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Abstract—Consider the task of creating a very wide visual extrapola-
tion, i.e., a synthetic continuation of the field of view much beyond the
acquired data. Existing related methods deal mainly with filling in holes
in images and video. These methods are very time consuming and often
prone to noticeable artifacts. The probability for artifacts grows as the
synthesized regions become more distant from the domain of the raw
video. Therefore, such methods do not lend themselves easily to very
large extrapolations. We suggest an approach to enable this task. First,
an improved completion algorithm that rejects peripheral distractions
significantly reduces attention-drawing artifacts. Second, a foveated
video extrapolation approach exploits weaknesses of the human visual
system, in order to enable efficient extrapolation of video, while further
reducing attention-drawing artifacts. Consider a screen showing the
raw video. Let the region beyond the raw video domain reside outside
the field corresponding to the viewer’s fovea. Then, the farther the
extrapolated synthetic region is from the raw field of view, the more the
spatial resolution can be reduced. This enables image synthesis using
spatial blocks that become gradually coarser and significantly fewer
(per unit area), as the extrapolated region expands. The substantial
reduction in the number of synthesized blocks notably speeds the
process and increases the probability of success without distracting
artifacts. Furthermore, results supporting the foveated approach are
obtained by a user study.

Index Terms—Video extrapolation, Image and video completion,
Foveated vision, Display technology

1 INTRODUCTION
Large high-quality display hardware, including televi-
sion and computer monitors have become common con-
sumer items. Thus, much effort is put nowadays into
video enhancement, with the goal of a more enjoyable
viewing experience. Substantial effort is invested in
overcoming artifacts caused by signal noise and lossy
compression, or in up-sampling low-resolution video by
super-resolution techniques. The objective of all such
efforts is to improve the appearance of the area encap-
sulated within the raw field-of-view (FOV).

An alternative direction for enhancing viewer expe-
rience is to create a spatial continuation of the video
outside the raw FOV (Fig. 1). This is our goal here. We
refer to such external continuation as video extrapolation.
The video expansion is designed to enhance the viewer’s
sensation of being embedded in the scene rather than
seeing a mundane, unrelated background. A rough step
in this direction is taken by the Ambilight television sys-
tem [2] (see Fig. 2). There, the wall around the television

screen is backlit from behind the set. This illumination
matches in realtime the azimuthal distribution of colors
that exists at the margin of each frame. Related setups
using varying ambient illumination are discussed in [14]
and [31]. In our work, the extrapolation is an actual
video. We aim for very wide video extrapolation, as
illustrated in Fig. 1.

A related task deals with image and video completion.
A part of the FOV is considered as a void to be filled
by synthetic visual content. The filled content should
appear realistic and consistent with the true, nearby data.
Approaches for such tasks are sometimes referred to as
inpainting (e.g., [5], [25]), texture synthesis (e.g., [10], [11],
[15], [41]) and image retargeting (e.g., [34], [37]). Such
methods have focused on filling in areas that occupy a
rather small percentage (usually holes) of the raw FOV.
One reason for this preference is that completing large
areas is prone to disturbing and distracting artifacts.
Another reason is that large areas take a long time to
fill. Here, we address both aspects, aiming for a very
wide (external) completion.

1.1 Related Work

Numerous studies deal with image and video com-
pletion. Here we mention a small subset. The most
popular completion methods use patches from other
locations in the image or video as source information
for synthesizing data inside target holes (e.g., [8], [9],
[23], [38], [42], [43]). In most of these methods (e.g., [8],
[9]), the completion process is sequential, propagating
the fill in from the boundary of the known data domain,
into uncharted territories. At each step, a small image (or
video) block is pasted or updated. With some probability,
the update at a specific iteration is “wrong,” i.e., it fills-
in a small block that is subjectively inconsistent with
the video content, according to the life-experience of the
viewer. From this point on, this small error affects the
consecutive iterations, leading to a large, unignorable
artifact. Since small errors serve as seeds for large ones,
sequential schemes are highly susceptible to the creation
of distracting artifacts. To tackle this problem, Sun et
al. [38] suggested that the user mark curves providing
cues for the desired structure in still images. Wexler et
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Fig. 1. A raw input video resides in a spatiotemporal set Ωraw. It is extrapolated to a video in domain Ωextra. Wherever
the viewer looks on in Ωraw, the extrapolated region is outside the fovea. Thus, the extrapolated video may be
synthesized and displayed at a scale that become gradually coarser as the extrapolated region expands, following
the natural foveated resolution. The marked reduction in the need to synthesize details, significantly speeds up the
process and significantly increases the probability of success without distracting artifacts.

Fig. 2. Philips Ambilight TV. The wall around the television
screen is illuminated with colors matching the margins of
the video frames. Video extrapolation should extend the
scene by actual video [2].

al. [42] and Komodakis et al. [23] suggest methods whose
goal is global optimization. However, we found that this
incurs a high cost in terms of computation time.

Source patches can become larger and fewer when
using additional photos [43]. A recent appealing
method [16] suggests relying on a database of millions
of still photos. Then, just a single, large patch from
a database photo can replace the hole. This approach
reduces the number of artifacts and offers nice results.
However, using this approach for video would require a
huge database.

Some video completion methods suggest using mid-
level image analysis, such as segmentation, motion anal-
ysis, and tracking (e.g., [20], [21], [22], [26], [28]). How-
ever, it requires the analysis to have high-reliability.
Nevertheless, incorporating such analysis in completion
methods is beneficial.

1.2 Our Approach

We tackle the runtime and artifacts problems, in a quest
for very wide extrapolation. The context of the task in
this work is enhancement of the viewer’s experience,
while the viewer is aware of the true-data region and
its boundary. The context of this display task can exploit
the foveated nature of the human visual system: outside
the true data region, the viewer is much less sensitive
to fine spatial details; hence, as we will show, these
can be gradually sacrificed for the sake of speed and
reliability. We assume that the viewer’s focus is on the
raw data domain at all times. This cannot be guaranteed.
However, we make an effort to create the extrapolation
without attention-drawing artifacts.

