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Propagation-invariant wave fields
with finite energy

Rafael Piestun

E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4085

Yoav Y. Schechner and Joseph Shamir

Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

Received May 6, 1999; revised manuscript received October 5, 1999; accepted October 8, 1999

Propagation invariance is extended in the paraxial regime, leading to a generalized self-imaging effect. These
wave fields are characterized by a finite number of transverse self-images that appear, in general, at different
orientations and scales. They possess finite energy and thus can be accurately generated. Necessary and
sufficient conditions are derived, and they are appropriately represented in the Gauss–Laguerre modal plane.
Relations with the following phenomena are investigated: classical self-imaging, rotating beams, eigen-
Fourier functions, and the recently introduced generalized propagation-invariant wave fields. In the paraxial
regime they are all included within the generalized self-imaging effect that is presented. In this context we
show an important relation between paraxial Bessel beams and Gauss–Laguerre beams. © 2000 Optical So-
ciety of America [S0740-3232(00)00502-0]
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1. INTRODUCTION
The understanding and control of waves in free-space
propagation is important for many practical situations re-
lated, for example, to delivery of information, beam shap-
ing, resonators, or interferometry. Recent research has
uncovered new invariance properties of scalar and vector
waves that open new possibilities in applications related
to this field.1–18

A notable manifestation of propagation invariance is
the self imaging effect, which is characterized by a repeti-
tion of the transverse intensity distribution of the wave
along the direction of propagation. General conditions
for self-imaging, valid for coherent wave fields (WF’s) that
satisfy the Helmholtz equation, have been presented in
Ref. 19. The corresponding waves present a longitudi-
nally periodic complex amplitude, have infinite trans-
verse extension, and carry infinite energy.20 Approxi-
mate finite aperture implementations of quasi-periodic
objects have been widely studied.2,21–24 The concept of
self-imaging was extended recently to include polychro-
matic light,4 partial coherence,7 vector fields,13 finite-
energy waves,14 and rotated self-images.16

In this paper we present paraxial waves that exhibit a
generalized self-imaging (GSI), in which the repeated im-
ages may be scaled or rotated relative to one another.1

These waves possess finite energy and thus are an exten-
sion of those presented in Ref. 14. In addition, they gen-
eralize, within the paraxial regime, the concept of rotated
self-imaging presented in Ref. 16.

2. STATEMENT OF THE PROBLEM
Let us consider a monochromatic scalar WF in free space:

U ~r, t ! 5 U~r!exp~2ivt !, (1)
0740-3232/2000/020294-10$15.00 ©
where r [ (r, f, z) are the cylindrical coordinates of a
point in space, t denotes the time, and v is the angular
temporal frequency. U (r, f, z, t) satisfies the appropri-
ate homogeneous wave equation. The GSI problem that
we consider is defined as follows: Determine the field in
the plane z 5 z1 , f (r, f) 5 U(r, f, z1), such that at a
different location z 5 z2 the field intensity distribution is
reproduced except for possible scaling and rotation trans-
formations.

Apparently, the problem could be formulated as the
search for solutions of an eigenfunction equation of the
form

Of 5 mf, (2)

where the complex number m is the eigenvalue and the
operator O is defined according to the specific physical ap-
proximations. It is composed of a diffraction propagator
multiplied by rotation, scaling, and phase operators:

O 5 PS @s# R@g#D @Dz#, (3)

where D is the appropriate diffraction operator, Dz [ z2
2 z1 , P is a phase operator P 5 exp@iF(r, f)#, S is a
scaling operator S @s# g(r, f) 5 g(sr, f), and R is a ro-
tation operator R @g# g(r, f) 5 g(r, f 1 g). To gain
more generality, we do not constrain a priori the phase
function P, since only the intensity is of concern here.
Therefore we introduce the following nonlinear equation:

uO f u2 5 umf u2. (4)

This is no longer a linear eigenfunction equation. In the
following sections we solve it by using expansions of the
field complex amplitude in the modes of propagation.

