures, the separation
operator W is a simple matrix, termed the separation matrix. In this case, the
MI can be expressed as (see for example Ref. [9])

I(ŝ1, ŝ2) = − log | det(W)| +
∑K

k=1
Hŝk

. (3)



It is desirable to do the same for convolutive mixtures. However, if W is
a convolutive operator, Eq. (3) does not hold. We note that expressions simi-
lar to (3) have been developed for convolutive mixtures [10] assuming spatially
white sources. Nevertheless, algorithms based on these expressions suffer from
whitening of the separated sources, corrupting the estimation severely both in
acoustic and in imaging applications.

3 Efficient Separation of Convolutive Image Mixtures

We may use Eq. (3) in convolutive mixtures, despite the fact that it is valid
only in pointwise mixtures. This is achieved by decomposing the convolutive
optimization problem into several smaller ones, which are apparently indepen-
dent of each other. This approach is inspired by frequency domain algorithms
developed for acoustic signals [6,7]. Nevertheless, this approach has its own fun-
damental limitations, which are discussed and solved in Secs. 4 and 5.

We apply STFT1 to the data. Denote ω = (ωx, ωy) as the index vector of
the frequency variable of the 2D STFT. Assuming that the STFT window size
is larger than the effective width2 of the blur kernel [6], Eq. (1) becomes

mi(ω,x) ≈ ai1(ω)s1(ω,x) + . . . + aiK(ω)sK(ω,x), i = 1, . . . , K , (4)

since convolution becomes a multiplication in this domain.
Eq. (4) exposes a fundamental problem in cases of energy-preserving convo-

lution operators. In such operators aik(ω) → 1 as ω → 0 (the overall light energy
over the image area is invariant to the convolution). This occurs in defocus blur,
since change of focus does not cause light attenuation, only a different spread of
the light energy across the sensor area [1, 2]. As aik(ω) → 1, Eq. (4) becomes

mi(ω,x) ≈ s1(ω,x) + . . . + sK(ω,x), i = 1, . . . , K . (5)

This is a singular set of equations. Therefore, low spatial frequencies are not well
reconstructed. Note that this has nothing to do with the ICA problem. Even if
the blur kernels aik are perfectly known, the reconstruction is ill-conditioned in
the low-frequency bands [1, 2]. Keeping in mind this matter, we continue with
the blind estimation process. Note that at each sub-band ω, Eq. (4) expresses
a pointwise mixture of sub-band images. At each frequency channel, the mixed
sources can be separated by simple ICA optimization. Then, all the separated
sources from all the frequency channels may be combined by inverse STFT.

To describe the ICA optimization, denote W(ω) as the separation matrix
at channel ω. In addition, denote Iω(ŝ1, ŝ2) and Hω

ŝk
as the MI and marginal

entropies of the estimated sources at channel ω, respectively. Then, similarly to
Eq. (3), the MI of the estimated sources at each channel is given by

min
w(ω)

{
− log |det[W(ω)]| +

∑K

k=1
Ĥω

ŝk

}
, (6)

1 This operation is also termed as a windowed Fourier transform, which may be more
appropriate for spatial coordinates as we use.

2 A discussion regarding the STFT window width is given in Sec. 7.



where Ĥω
ŝk

is an estimator of the channel entropy of an estimated source. Hence,
using this factorization, MI minimization of a convolutive mixture is expected
to be both more accurate and more efficient to obtain.

Sparse Separation in the STFT Domain

Now, we exploit image statistics in order to achieve a computationally efficient
solution for the sub-problems in each frequency channel. As shown in [11], spar-
sity of sources is a strong prior that can be exploited to achieve a very efficient
separation. It is known from studies of image statistics (see for example [12]) that
sub-band images are sparse signals. Motivated by [11,13], their quasi-maximum
likelihood blind separation can be achieved via minimization of

min
w(ω)

{
− log |det[W(ω)]| + (1/N)

∑K

k=1

∑N

n=1
|ŝk(ω, n)|

}
. (7)

Here n indexes the STFT shift (out of a total of N). This enables relative Newton
optimization [14], which enhances the efficiency of sparse source separation.