Extrapolation can be useful also inside the main dis-
play screen. Internet streaming video and short ama-
teurish videos, taken e.g., by digital cameras integrated
in cellular phones, may have a resolution much lower
than display screens and projectors. Thus, watching
such video in its raw resolution wastes significant dis-
play real-estate in return for void regions, or (worse)
distracting objects. Extrapolating the video to the full
screen could exploit these unused regions, in a way that
enhances the view even if the extrapolation resolution is
rough. Additional display configurations that can benefit
from extrapolation are discussed in Section 8.1.

We thus use a foveated approach. It relies on the
tolerance of the visual system to spatial coarsening in
the periphery. This enables very large areas to be filled
in with far fewer blocks (iterations) than implied by the
native display resolution. This reduction in the num-
ber of blocks has several benefits. First, it leads to a
faster, efficient process, which makes its use in video
more feasible than standard image completion. Second,
it greatly reduces the number or potential error-seeds.
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Fig. 3. The foveated extrapolation algorithm provides
a general framework, into which a wide range of full
resolution video completion algorithms can be integrated
as an “engine”.

This leads to a corresponding reduction of artifacts that
would otherwise distract the viewer from the true and
known data domain.

The foveated extrapolation algorithm suggested here
performs several discrete extrapolation steps, each at a
different scale (as described in Section 4). Each scale-step
can be considered a black box and thus a wide range of
completion algorithms can serve as this “engine.” Thus,
the foveated approach offers a general framework that can
easily exploit future improvements in video completion
(Fig. 3). Nevertheless, we suggest here a specific patch-
based video completion algorithm that rejects peripheral
distraction, to serve as this “engine” (Section 3).

The benefits of the foveated approach in reliability and
runtime are demonstrated both analytically (Section 5)
and on natural landscape video and images (Section 6).
The viewers’ response to the visual results is reported
in Section 7. We start by describing relevant background
(Section 2).

2 PRELIMINARIES

2.1 Foveated Vision and Representation

The fovea occupies ≈ 1% of the retina. It has high density
of photoreceptors in a narrow region. This region thus
corresponds to high spatial resolution and is used in
high resolution tasks, which require attention. Outside
this narrow region, the density of photoreceptors falls
off, and the perceived signals there are spatially much
coarser.

The resolution falloff of foveated human vision can
be incorporated for efficient image representation and
display. This effect was used for image compression
(e.g., [12], [40]). There, the image display resolution falls-
off gradually with the distance from the center of the
viewer’s gaze. See Fig. 4.

Define the effective visual resolution as the number of
resolvable pixels per unit lateral (not solid) angle. Let α
be the visual angle, i.e., the angle subtended by an object
location, relative to the optical axis of the eye. The effec-
tive resolution then falls off monotonically, following a
function R(α). Based on findings from psychophysical
studies, e.g., [32], an approximated formula was defined
in [13],

center of gaze
Reso

lutio
n

fall-o
ff

Fig. 4. A variant resolution image [12]. The center of the
observer’s gaze is on the bee.

R(α) =
ε

ε + α
, (1)

where α is given in degrees and ε = 2.3o. Eq. (1) is
normalized such that R(0) = 1. We use it in our work.

Geisler and Perry [12] suggest a three-step method
to gradually decrease the image resolution according
to R(α): (a) creating a quantized scale map, based on
R(α); (b) creating a multiscale representation of the im-
age; (c) fusing selected multiscale image layers. We use
analogous steps in our foveated video extrapolation al-
gorithm. We now describe the steps as suggested in [12].
In Section 4 we describe how we adapt them to foveated
extrapolation. Depending on the distance of the display
screen, each pixel x = (x, y) is perceived at an angle α(x).
This directly yields an effective relative resolution map
Rmap(x) ≡ R[α(x)] over the image domain. This relative
resolution map is then quantized to a few discrete values
{fσ}Nscales−1

σ=0 . Here, σ ∈ [0, Nscales − 1] is a scale index,
and f < 1 is a constant which determines the resolution
quantization steps. Following this quantization, each
pixel is associated with two discrete resolutions, which
bound the quantization interval around Rmap(x):

σ̃(x) : f σ̃(x)+1 ≤ Rmap(x) ≤ f σ̃(x) , σ(x) ∈ [0, Nscales−1] .
(2)

Now, the image content is transformed to a multiscale
representation. Geisler and Perry [12] used a Gaussian
pyramid [6] of the input image Iraw(x). Each pyramid
level corresponds to a scale index σ. The image in that
scale has been recursively scaled down by a factor of
f−1. Then, each such level is expanded to occupy the
same pixel domain as that of Iraw. This results in a set of
multiscale layers {Gσ}Nscales

σ=0 , where blur increases with
σ.

Finally, the displayed image is created, by fusing two
scale-levels at each location x. The two scales are the
bounds set by Eq. (2). Fusion is obtained by a convex
superposition

Iout(x) = W (x)Gσ̃(x)+1(x) + [1−W (x)]Gσ̃(x)(x) , (3)

where W (x) is a weighting function, in the range [0, 1].
Here, W (x) = 1 or 0 where the continuous-valued effec-
tive relative resolution Rmap(x) coincides, respectively,
with the upper or lower quantization bounds set by
Eq. (2).
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Fig. 5. A core completion engine [8]. The domain Ωassigned

is already completed; Ωmissing is the domain to be com-
pleted; δΩ is the boundary between them. The block M̂
has priority for being completed now, due to a strong edge
crossing δΩ at its center point. The block Ŝ is a good
source for completing M̂.

2.2 Core Completion Algorithm

As illustrated in Fig. 3, our foveated video extrapola-
tion algorithm (which we describe in Section 4) uses a
full resolution video completion algorithm as a black-
box “engine.” We suggest a specific engine (Section 3)
which follows the patch-based algorithm suggested by
Criminisi et al. [8]. We found that this method required
significantly less processing time than other successful
patch-based algorithms. With the adjustments we detail
below in Section 3, it is effective enough as the comple-
tion “engine.” However, other methods (e.g., [9], [23],
[42]) can be integrated into the foveated extrapolation
framework as well.

In this section we briefly describe the completion
method of Criminisi et al. [8]. Our description is in the
context of video extrapolation. Let Ωraw be the spatio-
temporal (ST) domain of an input video. We wish to
extrapolate the video to domain Ωextra surrounding Ωraw,
as illustrated in Fig. 1. The algorithm is iterative. At any
iteration, let Ωassigned be the set of pixels to which a value
was already assigned, and Ωmissing = Ωextra − Ωassigned

the set of pixels to which an assigned value is still
missing, as illustrated in Fig. 5. Initially, Ωassigned = Ωraw.
In each iteration, Ωassigned grows until Ωassigned = Ωextra.