In the context of this paper we deal with paraxial
waves, i.e., with spatial frequencies (j) vanishing for j
2000 Optical Society of America
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. j0 , where j0 ! 1/l and l is the wavelength. There-
fore the operator D @Dz# can be expressed as follows:

D @Dz# 5 F 2 1 expH ikF1 2
~lj!2

2
GDzJ F, (5)

where F is the Fourier transform (FT) operator, j is the
polar spatial frequency, and k 5 2p/l is the wave num-
ber. This operator is equivalent to the Fresnel diffrac-
tion operator.25,26 The wave functions whose intensity
distribution is conserved (up to scaling) upon propagation
D are the modal solutions of the paraxial wave equation,
e.g., the Gauss–Hermite (GH) and Gauss–Laguerre (GL)
modes.26,27

3. GAUSS–LAGUERRE MODES
Let us now consider propagating scalar waves repre-
sented by the function

U ~r, t ! 5 u~r!exp@i~kz 2 vt !#. (6)

In the paraxial regime the reduced wave field, u(r), can
be expanded in terms of GL modes. We represent the GL
modes as follows12,28:

unm~r! 5 G~ r̂, ẑ !Rnm~ r̂ !Fm~ f!Zn~ ẑ !, (7)

Fig. 1. Examples of GL modes: (a) intensity, (b) phase.
where r̂ 5 r/w( ẑ) is the radial coordinate scaled by the
Gaussian spot size, given by w( ẑ) 5 w0@1 1 ẑ2#1/2. ẑ
[ z/z0 is the longitudinal coordinate scaled by the Ray-
leigh length, z0 5 pw0

2/l. The functions that compose
unm(r) are

G~ r̂, ẑ ! 5
w0

w~ ẑ !
exp~2r̂2!exp~i r̂2ẑ !exp@2ic ~ ẑ !#, (8)

Rnm~ r̂ ! 5 ~A2 r̂ ! umuL ~n2umu!/2
umu ~2 r̂2!, (9)

Fm~ f! 5 exp~imf!, (10)

Zn~ ẑ ! 5 exp@2inc ~ ẑ !#, (11)

where c ( ẑ) 5 arctan( ẑ) is the Gouy phase. The function
G( r̂, ẑ) is common to all modes and includes the radial
Gaussian envelope of the beam, a quadratic phase, and
the Gouy phase. L (n2umu)/2

umu are the generalized Laguerre
polynomials, where the integers n, m satisfy

n 5 umu, umu 1 2, umu 1 4, umu 1 6 ,... .
(12)

These modes form an orthogonal basis. Figure 1
shows the intensities and phase profiles of various GL
modes. As n grows, the effective width of the beams
grows. m determines the order of the phase singularity
at the center of the beam,29,30 i.e., the number of 2p phase
jumps about the central point on a transverse plane. The
number of radial zeros is fixed by the number of zeros of
the Laguerre polynomial (n2umu)/2 in addition to the cen-
tral vortex that appears when m Þ 0. Hence the total
number of bright lobes (including the central one, if appli-
cable) is 1 1 (n2umu)/2.

We define the effective width of a GL beam as the stan-
dard deviation of the intensity distribution28:

^~Dx !2& 5

EE
2`

`

x2uu* dxdy

EE
2`

`

uu* dxdy

. (13)

The effective half-angular beam spread for a GL beam
(ubeam) can be calculated from this definition, leading to

tan~ubeam! 5 An 1 1~l/pw0!. (14)

Note that the angular spread increases monotonically
with n and thus the accuracy of the paraxial approxima-
tion becomes poorer as n grows.

4. GAUSS–LAGUERRE MODAL PLANE
Every paraxial WF can be expressed as a weighted com-
bination of the GL basis functions, in a way similar to the
decomposition of a function into harmonics. In optics it
is useful to decompose a wave front in the spectrum of
plane waves that is basically a Fourier transformation of
its complex amplitude. The spectrum of plane waves is
used to perform calculations of the propagated wave front
or to analyze its properties, as in the case of the classical
self-imaging effect.

When performing a modal decomposition of the wave
front, we propose to present the information in a modal
plane or modal domain. The result is a discrete number
of coefficients associated with a discrete set of points in
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this modal plane (Fig. 2). This information is useful for
performing wave-front propagation calculations by simply
superposing the propagated GL modes [according to Eq.
(7)]. In addition, we shall see below that this represen-
tation is also useful in visualizing important properties of
the WF. Therefore the GL representation is a natural
and convenient representation of wave fronts that possess
finite effective width. In such a representation, however,
the beam waist and its location are parameters that must
be optimized for an efficient expansion with a small num-
ber of nonzero coefficients. Although some studies have
been performed, the optimization of this process remains
an unsolved problem.26

5. CONDITION FOR GENERALIZED SELF-
IMAGING
In this section we investigate superpositions of GL modes
that present a GSI effect, i.e., WF’s that are solutions of
an equation of the type of Eq. (4). We obtain powerful
necessary and sufficient conditions that are useful for the
analysis and synthesis of WF’s and show that interesting
phenomena can be predicted.

Let us consider a superposition of GL modes:

u~r! 5 (
j51

Q

Ajunj ,mj
~r!, (15)

where Aj is the complex amplitude of mode j. Without
loss of generality we can assume that nj < nj11 . Thus the
intensity distribution is given by

I~r! 5 uG~ r̂ !u2H(
j51

Q

uAju2Rnj , mj

2 ~ r̂ !