4 Inherent Problems

The frequency representation brings efficiency of pointwise separation. With it,
however, come fundamental ambiguities that are common in pointwise problems.
The permutation ambiguity implies that the separated sub-band images appear
at each channel in a random permutation. Some sub-band images corresponding
to the “first” estimated source may actually belong to the “second” estimated
source. When the channels are transformed back to the image domain using the
inverse STFT, the reconstructed images can suffer from crosstalk. Even though
source separation was achieved in each channel independently, distinct sub-band
images from different sources are combined in the reconstruction.

In addition, the scale of different channels is unknown due to scale ambiguity,
leading to imbalance between frequency channels. When the estimated channels
of a source are transformed back to the image domain using the inverse STFT,
the reconstructed image can appear unnatural and suffer from artifacts.

Moreover, the performance in each frequency channel is frequency depen-
dent. Typically, there are a few frequency channels with good separation, a few
channels with very poor separation and the rest of the channels have mediocre
separation quality. There are several reasons for this phenomenon. One reason
is related to the different sparsity of different frequency channels [15].

5 Inter-Channel Knowledge Transfer

In this section we bypass the permutation and scale ambiguities by exploiting
a prior about the unknown convolutive process. Blur caused by optical defocus
can be parameterized [16]. As an example, consider a rough parametric model:



a simple 2D Gaussian kernel with different widths in the x and y directions [1].
Denote ξi,k = [ξi,k,x, ξi,k,y ] as the vector of the unknown blur parameters of the
blur kernel of source k at image i and

Gξi,k
(ω) = exp

[−ω2
x/(2ξ2

i,k,x)
]
exp

[−ω2
y/(2ξ2

i,k,y)
]

(8)

as the filter which preserves light energy. In addition to defocus, let us incorporate
attenuation gi,k of each source k into any mixture i.

Assume that in each acquired image, one of the layers is focused,3 i.e.
Gξk,k

= 1. Define A(ω) as the mixing operator in frequency channel ω.

A(ω) =




1 g1,2Gξ1,2(ω) . . . . . .

g2,1Gξ2,1(ω) 1
...

...
...

...
. . .

...
. . . . . . gK,K−1GξK,K−1(ω) 1


 . (9)

Thus, the separation matrix in each channel is parameterized by ξi,k and gi,k

and is of the form W(ω) = [A(ω)]−1 . Note that the parameter ξi,k and gi,k are
the same for all frequency channels. Hence, there is a small number of actual
unknown blur variables. On the other hand, there is a large number of frequency
channels upon which the estimation of these variables can be based.

As we explain is Sec. 5.2, we can automatically select three channels ωa, ωb

and ωc, that yield the best separation results according to a ranking criterion.
Define Ã(ωa) = [W(ωa)]−1 and similarly Ã(ωb) and Ã(ωc). Let ãi,k be the
coefficients of Ã. Then, for each blur kernel, we calculate the unknown blur
parameters ξi,k and gi,k by solving the following set of equations:




gi,kGξi,k
(ωa) = ãi,k(ωa)/ãi,i(ωa)

gi,kGξi,k
(ωb) = ãi,k(ωb)/ãi,i(ωb)

gi,kGξi,k
(ωc) = ãi,k(ωc)/ãi,i(ωc)

, (10)

We solve this set to find the parameters ξi,k and gi,k, thus deriving the blur and
attenuation parameters based on those few selected channels.4

Now, we can use these parameters and Eq. (8) to calculate gi,kGξi,k
(ω) for

all the frequency channels. This directly yields the separation operator W for all
the frequency channels. We invert the mixing process by using this W. It may
be possible to achieve higher accuracy by representing each blur kernel using
parametric models other than Gaussian, requiring more parameters. This would
require selection of additional channels.
3 We stress that we seek layer separation rather than deblurring. Therefore, if source

k is defocused in all the images, we denote the least defocused version of source k as
the effective source we aim to reconstruct. Then, we denote Gξi,k

(ω) as the relative
defocus filter between the effective source and the defocused source at image i .