In any iteration, a target ST block M̂ is selected
for completion, and another ST block S is selected as
the data source for this completion. The ST blocks1

are of constant size of wx × wy × wt. The target block
is always on the boundary δΩ between Ωassigned and
Ωmissing. Blocks that include strong ST edges crossing δΩ,
and those that include less missing pixels, are selected
as targets in an earlier iteration, for better propagation
of image structure. After M̂ is selected, a source Ŝ is
searched throughout Ωraw: a cost

r(S) = SSD LAB(Sassigned,M̂assigned) (4)

is assigned to each potential source S, where SSD LAB

1. Following [8], the blocks are boxes. However, other shaped blocks
can be used, e.g. spherical, by masking.

is the sum-of-square-differences2 (SSD) in the CIE-Lab
color space3. Here, M̂assigned = M̂∩Ωassigned and Sassigned

are the corresponding pixels in S . The selected block is
the one for which

Ŝ = arg min
S⊂Ωraw

r(S) . (5)

Pixels from the selected source Ŝ are used for filling
in the missing pixels in M̂. Eqs. (4) and (5) yield a
source block having a subregion that is visually similar
to the known part of the target block. Using this selection
usually results in a completed target block which is
similar to a real block from Ωraw. Consequently, the
target block also appears realistic.

As discussed above, this method (denoted fullres-
core) is efficient relative to other patch-based completion
algorithms, and yields good results when completing
small holes. It nevertheless suffers from long processing
time and introduces too many artifacts, when used for
completing wide peripheral regions.

3 ALGORITHM FOR PERIPHERAL EXTRAPO-
LATION

Here we describe an algorithm having Peripheral Avoid-
ance of Distractions (PAD). This new algorithm adjusts
the core algorithm in order to handle peripheral extrap-
olation, by reducing attention-drawing artifacts (Sec 3.1
and Section 3.2) and by reducing processing time (Sec-
tion 3.3).

3.1 Rejecting Peripheral Distractions
It is desirable that the extrapolated image periphery
would be visually “boring” and predictable. We do not
want the viewer’s attention to be distracted by salient
artificial objects that spring from nowhere. Such objects
may be outliers selected by Eq. (5), rather than solid rep-
resentatives of potentially good sources. We decrease the
probability for such artifacts by two changes to the core
algorithm: First, we penalize candidate source blocks
that introduce strong spatial or temporal gradients. Sec-
ond, we counter outliers by seeking a source block that
has high similarity to several other candidate source
blocks. This is accomplished by preferring candidates
that are centers of clusters of high-scoring candidates.
(See resulting examples in Fig. 6.)
Penalizing edges: According to Eq. (5), the best fitting
block Ŝ is similar to M̂ in the part where M̂ was
previously assigned (M̂assigned). What about the comple-
mentary part of Ŝ, i.e., Ŝcomplement = Ŝ/Ŝassigned? It might
contain a noticeable ST feature. Strong ST variations are
not desirable in the periphery as they may draw the

2. Calculating r(S) using the Fast-Fourier-Transform (FFT) [24]
speeds up the process.

3. Other more robust similarity measures (e.g., the Hausdorff dis-
tance [18] or the CW-SSIM index [36]) can easily replace the SSD
criterion.
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Fig. 6. Demonstrating the preference to reject peripheral
distractions. [Top left]: Applying the core completion algo-
rithm to a video clip of a skier (inside the black frame)
yields copies of the skier which occasionally appear and
disappear in the extrapolated region. [Top right]: Result
of applying the PAD completion algorithm, which rejects
peripheral distractions. [Bottom left]: A frame from an
extrapolated video using the core completion algorithm.
[Bottom right]: The corresponding frame resulting from
the PAD completion algorithm.
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Fig. 7. Both Ŝ and S ′ are good source candidates for
completing M̂ according to the core algorithm. However,
S ′ is a preferred source, as it does not introduce an
attention-drawing object in the periphery.

viewer’s attention, as illustrated in Figs. 6 and 7. On the
other hand, there may be another potential source block
S ′ that introduces no undesired ST edges and whose cost
r(S ′) is only slightly higher than r(Ŝ). Such an S ′ is a
more desired source candidate.

This principle is implemented as follows. Let S be the
set of Ncandidate candidate blocks that rank best (e.g.,
according to Eq. 4). Now, for each S ∈ S, a penalty is
set for blocks that introduce more prominent ST edges.
This penalty is based on the ST gradient

g(S) =
∑

X∈Scomplement

|∇I(X)| , (6)

where X = (x, t) is a video pixel defined by its spatial
location x and the temporal index t. This penalty is
considered later, when setting a final cost, as we discuss
below.

Suppressing outliers: To suppress outliers, we prefer to
select a candidate that is near the center of a cluster of
candidates. A simple way to quantify this preference is
to measure for each S ∈ S the sum of ‘dissimilarity’ to
all the other candidates S̃ ∈ S,

h(S) =
∑

S̃∈S
SSD LAB(S, S̃) . (7)

If S is near the center of a cluster, then the cost h(S) is
smaller than if S is an outlier.

Final cost: Finally, each S ∈ S is assigned a cost based
on r(S), g(S), and h(S),

r′(S) =
r(S)

minS̃∈S r(S̃)
+

g(S)
minS̃∈S g(S̃)

+
h(S)

minS̃∈S h(S̃)
. (8)

The first term in Eq. (8) has the value 1 for the best
fitting block, selected by Eq. (5). It has higher values
in other candidate blocks. The second term in Eq. (8)
has the value 1 for the candidate source S , for which
Scomplement least introduces ST edges (gradients). This
term has higher values in source candidates that have
more edges in their complementary portion. The third
term in Eq. (8) has the value 1 for the candidate source
that is more likely to be the center of a cluster, according
to Eq. (7). This term has higher values in other candi-
dates.

Therefore, the lower r′(S) is, the better S is as a can-
didate source for peripheral extrapolation. Now, instead
of r(S) defined in Eq. (4), it is possible to use r′(S),
and thus select an optimal source block. However, we
take into consideration another aspect, as discussed in
the next section.