1 (
j51

Q

(
p5j11

Q

2uAjuuApuRnj ,mj
~ r̂ !Rnp ,mp

~ r̂ !

3 cos@Dmjpf 2 Dnjpc ~ ẑ !2u jp#J , (16)

where Dmjp [ mj 2 mp , Dnjp [ nj 2 np , and u jp
[ @arg(Aj) 2 arg(Ap)#.

We consider a GSI scaled as the elementary Gaussian
spot size; i.e., the magnification between self-images is

Fig. 2. GL modal domain and generalized self-imaging: Each
mode that composes the wave is represented by a point within a
grid. The support of generalized self-imaging waves lies upon
uniformly spaced parallel lines (see text).
s 5
w~ ẑ2!

w~ ẑ1!
5 S 1 1 ẑ2

2

1 1 ẑ1
2D 1/2

. (17)

Condition (4) is thus

uu~r, f, z1!u2 5 US Fw~ ẑ2!

w~ ẑ1!
GR@g#D @Dz#u~r, f, z1!U2

,

(18)

leading to

I~ r̂, f, z1! 5 I~ r̂, f 1 g, z2! (19)

for all r̂, f.
The first sum on the right-hand side of Eq. (16) is self-

imaged (except for scale) because it does not depend on
ẑ. The second sum is composed of terms that represent
waves rotating linearly with c ( ẑ).12 Therefore Eq. (19)
will be fulfilled if each of the corresponding terms is equal
at z1 and z2 :

cos@Dmjpf 2 Dnjpc ~ ẑ1! 2 u jp#

5 cos@Dmjp~ f 1 g 1 2pN ! 2 Dnjpc ~ ẑ2!2u jp#. (20)

The functions that multiply the cosine functions depend
on r̂ through Rnj ,mj

( r̂) and Rnp ,mp
( r̂). Consequently,

the equality of each term is a necessary condition to sat-
isfy Eq. (19). Thus Eq. (20) is also a necessary as well as
a sufficient condition for Eq. (19) to be satisfied.

Equation (20) is satisfied for all f if and only if

Dmjpf 2 Dnjpc ~ ẑ1! 2 u jp

5 Dmjp~ f 1 g 1 2pN ! 2 Dnjpc ~ ẑ2! 2 u jp 1 2pN8
(21)

for all f, j, p, leading to

DnjpDc 5 Dmjpg 1 2pNjp (22)

for all j, p, where Njp is any integer and

Dc 5 c ~ ẑ2! 2 c ~ ẑ1!. (23)

Equation (22) is satisfied if and only if the indices nj , mj
of each mode j that compose the wave satisfy

nj 5 n1 1
g ~mj 2 m1! 1 2pNj

Dc
(24)

for all j, where n1 , m1 , and Nj are integers. n1 , m1 are
arbitrary as long as they satisfy Eq. (12).

It is easy to show that, when Nj Þ 0 for some j,
Dc/(2p) must be a rational number. However, this is
not a significant limitation, as we show in Section 7. In
addition, in these cases the fraction of a complete rotation
(g/2p) is also a rational number.

Although we required GSI only between two planes,
Eq. (20) shows that the scaled rotated transverse inten-
sity distribution is periodic in c ( ẑ) along the propagation
axis. In addition, since c ( ẑ) is bounded, the number of
periods is finite. Moreover, in some cases there might
not even be a complete period. This is a remarkable ex-
tension of the classical self-imaging effect, for which the
WF’s are periodic along the propagation direction (z).

Condition (24) can be better understood when viewed in
the modal GL plane (see Fig. 2). It states that in an ap-
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propriate GL basis, GSI WF’s present modes that lie on a
set of parallel lines at ordinate distances 2p/Dc and are
inclined at an angle arctan(g/Dc) with respect to the m
axis. Note that there is a reciprocal relation between the
ordinate distance between the lines in the GL plane [Eq.
(22)] and the distance between the self-images in the
axial direction. Note also that the angle of rotation is
proportional to the slope of the lines.

6. PHASE RELATION BETWEEN SELF-
IMAGES
We have shown the existence of waves that present the
same transverse intensity distribution (with different
scales and orientations) at various locations along the
propagation. In the following we investigate the phase
relation between these intensity self-images. The ampli-
tude of the wave given in Eq. (15) at ( r̂, f, z1) is

u~ r̂, f, ẑ1! 5
w0

w~ ẑ1!
exp~2r̂2!exp@2i~1 1 n1!c ~ ẑ1!#

3 exp~i r̂2ẑ1!exp~im1f!(
j51

Q

AjRj~ r̂ !