4 One might suggest optimizing the MI directly over the parameters gi,k and ξi,j .
However, this optimization scheme is not necessarily convex. A detailed discussion
on this issue is given in [15].



5.1 Separation of Semi-reflections

Section 5 describes a parametric model for mixtures of blurred images. It con-
sists of an attenuation factor gi,k and an energy preserving filter Gξi,k

. However,
in common applications such as semi-reflections [1] or widefield optical section-
ing [2], no attenuation accompanies the change of focus. Hence, gi,k = 1 for
all i, k. For each signal, each source is affected only by two parameters in the
Gaussian model. Thus, only two channels are needed to solve for the unknown
ξi,k. Moreover, in the special case of semi-reflections, we have only two sources.
Therefore, the mixing operator and the separation operator are reduced to

A(ω) =
[

1 Gξ1,2

Gξ2,1(ω) 1

]
, W(ω) =

[
1 −Gξ1,2

−Gξ2,1(ω) 1

]
{det(|A(ω)|)}−1 .

(11)
The equation system we need to solve in order to estimate ξ1,2 and ξ2,1 is




−Gξ1,2(ω
a) = w1,2(ωa)/w1,1(ωa)

−Gξ1,2(ω
b) = w1,2(ωb)/w1,1(ωb)

−Gξ2,1(ω
a) = w2,1(ωa)/w2,2(ωa)

−Gξ2,1(ω
b) = w2,1(ωb)/w2,2(ωb)

. (12)

Here, wi,k are the coefficients of matrix W(ω) and ωa, ωb are the best and
second best channels according to the ranking we describe next.5

We stress that thanks to this approach of parameter-based inter-channel
knowledge transfer, the permutation, scale and sign ambiguities are solved: the
sources are not derived in a random order or with inter-channel imbalance, but
in a way that must be consistent with the blur model, hence with the image for-
mation process. In addition, the problem of channel and data dependent perfor-
mance is alleviated, since the separation operator is estimated based on selected
channels performing well.

5.2 Selecting a Good Frequency Channels

The parameter estimation method requires ranking of the channels. The ranking
relies on a quality criterion for the separation (i.e., independence) of ŝ1 and ŝ2

at each frequency channel ω, given the sparsity assumption.
The scatter plot of sparse independent signals has a cross shape aligned with

the axes, in the (ŝ1, ŝ2) plane, i.e., most of the samples should have small angles
relative to the ŝ1 and ŝ2 axes. Define

χω
L1

=
∑2

k=1

({∑N

n=1
|ŝk(ω, n)|

}
/

{∑N

n=1
[ŝk(ω, n)]2

})
. (13)

This criterion increases as the samples in the scatter plot deviate from the ŝ1 and
ŝ2 axes, and is reduced when each sample n has non-zero values exclusively in
5 It might be possible to achieve better estimation by using more than two channels,

for example, by solving a non-linear least squares problem.



Fig. 1. Simulation results: (a) Two original natural images. (b) The two convolved and
mixed images. (c) Reconstructed layers.

ŝ1 or ŝ2. This closed form expression automatically determines which frequency
channels yield the most separated sources, and are thus preferable.

Thus, in our algorithm, we first perform ICA in all the frequency channels.
We then calculate χω

L1
, thus ranking the channels. Then, we select the best

channels as those that correspond to the smallest values of the penalty function
χω
L1

. These channels are used in Sec. 5.