3.2 Randomness
The best fit by Eq. (5) or by minimizing Eq. (8) may
result in a specific ST block being selected repeatedly
at consecutive iterations. This may cause synthesized
regions to be perceived as repeatable and unnatural. As
suggested by Efros and Leung [11], it is beneficial to
introduce randomness in the selection of Ŝ .

Our algorithm considers the subset S′ ⊆ S of Ntop

candidates (Ntop ≤ Ncandidate) that rank best in Eq. (8).
Then, a block Ŝ ∈ S′ is randomly selected to be the
source block. The probability of this selection is set to be
inversely proportional to the cost r′(S), given in Eq. (8).
The probability is thus

P (S = Ŝ) =
1/r′(S)∑
S̃∈S′ 1/r′(S̃)

. (9)

3.3 Adaptive Search Domain
Patch-based completion methods demand significant
processing time. As we detail in Section 6, for wide
extrapolation, the core algorithm may require an intol-
erable amount of time. Most of the computation time
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Fig. 8. Adaptive search domain. The point Xraw is the
closest point in Ωraw to the target point m. The initial
search domain is ∆0. Only if a sufficient source block is
not found in ∆k does the search domain expands to ∆k+1.
The figure illustrates the process in 2D, for clarity.

in each iteration is spent on searching for a source
block S. The original algorithm [8], [24] searches the
entire Ωraw. Some methods reduce the search domain,
either by filtering out irrelevant candidates using simple
statistics (e.g., [9]) or by a prior semantic analysis of the
scene (e.g., [20], [21], [22], [28]). We suggest a method
for runtime reduction that does not rely on high level
analysis. It exploits a characteristic of natural scenes:
usually many good potential source blocks are found
in the ST vicinity of M, both spatially and temporally.
Therefore, each search starts at a limited ST domain clos-
est (spatially and temporally) to M̂. The search domain
is then extended gradually only if a sufficiently similar
block is not found. Let m be the center of the target block
M̂, and let Xraw be the point closest to m (by Euclidean
distance) in Ωraw (see Fig. 8). Consider search domains
∆0 ⊂ ∆1 ⊂ ∆2... ⊂ ∆n = Ωraw such that

∀q ∈ ∆k, ‖q−Xraw‖∞ < δ0 · 2k, k = 0, ..., n , (10)

where δ0 defines the ST length of the smallest search-
domain.

Let rmax be a dissimilarity threshold. First, the search is
only in ∆0. If a source block S is found for which r(S) <
rmax, the selection of the final source block Ŝ is further
carried out inside ∆0, in the manner described is Secs. 3.1
and 3.2. Only if such an S is not found inside ∆0, the
procedure is repeated for ∆1 (searching for S ∈ ∆1 so
that r(S) < rmax), and so forth. From our experience, this
approach significantly reduces processing time: usually
∆0 suffices. Rarely does the search expand to the whole
Ωraw 4.

4. Once a source block is selected, instead of simply copying the
corresponding part of the selected source block to the ‘unknown’ part
of the target block, we counter seam lines by feathering [7] (as done
also by [9]).

extrapolate

reduce

reduce

extrapolate

expand

expand

extrapolate

0I

1I

2I

outI

rawI

0G

1G

2G

Fig. 9. A schematic description of foveated video extrapo-
lation. The process includes a few discrete steps. At step
σ, the result from the former step Iσ−1 is downsampled
and further extrapolated in a coarser scale. The results of
these steps are combined to construct Iout.

After applying the adjustments described in Sec-
tion 3.1 and 3.2, the number of artifacts drops substan-
tially. However, artifacts are still frequent when attempt-
ing to extrapolate very far from Ωraw, at full resolution.
In addition, the runtime for wide extrapolations is still
intolerable even after the improvement described in
Section 3.3.

For many display conditions, full resolution extrap-
olation is an overkill. The synthesized peripheral data
usually addresses regions in the viewer’s retina with
a low density of photoreceptors. The foveated video
extrapolation framework described in the next section
exploits this characteristic, and introduces an approach
that substantially reduces the runtime and further re-
duces the probability of noticeable artifacts.

4 FOVEATED VIDEO EXTRAPOLATION

The foveated video extrapolation framework is illus-
trated in Fig. 9. The output video Iout has spatially vary-
ing resolution. In Ωraw, Iout(Ωraw) ≡ Iraw(Ωraw), main-
taining the original spatial sharpness. However, there is
a continuous drop in human visual resolution away from
Ωraw. Aiming to exploit this, there is little benefit in per-
forming the tedious extrapolation in the original scale.
It is much more efficient to perform the extrapolation in
a foveated fashion. As the extrapolation propagates out-
wards, the extrapolated content can be coarser. Hence,
extrapolation can operate on a coarser scale version of
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Fig. 10. Given an input video Iraw, the intermediate steps
of the extrapolation process result in I0, ..., I8 . The final
result is Iout. Here, this is demonstrated in one frame
from a movie that was extrapolated from 342 × 234 to
1280× 1024, with f = 1/

√
2.

the previous step’s result. Coarsening is done effectively
in a few discrete steps. The results of these steps are
combined to construct Iout, as shown in Fig. 10. In the
following, we describe the principles in detail.

4.1 Extrapolation Resolution Map
In Section 2.1, a method for creating an image
with spatially-varying resolution was described, based
on [12]. Steps defined in [12] (and Section 2.1) are con-
veniently applied to our task. Specifically, the pyramid
representation used in [12] is useful for us. Thus, our
method has some analogous steps.

First, the relative resolution associated with each pixel
x in the output domain Ωextra is computed. In our case,
we require that the raw high resolution be maintained
across the entire Ωraw. Thus, the center of gaze can be on
any location within Ωraw (not a particular point in the
raw domain). The off-axis angle α (see Section 2.1) to a
point x is thus defined relative to the boundary of Ωraw.

Consider Fig. 11. Suppose the whole screen has a
uniform display resolution of κ pixels per unit-length
(e.g., dots-per-inch). Then, the pixel in Ωraw that is closest
to x is

x̂raw = arg min
xraw∈Ωraw

‖x− xraw‖2 . (11)

The distance between x and Ωraw is d(x) = ‖x− x̂raw‖2
in units of pixels. Note that Eq. (11) automatically yields
d(x) = 0 for all x ∈ Ωraw. Setting the origin of the
coordinate system at the center of the screen, the distance
of x̂raw from the origin is w = ‖x̂raw‖2.