3 exp$i@~mj 2 m1!f 2 ~nj 2 n1!c ~ ẑ1!#%,

(25)

and at ( r̂, f 1 g, z2) it is

u~ r̂, f 1 g, z2! 5
w0

w~ ẑ2!
exp~2r̂2!

3 exp@2i~1 1 n1!c ~ ẑ2!#

3 exp~i r̂2ẑ2!exp@im1~ f 1 g!#

3 (
j51

Q

AjRj~ r̂ !exp$i@~mj 2 m1!

3 ~ f 1 g! 2 ~nj 2 n1!c ~ ẑ2!#%.

(26)

Because of the orthogonality of the modes, the sums that
appear in Eqs. (25) and (26) are equal if and only if each of
the corresponding terms is equal in the planes at ẑ1 and
ẑ2 . This leads directly to condition (24). Alternatively,
we can substitute Eq. (24) and get an identity between
the sums that appear in Eqs. (25) and (26).

Therefore the two-dimensional scaled phase distribu-
tions are related by

arg@u~ r̂, f 1 g, ẑ2!# 5 arg@u~ r̂, f, ẑ1!# 1 m1g

2 ~1 1 n1!Dc 1 ~ ẑ2 2 ẑ1!r̂2.

(27)

Thus the phase map of the wave (scaled and rotated) is
self-reproduced with the intensity distribution, except for
the quadratic-radial term ( ẑ2 2 ẑ1) r̂2 and a constant
@m1g 2 (1 1 n1)Dc#.
7. GENERAL CHARACTER OF THE
GENERALIZED SELF-IMAGING CONDITION
The condition of Eq. (24) is general in the sense that it ap-
plies to every paraxial wave that exhibits GSI with any
magnification and between any two planes. To prove
this, we must find at least one suitable GL basis in which
these conditions can be applied, i.e., a location for the fun-
damental Gaussian beam waist and its width. Let us
assume that the distance between the planes is Dz [ z2
2 z1 and that the magnification is s.

If s 5 1, then, from Eq. (17), z1 5 2Dz/2, and z0 can be
arbitrarily chosen. Otherwise, if s Þ 1, from Eq. (17) we
obtain

z0
2 1 z1

2 2
2Dz

s2 2 1
z1 2

Dz2

s2 2 1
5 0, (28)

that is, the equation of a circle in the (z1 , z0) plane. The
condition z0 > 0 leaves a circular arc as the solution to
this equation. This is the domain of Dc, which is a func-
tion of (z0 , z1). The next step is to prove that there is at
least one pair (z0 , z1) that leads Dc/(2p) to assume a ra-
tional number, a necessary condition that should be sat-
isfied according to Eq. (24). This is possible, in fact, since
Dc 5 Dc (z0 , z1) is continuous and nonconstant in this
domain. Thus it is always possible to choose a pair
(z0 , z1) to make Dc/(2p) a rational number, i.e., to sat-
isfy Eq. (24) and at the same time satisfy Eq. (17). It
should be noted, however, that there is still a great deal of
freedom in analyzing and synthesizing the self-imaging
objects. That is, once Dz and s are given, there is an in-
finite number of legitimate values of z0 and z1 for which
condition (24) is satisfied.

We define an appropriate basis as one that provides the
required magnification between the two planes under con-
sideration. Note that condition (24) can be applied only
after an appropriate basis is set, because Dc depends on
the choice of z0 and z1 ; this may be interpreted as a
weakness of this formulation.

8. RELATED PHENOMENA OF
PROPAGATION INVARIANCE
Various wave phenomena related to the GSI presented
here have been reported.2,3,11,12,14,16 Since some of these
WF’s are solutions of the full Helmholtz equation, they
can lead to either paraxial or nonparaxial waves. We
show below that, in the former case, the GSI waves in-
clude all the other phenomena as particular cases. Some
of these phenomena are included as limiting cases for
which the energy of the paraxial GSI waves tend to infin-
ity. In what follows, we characterize all these phenom-
ena and their interrelations, but first we need to prove an
important relation between paraxial Bessel modes and
GL beams.

A. Relation between Gauss–Laguerre and Paraxial
Bessel Beams
We show here that under given conditions a GL mode
tends to a paraxial Bessel mode. We choose a limit at
which the effective width and the number of lobes of the
GL mode tend to infinity while still being within the
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paraxial regime. An important by-product of this limit-
ing process is that it shows us the way to approximate a
superposition of (infinite energy) Bessel beams by a su-
perposition of beams with finite energy; i.e., each Bessel
beam is approximated, within an arbitrary large central
region, by a corresponding GL beam with large enough ef-
fective width.

