
Noise Removal -
An Information Theoretic View

048703
Technion, EE Dept.

Spring 2008



1



2



Why Another Course on Noise Removal ?

Keep that thought. Answers later.
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Discrete Denoising

X1, . . . ,Xn Z1, . . . ,Zn X̂1, . . . ,X̂n

• Xi, Zi, X̂i take values in finite alphabets

• Goal: Choose X̂1, . . . ,X̂n on the basis of Z1, . . . ,Zn which will be
“close” to X1, . . . ,Xn

• Closeness is under given “single-letter” loss function Λ
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Why discrete ?

• Finite alphabets allow to focus on the essentials

• Discrete data becoming increasingly ubiquitous

• Insight from discrete case turns out fruitful also for the analogue world
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Example I: Bit Streams

. . . 0001111100001111100 . . .
corruption⇒ . . . 0001000001000001010 . . .
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Example II: Text

Original Text :

”What giants?” said Sancho Panza. ”Those thou seest there,” answered his master, ”with
the long arms, and spne have them nearly two leagues long.” ”Look, your worship,” said
Sancho; ”what we see there are not giants but windmills, and what seem to be their arms
are the sails that turned by the wind make the millstone go.” ”It is easy to see,” replied Don
Quixote, ”that thou art not used to this business of adventures; those are giants; and if
thou are afraid, away with thee out of this and betake thyself to prayer while I engage them
in fierce and unequal combat.”

Corrupted Text :

”Whar giants?” said Sancho Panza. ”Those thou seest theee,” snswered yis master, ”with
the long arms, and spne have tgem ndarly two leagues long.” ”Look, ylur worship,” sair
Sancho; ”what we see there zre not gianrs but windmills, and what seem to be their arms
are the sails that turned by the wind make rhe millstpne go.” ”Kt is easy to see,” replied
Don Quixote, ”that thou art not used to this business of adventures; fhose are giantz; and
if thou arf wfraod, away with thee out of this and betake thysepf to prayer while I engage
them in fierce and unequal combat.”
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Example III: Biological Data

. . . AGCATTCGATGCTTAAAGA . . .
corruption⇒ . . . AGCGTTCGAAGCTTATACA . . .
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The “easy” life: known PX and channel

• Fundamental performance limits

• Optimal but non-universal schemes:

Bayes-optimal schemes (not necessarily so easy..)
But sometimes life is good: forward-backward recursions for noise-
corrupted Markov processes
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The Easy Life: Example I

Source: Binary Markov Chain Channel: BSC

. . . 0001111100001111100 . . . . . . 0001000001000001010 . . . ⇒ . . . 0000111101001110110 . . .

• Objective: Minimize Bit Error Rate given the observation of n-block.

• Solution: Backward-Forward Dynamic Programming

10



The Easy Life: Example II

• Many successful algorithms are window-based

| �������9

pixel zi to denoise

� window W of size W

x̂i = f(W)

• When type of data is known a priori, we may know which rule to use:

median 3x3=⇒

works well

something else=⇒

would work well
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The Real Life: Example I

Source: ? Channel: BSC

. . . 0001111100001111100 . . . . . . 0001000001000001010 . . . ⇒ . . . ?

• Objective: Minimize Bit Error Rate given the observation of n-block.

• Solution: ?
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Initial Setting

• Unknown source of data

• Known corruption mechanism (memoryless channel)

Π(x, z) = Prob(z observed | x clean)

• Given loss function

Λ(x, x̂)
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Approaches

• Numerous heuristics

• HMM-based plug-in techniques

• Compression-based approach

• DUDE
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The DUDE Algorithm: General Idea

Fix context length k. For each letter xi to be denoised, do:

• Find left k -context (`1, . . . , `k) and right k -context (r1, . . . , rk)

`1 `2 · · · `k • r1 r2 · · · rk

• Count all occurrences of letters with left k -context (`1, . . . , `k) and right
k -context (r1, . . . , rk) .