Let the viewer be situated opposite this center, at
distance z. Then, relative to Ωraw, the off-axis angle5 is

α(x) ≈ arctan{[w + d(x)]/(κz)} − arctan[w/(κz)] . (12)

5. This is an approximated expression, since x and xraw are gen-
erally not co-linear, with respect to the origin. The error in this
approximation does not have significant implications in our task.

The resulting α(x) is used by us in Eq. (1), to yield a
continuous valued extrapolation resolution map Rmap(x).
Fig. 12 illustrates such a map.

Similarly to Eq. (2) in Section 2.1, quantization levels
are set for Rmap(x). These levels define extrapolation
domains Ω0,Ω1, ..., Ω(Nscales−1), where

Ωσ = {x ∈ Ωextra : fσ+1 < Rmap(x) ≤ fσ} , (13)

as illustrated in Fig. 12.

4.2 Extrapolation in Spatial Domains of Scale
The algorithm consists of two main parts. First, the video
is extrapolated in the different domains, {Ωσ}Nscales−1

σ=0 .
Then, feathering is applied to the domains, for a smooth
transition between them. We now detail these parts.

The spatial domains {Ωσ}Nscales−1
σ=0 are filled-in consecu-

tively and outwards, starting from the inner domain Ω0.
Within each spatial domain, the operations are carried
out in the corresponding spatial scale σ. The initial input
is the raw video data Iraw over the domain Ωraw. It is
extrapolated into Ω0 at full resolution. The result is a
video sequence I0, which occupies the domain Ωraw∪Ω0,
at the finest scale. This extrapolation step is expressed as

I0(X) = X extra{Iraw(X)} . (14)

Up to this point, the method is similar to the known art
of image completion.

Filling in of the outer domains is more interesting.
For instance, the domain Ω1 is outside the gaze of a
viewer who looks at Ωraw. Hence, Ω1 can be filled in
with blocks having effectively a coarser spatial extent.
As shown later in Section 5, using coarser-scale blocks
yields benefits in terms of artifacts and speed. To operate
efficiently in a coarser scale, the video I0 is spatially de-
magnified, in analogy to the REDUCE operation which
was defined by Burt and Adelson [6] in the context of the
Gaussian pyramid. Denote the demagnification operator
as R. Its result in this case is

Ireduced
0 = R{I0} . (15)

This demagnification is done with a lateral scale factor
of f . Hence, the number of pixels in Ireduced

0 relative
to the number of pixels in I0 is reduced by f2. This is
illustrated in Fig. 9. The demagnified video Ireduced

0 still
resides in {Ωraw∪Ω0}, but now its coarser scale matches
the scale assigned to the next, outer domain, Ω1. Now,
Ω1 is filled-in, using the same extrapolation engine, but
now the input is not the high-resolution video I0, but the
coarser (lower resolution) Ireduced

0 , as illustrated in Fig. 9.
This way, Ω1 is filled in fast, with data corresponding to
coarser spatial features.

In general, the result of such a step is

Iσ+1 = X extra{Ireduced
σ } for σ ∈ [0, 1, ...(Nscales − 2)],

(16)
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Fig. 12. [left]: The log of the extrapolation resolution map
Rmap when extrapolating from 320 × 240 to 1280 × 1024,
for a 86 DPI screen and at distance of 0.5m. [Right]: The
corresponding domains Ω0, Ω1, ..., Ω(Nscales−1) defining the
extrapolation steps. Here f = 1/

√
2.

where

Ireduced
σ = R{Iσ} . (17)

Note that the operator X extra in Eq. (16) is exactly
the same as the one used in Eq. (14). It uses blocks
of size wx × wy × wt, whatever its input is. So, the
computational demands of matching a single block and
merging it do not increase with the scale σ. Similarly,
the operator R in Eq. (17) is exactly the same as the
one used in Eq. (15). It demagnifies its input by a factor
of f−1 in each spatial axis. Because of these properties,
the video Ireduced

σ always matches the scale assigned to
the consecutive outer domain Ωσ+1, ensuring a proper
transition for extrapolation in a coarser scale. Eqs. (16,17)

are iterated, until the entire Ωextra is filled.
The set of videos {Iσ}Nscales−1

σ=0 should be brought back
to a raw resolution representation, to enable their display
jointly with Iraw. Thus each of the videos undergoes
spatial magnification, using an expansion operator (see
for example [6]) Eσ, yielding

Gσ = Eσ{Iσ} . (18)

The operator Eσ magnifies its input spatially by a lateral
scale factor of f−σ . Hence, I0 ≡ G0, while the other
videos are magnified such that the size of their output
pixels corresponds to the raw pixel size.

Each video Gσ occupies a domain {Ωraw ∪ (
⋃σ

b=0 Ωb)}.
Each such domain now has a physical size on the display
screen, which is the same as the one that existed for
these domains before demagnification had taken place.
These videos should be fused. This is the second (and
rather minor) part of algorithm. Based on Eqs. (2,13), a
scale index σ̃(x) is defined per spatial location x. This
index corresponds to the domain Ωσ̃ in which x resides.
Thus, for each frame in the videos {Gσ}Nscales−1

σ=0 , Eq. (3)
is applied. Specifically, the feathering weight we used in
Eq. (3) is

W (x) =
f σ̃(x) −Rmap(x)
f σ̃(x) − f σ̃(x)+1

. (19)

It results in a video for which the spatial transition
between domains is seamless. Then, Iout appears as
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having gradual continuous coarsening.

Note that the above algorithm offers a general frame-
work. The extrapolation at each scale-step can be consid-
ered as a black box, and thus a wide range of completion
algorithms can serve as this “engine.” In our imple-
mentation we used the patch based method described
in Section 3. The next section analyzes the benefits of
the foveated approach, comparing it to an approach
that uses a patch-based full resolusion (single scale)
implementation across the whole extrapolated domain.

5 THEORETICAL PERFORMANCE ANALYSIS

This section presents a theoretical analysis of the benefits
of foveated extrapolation, in reduction of both artifacts
and processing time. We start with a short discussion on
the general problem of patch size selection in completion
algorithms (Section 5.1). Based on arguments discussed
there, we analyze the reduction in artifacts (Section 5.2).
Finally, section 5.3 analyzes the reduction in runtime.