We perform the limiting process by taking (see Appen-
dix A for further explanation)

z/z0 → 0, r/w0 → 0, n → `,

n 2 umu ' n, lAn/w0 < C2 5 const., (29)

and then a GL mode unm [Eq. (7)] is transformed as fol-
lows (see Appendix A):

unm
limit~r! 5 c~m !J umuS 2Anr

w0
D exp~imf!expS 2i

z

z0

n D ,

(30)

where c(m) is constant for a given mode and Jm denotes a
Bessel function of order m. Defining a [ 2An/w0 , we
obtain

unm
limit~r!exp@i~kz 2 vt !# 5 c~m !J umu~ar!exp~imf!

3 expF iS k 2
a2

2k
D zG

3 exp~2ivt !, (31)

which is a general Bessel beam3,5 in the paraxial approxi-
mation, i.e., with

b [ Ak2 2 a2 ' kS 1 2
a2

2k2D . (32)

B. Generalized Propagation-Invariant Wave Fields
The GPI fields presented in Ref. 16 satisfy a general con-
cept of propagation invariance in the sense that self-
images may present azimuthal changes. Although those
GPI fields are similar to the GSI waves introduced here,
they differ in various ways: (1) They are solutions of the
full Helmholtz equation, and thus they apply to both
paraxial and nonparaxial cases; (2) they do not present
scale changes; (3) self-images repeat indefinitely along
the propagation direction; and (4) they carry infinite en-
ergy. The last two properties stem from the fact that
GPI WF’s possess an infinite effective width.

It is then interesting to see when the GSI waves and
the GPI WF’s are equivalent. Obviously, this happens
when the GSI waves possess infinite effective width and
the GPI waves satisfy the paraxial condition. In other
words, infinite effective width GSI WF’s are paraxial GPI
WF’s and vice versa. In what follows, we show that in-
deed this is the case.

First we recall that the GPI WF’s are composed of a su-
perposition of Bessel modes with propagation constants b
that satisfy the relation16

b 5 bm,N 5 b0 2
mg 1 2pN

Dz
, 0 < b < k, (33)
where N and m are integers restricted by the above
bounds on b. b0 is real, g is the rotation between self-
images, and Dz is the axial distance.31 Note that Eq. (33)
is a necessary and sufficient condition.

We now consider a superposition of GL modes that sat-
isfy the conditions of Eq. (29) in addition to the condition
for GSI [Eq. (24)]. From relations (31) and (32) we obtain
b 5 k 2 n/z0 . Note also that under the limiting condi-
tions of relation (29), Dc ' Dz/z0 . Then, by substituting
n according to Eq. (24), we get32

b 5 S k 2
n1

z0

1
gm1

Dz
D 2

mg 1 2pN

Dz
. (34)

This is equivalent to Eq. (33) with b0 5 k 2 (n1 /z0)
1 (gm1 /Dz).

Note that b0 satisfies the condition 0 < b0 , k, while
the value b0 5 k corresponds to a plane wave for which
the limit in Eq. (31) does not apply. Nevertheless, it is
clear that the fundamental Gaussian beam satisfies

u00 →
r/w0 → 0

1, (35)

leading to a plane wave.
In summary, we have shown limiting conditions that

led from condition (24) to the solutions of Eq. (33).
Therefore Eq. (24) contains the solutions of the GPI WF’s
in the paraxial case. Note that the nonparaxial GPI
WF’s are not included in condition (24), and the finite ef-
fective width (and energy) GSI waves are not included in
condition (33).

C. Scaled Self-Imaging
In Ref. 14 we presented necessary and sufficient condi-
tions for self-imaging waves of finite energy. It is appar-
ent that from Eq. (24), with g50, we get the same condi-
tion for scaled self-imaging:

nj 5 n1 1
2pNj

Dc
for all j, (36)

where n1 and Nj are integers. In this case the condition
depends only on the parameter n of the modes, i.e., on the
factor of the Gouy phase. In the modal plane, scaled self-
imaging waves are represented as a set of lines parallel to
the m axis, separated by distances 2pNj /Dc [Fig. 3(a)].
With the additional condition of Eq. (36), mj 5 m1 for all
j, we obtain the class of scaled self-imaging waves with ro-
tational symmetry of the intensity distribution.

In the interesting special case when z1 5 2z2 there is
self-imaging between planes located symmetrically on
both sides of the basic Gaussian beam waist. Then
s 5 1, and there is no scaling. In addition, based on the
properties of the GL modes, it is easy to show that

u~r, f, z1! 5 u~r, f, z2!* , (37)

i.e., the self-imaged amplitudes are complex conjugates of
each other. Therefore we shall call this effect phase-
conjugate self-imaging.