• Decide on x̂i according to

x̂i = simple rule(Λ,Π, count vector, zi)
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Noiseless Text

We might place the restriction on allowable sequences that no spaces follow each other.
· · · effect of statistical knowledge about the source in reducing the required capacity of
the channel · · · the relative frequency of the digram i j. The letter frequencies p(i), the
transition probabilities · · · The resemblance to ordinary English text increases quite
noticeably at each of the above steps. · · · This theorem, and the assumptions required for
its proof, are in no way necessary for the present theory. · · · The real justification of these
definitions, however, will reside in their implications. · · · H is then, for example, the H in
Boltzmann’s famous H theorem. We shall call H = −

∑
pi log pi the entropy of the set

of probabilities p1, . . . , pn. · · · The theorem says that for large N this will be independent
of q and equal to H. · · · The next two theorems show that H and H ′ can be determined
by limiting operations directly from the statistics of the message sequences, without
reference to the states and transition probabilities between states. · · · The Fundamental
Theorem for a Noiseless Channel · · · The converse part of the theorem, that C

H cannot be
exceeded, may be proved by noting that the entropy · · · The first part of the theorem will
be proved in two different ways. · · · Another method of performing this coding and thereby
proving the theorem can be described as follows: · · · The content of Theorem 9 is that,
although an exact match is · · · With a good code the logarithm of the reciprocal probability
of a long message must be proportional to the duration of the corresponding signal · · ·
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Noisy text

Wz right peace the rest iction on alksoable sequbole thgt wo spices fokiow eadh otxer. · · ·
egfbct of sraaistfcal keowleuge apolt tje souwce in recucilg the requihed clpagity ofythe
clabbel · · · the relatrte pweqiency ofpthe digram i j. The setter freqbwncles p(i), ghe
rrahsibion probtbilities · · · The resemglahca to ordwnard Engdish tzxt ircreakes quitq
noliceabcy at vach oftthe hbove steps. · · · Thus theorev, andlthe aszumptjona requiyed ffr
its croof, arv il no wsy necqssrry forptfe prwwent theorz. · · · jhe reap juptifocation of
dhese defikjtmons, doweyer, bill rehide inytheir imjlycajijes. · · · H is them, fol eskmqle, tle
H in Bolgnmann’s falous H themreg. We vhall cbll H = −

∑
pi log pi the wntgopz rf thb

set jf prwbabjlities p1, . . . , pn. · · · The theorem sahs tyat fsr lawge N mhis gill we
hndeypensdest of q aed vqunl tj H. · · · The neht txo theiremf scow tyat H and H ′ can be
degereined jy likitkng operatiofs digectlt fgom the stgtissics of thk mfssagj siqufnves,
bithout referenge ty the htates and trankituon krobabilitnes bejwekn ltates. · · · The
Fundkmendal Theorem kor a Soiselesd Chjnnen · · · Lhe ronvegse jaht jf tketheorem, thlt
C
H calnot be excweded, may ke xroved ey hotijg tyat the enyropy · · · The first pajt if the
theqrem will be ptoved in two kifferent wjys. · · · Another methjd of plrfolming shis goding
ald thmreby proking toe oheorem can bexdescrined as folfows: · · · The contemt ov
The rem 9 if thst, ajthorgh an ezacr mawwh is · · · Wotf a goul code therlogaretym of the
rehitrocpl prossbilfly of a lylg mwgsage lust be priporyiopal to tha rurafirn of · · ·
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Noisy text: Denoising m

Wz right peace the rest iction on alksoable sequbole thgt wo spices fokiow eadh otxer. · · ·
egfbct of sraaistfcal keowleuge apolt tje souwce in recucilg the requihed clpagity ofythe
clabbel · · · the relatrte pweqiency ofpthe digram i j. The setter freqbwncles p(i), ghe
rrahsibion probtbilities · · · The resemglahca to ordwnard Engdish tzxt ircreakes quitq
noliceabcy at vach oftthe hbove steps. · · · Thus theorev, andlthe aszumptjona requiyed ffr
its croof, arv il no wsy necqssrry forptfe prwwent theorz. · · · jhe reap juptifocation of
dhese defikjtmons, doweyer, bill rehide inytheir imjlycajijes. · · · H is them, fol eskmqle, tle
H in Bolgnmann’s falous H themreg. We vhall cbll H = −