5.1 Patch Size Discussion

Patch-based completion methods must decide which
patch size to use. It is easier to find matches for small
patches. However, accumulating a large number of small
patches into a single coherent image region is difficult
and prone to artifacts. On the other hand, it is more
difficult to find good matches for large ST blocks within
the raw data.

There are several ways to tackle this tradeoff. One way
is to adapt the patch size to the content. For instance,
in regions having predictable motion (e.g., stationary or
periodic), larger ST blocks can be used. For highly non-
stationary motion and background (e.g., a person walk-
ing in front of a painting), smaller blocks should be used.
Another way is to use a large database of video/images
to extract source patches from. Then, larger patches can
be used, since the probability of finding a matching block
increases thanks to the database size [16]. Large blocks
are also effectively used for periphery completion in

the foveated extrapolation algorithm. Contrary to full
resolution completion, it is easier to find matching blocks
in the foveated approach. The reason is that in foveated
extrapolation, the data is blurred, and hence less sensi-
tive to discrepancies stemming from small details.

5.2 Reduction of Artifacts
In this section we analytically show that the probability
for distracting artifacts decreases significantly using the
foveated extrapolation approach. A precise analysis is
difficult. In order to obtain a general impression of
the approach’s benefits, we make assumptions that are
motivated by arguments raised in Section 5.1. Our anal-
ysis is based on the assumption that the probability for
an artifact-free extrapolation depends on the number of
blocks synthesized in the extrapolation process. A patch
itself does not contain an artifact, as it stems from real
data. An artifact is only caused by selecting and merging
of blocks.

Let p be the probability that a new synthesized block
is successfully added, i.e., it does not introduce a seed
of a highly distracting artifact. Then, the probability for
a ‘successful extrapolation’ is

P (success) = pNblocks
, (20)

where Nblocks is the number of ST blocks that form
the extrapolation. Each new block that is searched and
merged carries with it the potential of creating a seed for
an artifact, which then propagates to a larger artifact as
the extrapolation evolves. Hence, it is beneficial to use
an algorithm having a smaller Nblocks.

The known domain Ωraw is extrapolated by |Ωextra|
ST pixels. If the entire extrapolation is performed in full
spatial resolution, then6

Nblocks
fullres ≈ 2|Ωextra|/(wxwywt) . (21)

Thus, the probability for an artifact-free extrapolation is

6. The factor 2 in Eq. 21 is since in each iteration of the core algorithm
(Section 2.2), data for approximately half the block is added.
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Pfullres(success) ≈ p2|Ωextra|/(wxwywt) . (22)

If a foveated extrapolation approach is taken, the
number of blocks is greatly reduced. In the following,
we assess Nblocks

foveated. Refer to Fig. 11. The domain to
be completed, Ωextra, is divided into a few segments
Ω0,Ω1, ..., Ω(Nscales−1), as described in Section 4.1. At full
resolution, the segment Ωσ requires ≈ 2|Ωσ|/(wxwywt)
blocks to be completed. However, in the foveated ap-
proach, the segment is effectively demagnified prior to
being filled-in (see Eqs. 16,17). Demagnification is by
a lateral factor of f−σ along each spatial axis, when
accounting for all the recursive reductions. Thus, only

Nblocks
σ ≈ 2|Ωσ|f2σ/(wxwywt) (23)

blocks are needed by the foveated approach, per domain.
Over the entire extrapolation domain,

Nblocks
foveated ≈ 2(wxwywt)−1

Nscales−1∑
σ=0

|Ωσ|f2σ . (24)

To calculate Eq. (24), we now derive Nscales and |Ωσ|.
For simplicity, let the video be spatially square, i.e., Ωraw

is of spatial size 2w × 2w, over a viewing angle

β = arctan(w/κz) , (25)

as shown in Fig. 11. The spatial domain is extrapolated
by l pixels in each side. The angles α0, α1, ..., αNscales−1

correspond to the boundaries between the scale do-
mains, i.e., based on Eq. (1),

ασ = R−1(fσ+1) =
ε

fσ+1
− ε . (26)

The domain Ωσ is of spatial width (in pixels)

lσ = κz[tan(ασ + β)− tan(ασ−1 + β)] . (27)

Then, the number of ST pixels in Ωσ is

|Ωσ| = |
σ⋃

b=0

Ωb| − |
σ−1⋃

b=0

Ωb|

= 4Nframes

[
(w +

σ∑

b=0

lb)2 − (w +
σ−1∑

b=0

lb)2
]

(28)

where Nframes is the number of video frames. To find
Nscales we solve l = κz tan(αNscales−1 + β)− w for Nscales,
using Eq. (26):

Nscales =
⌈
logf

{
R

[
arctan

(
l + w

κz

)
− β

]}⌉
. (29)

Now, Eqs. (1,24,27,28), and (29) yield the value

Pfoveated(success) ≈ pNblocks
foveated . (30)

The left graph in Fig. 13 plots Pfullres(success) and
Pfoveated(success) as a function of the extension width, l.

The probability for an artifact-free output is significantly
higher when uing the foveated approach.

5.3 Runtime Reduction
Here we analyze the reduction in the runtime complex-
ity. If the extrapolation is performed in full resolution, at
each iteration a block of size wxwywt is completed. There
are 2|Ωextra|/wxwywt full resolution blocks in Ωextra to
complete. Before each block completion, a similar block
is searched for in Ωraw. Each comparison requires ≈
wxwywt/2 operations. Therefore, the runtime is

T fullres = O(|Ωraw| · |Ωextra|) . (31)

In the foveated approach, each extrapolation spatial
domain Ωσ is processed in a different effective scale.
When completing Ωσ, each block-completion covers a ST
region of size wxwywt/(2f2σ). Therefore, Nblocks

σ (Eq. 23)
iterations fill Ωσ . In each iteration, a good fit to a block of
size wxwywt is searched for in a demagnified version of
Ωraw of size |Ωraw|f2σ ST pixels. Again, each comparison
requires wxwywt/2 operations. The computation cost for
completing Ωσ is therefore

T foveated
σ = O(|Ωraw||Ωσ|f4σ) . (32)

Hence, in a domain Ωσ, the operations are of factor
f−4σ less than full resolution extrapolation in the same
domain. The right graph of Fig. 13 compares between
T fullres (Eq. 31) and

T foveated =
Nscales−1∑

σ=0

T foveated
σ , (33)

demonstrating the significant reduction in processing
time offered by the foveated approach.