The particular case nj 5 n1 for all j (that is, Dnjp 5 0
for all j, p) is also interesting since it leads to the complete
class of eigenmodes for which the intensity distribution is
preserved independently of z, as can be deduced from Eq.
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Fig. 3. Particular cases of the GSI waves: (a) Scaled self-imaging waves have GL modes lying on horizontal parallel lines. (b) Eigen-
Fourier functions generate waves that are self-reproduced in the far field, with GL modes lying on parallel lines at a distance 4, leading
to four possible families depicted by different dashed lines. (c) A mode possesses an invariant transverse intensity distribution during
propagation; all the constituent GL modes have the same n number. (d) Rotating beams are composed of GL modes lying on a single
line.
(16) [Fig. 3(c)]. Note that these modes can be quite dif-
ferent from the GL or GH basis functions.

A similar approach may be used to obtain a self-
imaging condition for expansions in GH modes. It is
worth noting also that GL modes can be expressed as su-
perpositions of GH modes with nx 1 ny 5 n,33 and there-
fore condition (36) can be directly applied to GH modes.

D. Eigen-Fourier Functions
Consider a set of functions that can be defined as eigen-
Fourier functions that satisfy the relation

F f 5 mf. (38)

The FT relations require that

m4 5 1⇒m 5 exp~iLp/2!, L 5 0, 1, 2,... , (39)

which leads to four eigenvalues. Consequently there are
four independent sets of eigenfunctions (one for each ei-
genvalue). The complete set of eigen-Fourier functions is
defined by the following generating formula:

f~x! 5 exp~ia !g~x! 1 G~x! 1 exp~i3a !g~2x!

1 exp~i2a !G~2x!, (40)

where a 5 Lp/2 and G 5 Fg, with g an arbitrary two-
dimensional complex function. This condition is neces-
sary and sufficient for f (x) to be an eigen-Fourier func-
tion. Note that, given f, the decomposition of Eq. (40) is
not unique. A subset of these solutions contains the
self-FT functions34–38 with eigenvalue m 5 1.

To include the eigen-Fourier functions as a special case
of GSI we consider WF’s with the intensity distribution
self-reproduced in the far field, while the phase map dif-
fers only in a quadratic phase, as explained in Section 6.
If the self-imaging occurs between the beam waist of the
fundamental GL mode and the far field, the solutions of
eigenfunction Eq. (2) are, except for phase and scale
changes, the eigen-Fourier functions. From Eq. (27),
with Dc 5 p/2 and g 5 0, we see that the eigenvalues
are

u 5 exp@i~1 1 n1!p/2# 5 i ~11n1!, (41)

with n1 an integer. In particular, the self-Fourier func-
tions are obtained for n1 5 3 1 4L, L 5 0, 1, 2,... .
Equation (36) with Dc 5 p/2 dictates that

nj 5 n1 1 4Nj for all j. (42)

We see that indeed there are four independent sets of so-
lutions, each with a corresponding different n1 and conse-
quently a different eigenvalue. The eigenvalues are con-
sistent with those derived mathematically for eigen-
Fourier functions in relation (39). This is also seen in the
modal plane, where there are four possible sets of hori-
zontal lines [Fig. 3(b)].

We can also define the eigenrotated FT functions by the
relation



300 J. Opt. Soc. Am. A/Vol. 17, No. 2 /February 2000 Piestun et al.
R@g#F f 5 mf; (43)

then the modal condition of Eq. (24) leads to

nj 5 n1 1
2g

p
~mj 2 m1! 1 4Nj for all j. (44)

E. Rotating Beams
Another notable manifestation of the GSI effect occurs
when the transverse intensity distribution is invariant
upon propagation, except for a possible continuous rota-
tion about the axis. In Ref. 12 we presented the complete
class of paraxial coherent rotating beams by showing nec-
essary and sufficient conditions and an experimental
demonstration. Related investigations appeared in Refs.
1, 11, and 15–18. Additional properties of rotating
beams can be derived in the present framework by solving
the operator equation

uu~r, f, z1!u2

5 US F w~z !

w~z1!
GR@g ~z !#D @z 2 z1#u~r, f, z1!U2

(45)

Fig. 4. Spiral trajectory of a point in the transverse intensity
distributions of a rotating beam. (a) Detail of the waist, show-
ing maximal rotation rate. (b) Coarser view of the spiral, show-
ing that the rotation rate tends to zero toward the far field. (c)
Projection of the spiral onto a transverse plane. The axial dis-
tance between consecutive marks (1) is z0 .
for every z and with g (z) denoting a continuous function
of z.