∑
pi log pi the wntgopz rf thb

set jf prwbabjlities p1, . . . , pn. · · · The theorem sahs tyat fsr lawge N mhis gill we
hndeypensdest of q aed vqunl tj H. · · · The neht txo theiremf scow tyat H and H ′ can be
degereined jy likitkng operatiofs digectlt fgom the stgtissics of thk mfssagj siqufnves,
bithout referenge ty the htates and trankituon krobabilitnes bejwekn ltates. · · · The
Fundkmendal Theorem kor a Soiselesd Chjnnen · · · Lhe ronvegse jaht jf tketheorem, thlt
C
H calnot be excweded, may ke xroved ey hotijg tyat the enyropy · · · The first pajt if the
theqrem will be ptoved in two kifferent wjys. · · · Another methjd of plrfolming shis goding
ald thmreby proking toe oheorem can bexdescrined as folfows: · · · The contemt ov
The rem 9 if thst, ajthorgh an ezacr mawwh is · · · Wotf a goul code therlogaretym of the
rehitrocpl prossbilfly of a lylg mwgsage lust be priporyiopal to tha rurafirn of · · ·
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Context search k = 2 h e • r e

Wz right peace the rest iction on alksoable sequbole thgt wo spices fokiow eadh otxer. · · ·
egfbct of sraaistfcal keowleuge apolt tje souwce in recucilg the requihed clpagity ofythe
clabbel · · · the relatrte pweqiency ofpthe digram i j. The setter freqbwncles p(i),
ghe rrahsibion probtbilities · · · The resemglahca to ordwnard Engdish tzxt ircreakes quitq
noliceabcy at vach oftthe hbove steps. · · · Thus theorev, andlthe aszumptjona requiyed ffr
its croof, arv il no wsy necqssrry forptfe prwwent theorz. · · · jhe reap juptifocation of
dhese defikjtmons, doweyer, bill rehide inytheir imjlycajijes. · · · H is them, fol eskmqle, tle
H in Bolgnmann’s falous H themreg. We vhall cbll H = −

∑
pi log pi the wntgopz rf thb

set jf prwbabjlities p1, . . . , pn. · · · The theorem sahs tyat fsr lawge N mhis gill we
hndeypensdest of q aed vqunl tj H. · · · The neht txo theiremf scow tyat H and H ′ can be
degereined jy likitkng operatiofs digectlt fgom the stgtissics of thk mfssagj siqufnves,
bithout referenge ty the htates and trankituon krobabilitnes bejwekn ltates. · · · The
Fundkmendal Theorem kor a Soiselesd Chjnnen · · · Lhe ronvegse jaht jf tketheorem, thlt
C
H calnot be excweded, may ke xroved ey hotijg tyat the enyropy · · · The first pajt if the
theqrem will be ptoved in two kifferent wjys. · · · Another methjd of plrfolming shis goding
ald thmreby proking toe oheorem can bexdescrined as folfows: · · · The contemt ov
The rem 9 if thst, ajthorgh an ezacr mawwh is · · · Wotf a goul code therlogaretym of
the rehitrocpl prossbilfly of a lylg mwgsage lust be priporyiopal to tha rurafirn of · · ·
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Context search k = 2 h e • r e counts

• he re : 7, heore : 5, heire : 1, hemre : 1, heqre : 1

m(Shannon text , he, re) = [0 0 0 0 0 0 0 0 1 0 0 0 1 0 5 0 1 0 0 0 0 0 0 0 0 0 7]
T

↑ ↑ ↑ ↑ ↑

i m o q sp

The reconstruction at the point i we looked at is:

x̂i = simple rule (Λ,Π,m(Shannon text , he, re), m)
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The DUDE Algorithm for Multi-D Data

Same algorithm.