6 EXPERIMENTAL RESULTS

The theoretical results above are indeed evident in
practice. The runtime and the chance for artifacts are
reduced significantly with foveated extrapolation, com-
pared to the full resolution processes. See Fig. 14 for
resulting video frames and for the listed processing
time of the fullres-core completion algorithm (described
in Section 2.2), the fullres-PAD algorithm (described in
Section 3), and the foveated algorithm (described in
Section 4). See the supplementary material (or [1]) for
videos. Fig. 15 shows additional results for still pho-
tographs. We used the same (no tuning) parameters in
all the video experiments: wx = wy = 11, wt = 5,
Ncandidate = 100, Ntop = 10, δ0 = 50, and rmax = 20.
For still images Ncandidate = 20 and of course wt = 1.
Given that the screen resolution is set to the size of the
output, it is assumed that the viewer sits at a distance
equal to about half an extrapolated frame width.

We suggest that video results be viewed on the largest
available screen, from approximately this assumed dis-
tance, fixating inside the red frame (the raw video). If
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The video corresponding to the lower row demonstrates a failure case, where the periphery exhibits a distracting wavy
motion. In this case, a completion engine that incorporates camera motion analysis may help. The raw video used in
the 2nd row is from [42].

you fixate on the coarsened peripheral video, peripheral
blur is apparent and soft artifacts are sometimes found.
However, when watching the running video at close
range and fixating on the region of the original data, a
highly enhanced visual experience is obtained (relative
to raw display) without soft artifacts and peripheral blur
being noticed.

The videos and images clearly show that distract-
ing artifacts are significantly less apparent using the
foveated approach, particularly compared to full resolu-
tion results of the core algorithm. Moreover, processing
time is dramatically reduced (by a factor of 30-50) using
the foveated approach.

The algorithms were applied to different types of
scenes. Specifically, they were applied to images from
the LabelMe database used in [27], as demonstrated
in Fig. 15. This database includes outdoor images di-
vided into eight categories. Some of the categories (e.g.,
‘open country’, ‘coast’, and ‘mountains’) include natural
scenery. Other categories (e.g., ‘inside city’ and ’tall

buildings’) include urban scenes. Both the fullres-core
algorithm and the foveated algorithm suggest better
results for natural scenery and less acceptable results for
urban scenes. Nevertheless, the foveated results almost
always appear more realistic and include fewer artifacts
than results of the fullres-core algorithm. See Section 7.1
for an empirical study of the density of artifacts in these
images.

The video corresponding to the lower row in Fig. 14
demonstrates a failure case. There, the periphery exhibits
a distracting wave-like motion in all three methods. In
this case using a completion engine that incorporate
motion analysis may help. See Section 8 for additional
discussion on failure cases and possible improvements.

7 USER STUDIES OF VISUAL QUALITY

While runtime is objectively measured, quality is sub-
jective and hard to quantify. The following user studies
consider only the quality and discard the processing-time
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Fig. 16. Image extrapolation quality. Fifty images were
extrapolated from 256 × 256 to 1280 × 768. The his-
tograms above summarize the relative area of extrapola-
tion marked subjectively as artifacts. [Left]: The histogram
corresponding to the results of the fullres-core algorithm.
[Right]: The histogram corresponding to the results of the
foveated algorithm.

aspect. We performed two subjective examinations. The
first dealt with density of artifacts in extrapolated images
and was performed by two people. The second and more
intensive study dealt with overall reaction to different
video display options. The latter study was based on 25
people. In both studies, the subjects were unfamiliar with
the algorithms being tested or had no idea which results
correspond to the algorithms suggested in this paper.

7.1 Density of Artifacts in Extrapolated Images
This experiment used 50 images from the LabelMe
dataset mentioned above, covering all 8 scene categories.
Each of those images was extrapolated both by the
fullres-core algorithm and the foveated algorithm. Two
subjects, aged 10 and 37, were asked to mark regions in
the extrapolated images that they found to be unnatural
and that distracted their attention from the raw frame.
Each subject marked 25 pairs, in random order. Fig. 16
shows histograms summarizing the relative area marked
as artifacts, for each of the two algorithms. According
to this marking, the foveated algorithm introduced sig-
nificantly fewer artifacts compared to the fullres-core
algorithm.

7.2 A User Study for Video Display Options
Twenty-five people aged 6 to 67 with normal or
corrected-to-normal vision were asked to view the video
clips corresponding to the nine results described in
Fig.14. Each participant sat in front of a 26” display, at a
distance of ≈ 13”. The participants were asked to rank
each set of results (corresponding to a row in Fig.14)
from ‘best’ to ‘worst.’ The results inside such a set and
between the sets were randomly permuted so that each
participant saw the results in a different order.

Overall there were 75 experiments (3 input scenes ×
25 participants). Fig. 17a summarizes them. The foveated
results were ranked as ‘best’ in far more experiments
than the fullres-core results, and slightly more than the
fullres-PAD results. The fullres-core results were ranked
as ‘worst’ in the highest number of experiments.

19%
39% 44%16%

56%
27%

65%

5%
29%

worst
intermediate
best

29%
61% 55%

71%
39% 45%

without
with

(a) (b)

Fig. 17. A user study for video display options. (a) Percent
of each rating (‘best’, ‘intermediate’, ‘worst’) for each
method. (b) For each result, the participants had to state
whether they preferred viewing the video clip either ‘with’
extrapolation, or using a standard black periphery (‘with-
out’).

Data analysis shows that the ratings given by any
participant were self-consistent: one method was pre-
ferred by a participant, for all scenes.7 However, per
specific video scene, a similar pattern to that in Fig. 17a
is observed. This consistency implies that preferences are
viewer-dependent and not video dependent.

The participants who preferred the fullres-core results
reported that they tolerated the artifacts, as they resem-
ble interrupts they are familiar with. We hypothesize
that they refer to artifacts commonly caused by poor
communication or brute compression.

Afterwards, the participants were asked to state for
each video scene, whether they preferred watching it
with or without the additional extrapolation, as plot-
ted in Fig. 17b. Here too, our approach demonstrates
significant superiority (Student’s t-test, p-value< 0.01).
In 71% of the experiments, the participants preferred a
black background rather than watching the results of
the fullres-core extrapolation. The trend was reversed
by our algorithms (fullres-PAD and foveated). Then, the
extrapolation was preferred over a black background in
≈ 60% of the experiments. These preferences also tended
to be consistent per user, across scenes.