Let us examine a superposition of modes as in Eq. (16).
Each term in the second sum represents a wave rotating
linearly with c ( ẑ) at the spatial rotation rate

S df

dẑ
D

jp

5
Dnjp

Dmjp

dc ~ ẑ !

dẑ
. (46)

Terms that have mj 5 mp are isotropic, so they will not
be considered further. If all of these waves rotate at the
same rate, rotation of the scaled transverse intensity dis-
tribution will be observed. Mathematically this means
that (df/dz) jp is independent of j, p. This is the case
when Dnjp /Dmjp 5 constant for all j, p, leading to

nj 5 V1mj 1 V2 , j 5 1, 2,... , (47)

where V1 and V2 are constants. If Eq. (47) is not ful-
filled, additional harmonics will appear in the rotation.
Hence this is a necessary and sufficient condition for ro-
tation of the scaled transverse intensity distribution.
The rotation rate can be derived from this condition as

dg

dẑ
5

df~ ẑ !

dẑ
5

Dn

Dm

dc ~ ẑ !

dẑ
5

V1

1 1 ẑ2
. (48)

Note that the rotation rate is maximal at the waist and
is reduced asymptotically to zero in the far field. Each
point in the transverse image describes a spiral trajectory
(see Fig. 4) given by

r 5 r0A1 1 ẑ2,
(49)

f 5 f0 1 V1c ~ ẑ !,

where (r0 , f0) are the coordinates of the point at z 5 0.
The total rotation from the waist (z 5 0) to the far field
(z 5 `) is then

Dftotal 5 V1~p/2!, (50)

as it is from z 5 2` to the waist. Half of Dftotal is
obtained at the Rayleigh distance.

The rotating beams are a particular case of the WF’s
defined by condition (24). For Nj 5 0 we directly obtain
condition (47), with V1 5 g/Dc and V2 5 n1
2 gm1 /Dc, where Dc and g are calculated for any two
transverse planes. Rotating beams satisfy the GSI crite-
rion between any two specific transverse planes, since
taking g 5 V1Dc makes condition (24) valid for any Dc.

Waves with rotating intensity distributions present a
GL modal representation confined to a single line [Fig.
3(d)]. The modal plane representation provides an easy
way to test the following properties:

• In general, an arbitrary combination of rotating
beams is not a rotating beam, since all the modes should
lie on the same line to produce a rotating beam.

• Any paraxial WF can be decomposed into a superpo-
sition of rotating beams. This decomposition is, in gen-
eral, not unique.
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Fig. 5. Example of scale-rotated self-imaging. (a) The transverse intensity distribution is self-reproduced at different positions with
different orientations and scales (see text). (b) Representation of the changes of scale along the propagation. (c) The intermediate cross
sections are different but are also self-reproduced with scaling and rotation.
9. EXAMPLES
In this section we present two examples that illustrate
the GSI effect. First, we consider a wave composed of a
superposition of the following modes: u0,0 , u8,24 , and
u8,4 . At the waist (z 5 0) the intensity distribution re-

Fig. 6. Example of a rotating beam with an odd azimuthal sym-
metry. (a) The scaled transverse intensity distribution is invari-
ant on propagation, except for a change in orientation. Note the
slow rotation rate that leads to a total rotation of 30° from waist
to far field. (b) The phase is invariant on propagation, except for
a change in orientation and scale and the addition of a quadratic
phase term. Note the rotating (first-order) phase dislocations.
From left to right in (a) and (b), ẑ ' 0, 0.25, 5.04.
sembles a cross, as shown in Fig. 5. From the GL repre-
sentation it is easy to observe that the self-images are ob-
tained at ẑ ' 0.41, 1, 2.41, ` (far field) with successive
relative rotations of p/4 rad. At intermediate planes the
intensity distribution is different, as shown in Fig. 5(c).
However, these intermediate images are also self-
reproduced with relative azimuthal changes of p/4 rad.
For example, at ẑ ' 0.20 and 0.67 we observe the images
shown in Fig. 5(c), which appear once again on propaga-
tion to the far field. In all cases the scale changes obey
Eq. (17). In this simple example we observe rotated self-
imaging of an eigen-Fourier function.

In the second example, we present a rotating beam.
The composing modes are u1,21 and u2,2 ; thus the total
rotation from waist to the far field is 30°. Figure 6 shows
the scaled intensities and phase distributions at different
locations. Note that the scaled phase map is invariant,
except for the addition of a quadratic phase and the rota-
tion. Observe the existence of four phase singularities,
which ease the perception of the rotation. An interesting
property of this beam is that the number of azimuthal
lobes is odd, a property that is impossible to achieve with
nonrotating modes.