• Contexts are of form: c11

c6 c5 c4

c12 c7 c3 c10
zc8 c1 c2

c9 Example:
K = 12
{ (0,±1),
(±1, 0),
(±1,±1),
(0,±2),
(±2, 0) }

21



EXAMPLE: Binary Image

22



EXAMPLE: Noisy Binary Image
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EXAMPLE: Context Symbol Counts
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Example: BSC + BER

For each bit b , count how many bits that have the same left and right
k -contexts are equal to b and how many are equal to b̄ . If the ratio of
these counts is below

2δ(1− δ)
(1− δ)2 + δ2

then b is deemed to be an error introduced by the BSC.
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Example: M-ary erasure channel + Per-Symbol Error Rate

Correct every erasure with the most frequent symbol for its context
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Choosing the Context Length k

• Tradeoff:

too short 7→ suboptimum performance
too long (⇔ too short n ) 7→ counts are unreliable

• Our choice: k = kn =
⌈

1
2 log|Z| n

⌉
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Computational Complexity

Linear
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Experiment: Binary Markov Chain ( p) → BSC (δ); n = 105

δ = 0.01 δ = 0.10 δ = 0.20

p DUDE ForwBack DUDE ForwBack DUDE ForwBack
0.01 0.000723 0.000721 0.006648 0.005746 0.025301 0.016447
0.05 0.004223 0.004203 0.030084 0.029725 0.074936 0.071511
0.10 0.010213 0.010020 0.055976 0.055741 0.120420 0.118661
0.15 0.010169 0.010050 0.075474 0.075234 0.153182 0.152903
0.20 0.009994 0.009940 0.092304 0.092304 0.176354 0.176135

Table 1: Bit Error Rates
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Image Denoising: δ=0.05
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Image Denoising: δ=0.02
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Comparison with known algorithms

Channel parameter δ

Image Scheme 0.01 0.02 0.05 0.10
Shannon DUDE 0.00096 0.0018 0.0041 0.0091
1800×2160

median 0.00483 0.0057 0.0082 0.0141
morpho. 0.00270 0.0039 0.0081 0.0161

Einstein DUDE 0.0035 0.0075 0.0181 0.0391
896×1160

median 0.156 0.158 0.164 0.180
morpho. 0.149 0.151 0.163 0.193
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Text Denoising: Don Quixote de La Mancha

Noisy Text (21 errors, 5% error rate):

”Whar giants?” said Sancho Panza. ”Those thou seest theee,” snswered yis master, ”with
the long arms, and spne have tgem ndarly two leagues long.” ”Look, ylur worship,” sair
Sancho; ”what we see there zre not gianrs but windmills, and what seem to be their arms
are the sails that turned by the wind make rhe millstpne go.” ”Kt is easy to see,” replied
Don Quixote, ”that thou art not used to this business of adventures; fhose are giantz; and
if thou arf wfraod, away with thee out of this and betake thysepf to prayer while I engage
them in fierce and unequal combat.”

DUDE output (4 errors):

”What giants?” said Sancho Panza. ”Those thou seest there,” answered his master, ”with
the long arms, and spne have them nearly two leagues long.” ”Look, your worship,” said
Sancho; ”what we see there are not giants but windmills, and what seem to be their arms
are the sails that turned by the wind make the millstone go.” ”It is easy to see,” replied Don
Quixote, ”that thou art not used to this business of adventures; fhose are giantz; and if
thou are afraid, away with thee out of this and betake thyself to prayer while I engage them
in fierce and unequal combat.”
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Text Denoising: Don Quixote de La Mancha (cont.)

Noisy Text (4 errors):

... in the service of such a masger ws Dpn Qhixote ...

DUDE output, (0 errors):

... in the service of such a master as Don Quixote ...
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Measure of Performance

[Normalized cumulative loss] of the denoiser X̂n when the observed
sequence is zn ∈ An and the underlying clean sequence is xn ∈ An :

LX̂n(xn, zn) =
1
n

n∑
i=1

Λ(xi, x̂i),

where
x̂i = X̂n(zn)[i]

We denote the DUDE by
X̂n

DUDE
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Optimality Result: Stochastic Setting

Theorem.