Consequently, such extrapolation can be an optional
feature of a display instrument or application. This
display feature can be turned on/off by the user. This
user-study implies that the number of viewers who may
choose to turn this feature on, increases notably, thanks
to the algorithms suggested in this paper.

8 DISCUSSION

8.1 Potential Display Designs
The sections above indicate that displaying very wide,
yet blurred video extensions can be beneficial for a
significant percentage of viewers, while facilitating

7. This preference was expressed without the participants being
aware of this consistency (not knowing which choice corresponds to
any method).



14

faster processing. One question which now arises is,
which display hardware might be needed to show such
extrapolated videos efficiently? A wide array of possible
configurations can deliver the required display. Here,
we describe three options, in the context of applications.

Standard displays. Some applications use standard
display hardware without exploiting the high definition
of the screen. Examples for such applications are
viewing of Internet streaming video and viewing of
short amateurish videos, taken e.g., by digital cameras
integrated in cellular phones. Such videos are usually
of much lower effective resolution than the screen.
Thus, using a video player window of a size that
corresponds to the video leaves much of the screen
area unused, filled with unrelated icons, etc. This area
could be better used for extrapolating the scene. Rather
than cropping or stretching videos, the native video
is shown, while the complementary screen regions are
used for extrapolation.

Distorted projection displays. We believe that creating
displays having large, yet blurred peripheries should
be easier using a projector. Consider projection through
wide-angle optics, such as a fisheye lens or a curved
mirror, as used in omnidirectional cameras [44]. Such
optical systems distort the images, particularly at the
periphery: the magnification at the center is not the same
as the peripheral magnification. Moreover, the distortion
is known. Thus it can be compensated for and actually
exploited using the digital algorithm that creates the
peripheral content.

The implementation can thus be based on tailored
distortion optics. It may actually ease the digital
implementation: the need for digital magnification
expressed in Eq. (18) is alleviated, since this fixed
spatially-varying magnification is done optically using
the projection optics. Thanks to the optical magnification,
the projector LCD or DLP chip need not be significantly
larger than the chip used for the raw FOV: the peripheral
LCD pixels are converted to larger projected areas, as
illustrated in Fig. 18. Furthermore, optical aberrations
tend to increase with off-axis angles. Aberrations create
image blur. Thus, optical engineers typically take pains
to counter the tendency of peripheral blur. However,
for foveated extrapolation, the natural tendency of
projected peripheral blur can be a blessing, rather than
a curse. Such hardware can be used for projecting on
flat screens or on immersive hemispherical displays.

Microdisplay goggles. Foveated extrapolation should
fit nicely into microdisplay goggles, which write the
image directly on the viewer’s retina [33], using laser
raster scan. There, the sampling density and spot size
of the scanning laser correspond to the high-resolution
of the fovea. To display the extrapolation, the peripheral
regions of the retina should be illuminated as well. This
peripheral illumination can have coarser resolution. This
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Fig. 18. A scheme of a distorted projection display. Given
an extrapolated video, the green rays demonstrate the
projection of the raw FOV, while the red rays demonstrate
the projection of the peripheral extrapolation results. Due
to the wide-angle distorting lens, the peripheral LCD
region is much more strongly magnified optically than the
central FOV (replacing the digital magnification in Eq.18).
The projector LCD or DLP chip need not be significantly
larger than the chip used for the raw FOV.

can be achieved, for instance by distorting the scanning
beam using proper optics, as in the case of projectors.

8.2 General Discussion

Video extrapolation may create an enhanced experi-
ence when viewing both HD movies and low resolu-
tion video, using standard displays, microdisplays, or
tailored display designs such as distorted projectors.
To the best of our knowledge, this paper reports the
first work addressing the ambitious task of very wide
extrapolation of video, and the first to provide a feasi-
ble solution tailored to this task. The foveated method
allows both significant runtime reduction (one or two
orders of magnitude) and significantly fewer potential
seeds for distracting artifacts. These two advantages
are demonstrated both theoretically and in practice. We
stress that the foveated algorithm introduced in Section 4
is a general framework that uses a completion “engine”
as a block that can be replaced with a wide range of
video completion algorithms.

There exist many possibilities for further improvement
of results and processing time. Although the results of
the user study described in section 7 are encouraging,
we believe the percent of “pro-extrapolation” viewers is
likely to increase significantly with future improvements.
One shortcoming of the current implementation is that
temporal inconsistencies sometimes result (see the video
corresponding to the bottom row in Fig. 14). To improve
the method, it is worth considering incorporating se-
mantic analysis (e.g., tracking, segmentation, mosaicing),
as suggested in some recent video completion methods
(e.g., [20], [21], [22], [28]), or to incorporate camera and



15

object motion estimation methods (e.g., [4], [17], [29],
[39], [45]) in the current engine. The Matlab runtime,
although significantly reduced, is still a burden (In the
current Matlab implementation, running on a Core 2
Duo E8400, 3.00 GHz Intel CPU with 4.00 GB RAM, wide
extrapolations such as those described in the experi-
ments section may take up to several minutes per frame).
Incorporating motion analysis methods will surely lead
to more efficient algorithms. In addition, we consider a
parallel computing GPGPU solution.

The current work assumes that the viewer fixates
always on the raw data. However, it is worth using
computerized visual attention models (e.g., [3], [19],
[30]), which will estimate a few possible eye fixation
locations. Then, the resolution map guiding the foveated
extrapolation process can be adaptive. Consider cases
where the eyes are likely to leave the raw data (as
in the case of the vehicle driving out of the frame).
The attention-guided extrapolation may provide sharp
results in that area, although it is in the peripheral part
of the screen.

Following the majority of completion algorithms, the
method suggested here uses only the input image/video
as the completion source. As a result, it may fail when
the appropriate data for completing the missing parts is
not available in this source. For example, extrapolating
a close-up on part of a face cannot introduce the other
missing parts using our current formulation. Following
the work of [16], we believe that this may be solved using
a database of movies, from which source blocks can be
selected. The foveated extrapolation approach makes this
easier, as only coarse, iconic versions of the videos may
suffice to complete the distant periphery.
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