10. DISCUSSION AND CONCLUSIONS
The current approach deals with waves that are exact so-
lutions to the paraxial wave equation. There is no need
for further approximations, as in the case of classical self-
imaging waves implemented with finite apertures. The
solutions composed of superpositions of GL modes fall off
rapidly away from the propagation axis and thus limit the
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support of the object to an effective finite aperture.
Truncation effects can be arbitrarily reduced, producing
negligible aberrations on the results.

Typically, the intensity distribution at a certain plane
will be imaged at other locations, with different scales
and rotation angles. This phenomenon can exist be-
tween any two planes, with any magnification, and with
any rotation of a rational fraction of 2p. These waves
possess finite energy and thus are physically realizable.
Equation (24) gives a necessary and sufficient condition
for this GSI. The scaled phase map is also replicated,
with the exception of a quadratic phase. Usually there is
a finite number of self-images spaced nonuniformly along
the propagation direction, in contrast to the uniform pe-
riodic structure of the classical self-imaging. The inter-
mediate intensity distributions (called Fresnel images in
the literature on classical self-imaging) are also self-
reproduced. Especially interesting cases include the ro-
tating beams, the eigen-Fourier functions, and the phase
conjugate self-imaging. In general, the characteristics of
the WF’s can be deduced from a graphic representation on
the GL plane. Therefore this is an effective and elegant
way to represent paraxial waves and their characteristics.
Note that the GPI WF’s in the paraxial regime are also
contained as a limiting case of the present framework.

The physical basis for the rotated self-imaging is ex-
plained by the existence of two types of phase: the Gouy
phase and the wave-front phase dislocations. The differ-
ent properties of the GSI waves depend on the existence
of phase dislocations (m numbers) and on the envelope of
the beam that hosts them and that determines the order
of the Gouy phase (n numbers). The ultimate behavior of
the beam on propagation is determined by the interrela-
tion among the Gouy and dislocation phases of the com-
posing GL modes (see also Refs. 12 and 16). This inter-
relation is analytically described by Eq. (24).

The paradigm and approach presented here can be ex-
tended to other wave phenomena. Effects similar to
those described here for free-space propagation of
paraxial waves can be predicted and observed in other cir-
cumstances, leading to various possible generalizations.
For example, it is well known that any first-order optical
system can be described by an integral operator analo-
gous to the Fresnel operator.26,39 Thus it is possible to
extend all the effects described here to the propagation of
beams through first-order optical systems. This includes
the fractional Fourier transform and the fields that are
invariants of this transformation.

Another extension is in the time domain. In this case
it is possible to obtain a GSI in time at fixed locations.
For this purpose it is necessary to have superpositions of
GL modes with different optical frequencies. This can be
achieved, for example, with multimode lasers40 or with a
single-mode laser and an acousto-optic modulator.

In addition, GSI effects can also be predicted for guided
waves, including gradient-index media. Finally, it is im-
portant to note that similar effects may also appear in
partially coherent beams,7,18 and thus it is worth follow-
ing the research in this direction.

In conclusion, the results presented in this paper pro-
vide a framework for understanding, analyzing, and syn-
thesizing propagation-invariant waves.
APPENDIX A
Let us explain the origin of the conditions presented in ex-
pression (29):

A. To make the GL modes resemble (infinite) plane
waves and Bessel modes, we can reduce the quadratic-
radial phase by requiring that ẑ ! 1, e.g., with z0 /l
→ ` and z bounded. Thus we impose z/z0 → 0. In or-
der to have an infinite number of lobes, we impose n
→ `.

B. The effective half-angular beam spread of a GL
mode obeys30

~p/l!tan~ubeam! 5
An 1 1

w0

→
n → ` An

w0

. (A1)

The angular beam spread must be kept small to satisfy
the paraxial approximation, in spite of n → `. There-
fore

lAn/w0 < C2 5 const. (A2)

C. To make the GL modes resemble infinite effective
width waves, we require r to be much smaller than the
basic Gaussian beam spot size, w0 : r̂ → 0. Note that
then exp(2r2/w0

2) → 1.
D. The smaller the difference n 2 umu, the lower the

energy concentrated about the axis (where condition C is
valid). Thus, to maintain a significant amount of energy
in the axial region, we require that n @ umu and thus that
n 2 umu ' n.

Derivation of Eq. (30): We apply these conditions to
Eq. (7) in the following relation41:

h2bLh
b~x/h! →

h → `

x2b/2Jb~2Ax!, (A3)

where Jb denotes a Bessel function of order b and we sub-
stitute h 5 (n 2 umu)/2, x 5 n r̂2, and b 5 umu.
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