6 Demonstration

The method was simulated using two natural images of size 122 × 162 pixels
(Fig. 1a) as the two scene layers. The blur kernels we used are Gaussians with
parameter vectors ξ1,2 = [1, 2] and ξ2,1 = [2, 1] pixels. We did not use attenua-
tion coefficients because in photography of real semi-reflections, the image layers
are only blurred but not attenuated by change of focus. We added i.i.d Gaussian
noise with standard deviation of ∼ 2.5 gray levels to the convolved and mixed
images. The resulting mixed and noisy images are shown in Fig. 1b. Separation
was performed using STFT having 13 × 13 frequency channels. The separation
results are presented in Fig. 1c. The resulting images are indeed well separated.
There is no visible crosstalk between the images. The contrast of the recon-
structed images is reduced compared to the original images. This stems from
inherent ill-conditioning of the mixing matrix at low frequencies (see Sec. 4),
i.e., this is not associated with the blindness of the separation problem.

7 Discussion

The convolutive image separation algorithm has currently a single parameter to
tweak: the width of the STFT window. It can affect the separation results, and



the optimal size somewhat depends on the acquired images. As mentioned in
Sec. 3, it must be larger than the effective width of the blur kernel. On the other
hand, a very wide window can degrade the sparsity of the sub-band images. A
detailed discussion is given in [15]. We determined the window width by trial
and error, but we believe this can be automated. For example, multi-window
STFT may be used, followed by selection of the the best window width using
the criterion described in Sec. 5.2. This requires further research.

References

1. Schechner, Y.Y., Kiryati, N., Basri, R.: Separation of transparent layers using
focus. Int. J. Computer Vision 89 (2000) 25–39

2. Macias-Garza, F., Bovik, A.C., Diller, K.R., Aggarwal, S.J., Aggarwal, J.K.: The
missing cone problem and low-pass distortion in optical serial sectioning mi-
croscopy. In: Proc. ICASSP. Volume 2. (1988) 890–893

3. Schechner, Y.Y., Shamir, J., Kiryati, N.: Polarization and statistical analysis of
scenes containing a semi-reflector. J. Opt. Soc. America A 17 (2000) 276–284

4. Bronstein, A.M., Bronstein, M.M., Zibulevsky, M., Zeevi, Y.Y.: Sparse ICA for
blind separation of transmitted and reflected images. Intl. J. Imaging Science and
Technology 15(1) (2005) 84–91

5. Castella, M., Pesquet, J.C.: An iterative blind source separation method for con-
volutive mixtures of images. In: Proc. ICA2004. (2004) 922–929

6. Parra, L., Spence, C.: Convolutive blind separation of non-stationary sources.
IEEE Trans. on Speech and Audio Processing 8 (2000) 320–327

7. Smaragdis, P.: Blind separation of convolved mixtures in the frequency domain.
Neurocomputing 22 (1998) 21–34

8. Kasprzak, W., Okazaki, A.: Blind deconvolution of timely-correlated sources by
homomorphic filtering in Fourier space. In: Proc. ICA2003. (2003) 1029–34

9. Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. John
Wiley and Sons, NY (2001)

10. Pham, D.T.: Contrast functions for blind source separation and deconvolution of
sources. In: Proc. ICA2001. (2001) 37–42

11. Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposi-
tion in a signal dictionary. Neural Computations 13(4) (2001) 863–882

12. Simoncelli, E.P.: Statistical models for images: Compression, restoration and syn-
thesis. In: Proc. IEEE Asilomar Conf. Sig. Sys. and Computers. (1997) 673–678

13. Pham, D.T., Garrat, P.: Blind separation of a mixture of independent sources
through a quasi-maximum likelihood approach. IEEE Trans. Sig. Proc. 45(7)
(1997) 1712–1725

14. Zibulevsky, M.: Blind source separation with relative newton method. In: Proc.
ICA2003. (2003) 897–902

15. Shwartz, S., Schechner, Y.Y., Zibulevsky, M.: Efficient blind separation of convo-
lutive image mixtures. Technical report, CCIT No. 553, Dep. Elec. Eng., Technion
Israel Inst.Tech. (2005)

16. Born, M., Wolf, E.: Principles of optics. Pergamon, Oxford (1975)