For every stationary noise-free signal X,

lim
n→∞

[
ELX̂n

DUDE
(Xn, Zn)− min

X̂n∈Dn

ELX̂n(Xn, Zn)
]

= 0

where Dn is the class of all n -block denoisers.
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Optimality Result: Semi-Stochastic Setting

Minimum k -sliding-window loss of (xn, zn) :

Dk(xn, zn) = min
f :A2k+1→A

 1
n− 2k

n−k∑
i=k+1

Λ(xi, f(zi+k
i−k))



Theorem. For all x ∈ A∞

lim
n→∞

[
LX̂n

DUDE
(xn, Zn)−Dkn(x

n, Zn)
]

= 0 a.s.
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Some Further Directions we will Pursue

• Analogue Data

• Performance boosting tweaks for non-asymptotic regime

• Non-stationary data

• Channel Uncertainty

• Channels with Memory

• Sequentiality Constraint

• Applications to data compression and communications

• ...
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Compression-based denoising

• Intuition and Philosophy

• Tools

Lossy compression preliminaries:
� Rate distortion
� Rate distortion theory for ergodic processes
� Indirect rate distortion theory
� Shannon lower bound
� Empirical distribution of rate distortion codes
� Universal lossy source coding:
· Yang-Kieffer codes
· Lossy compression via Markov chain Monte Carlo

• Universal denoising via lossy compression
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Can DUDE accommodate large, even uncountable,
alphabets?

• DUDE will perform poorly when alphabet is large

Repeated occurrence of contexts is rare
Is problem better viewed in the analogue world ?

• When alphabets are continuous
Count statistic approach is inapplicable
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Extension of “contextless” DUDE to continuous alphabets

Two-pass DUDE-like approach

• Density estimation of the noisy symbol distribution

• Estimate empirical distribution of the underlying clean symbol

• Reconstruct to minimize the estimated conditional loss
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Estimation of Output Statistics

Y n = {Y1, Y2, · · · , Yn} is the sequence of noisy observations in R

Kernel Density Estimate

fn
Y =

1
nhn

n∑
i=1

K

(
y − Yi

hn

)
(1)
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Projection of Channel Output to Input Statistics

F̂xn = arg minF∈F [a,b] d

fn
Y (y),

∫
fY |x(y, x)dF (x)︸ ︷︷ ︸

[F⊗C]Y


d (f, g) =

∫
|f(y)− g(y)| dy (2)

43



Goodness of Estimation of Clean Signal Statistics

With λ (F,G) denoting Levy distance between F and G

Theorem 1. λ
(
Fxn, F̂xn

)
→ 0 a.s. ∀x
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DUDE-inspired Denoiser: Quantized Contexts
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Computational Complexity

• linear in n

• logarithmic in M

• independent of k
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Performance Guarantees

Under benign conditions on the channel:

• Can identify the right rate for increase of:

Quantization resolution (with an asymptotically fine partition)
Context lengths

• Performance guarantees analogous to those of DUDE in both

semi-stochastic setting
stochastic setting
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Another Approach for Analogue World

Via kernel techniques for vector density estimation
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Experimental Results

Original Image Image corrupted by AWGN, σ = 20
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Denoised Images

Ours RMSE= 7.842 Wavelet-based thresholding, RMSE= 11.1782
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Multiplicative Noise Example

Corrupted by Multiplicative Noise,N (1, 0.2)
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Denoised Images

Denoised Using BLS-GSM Denoised Using the Proposed Scheme
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Back to Discrete World: Performance Boosts

• Dynamic contexts

• Context aggregation (inspired by scheme from analogue world)

• Iterated DUDE
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Performance Boost Example I:
DUDE with Context Aggregation

Given

• Distance Function: d(c, c̃)

• Weight Function: w(c, c̃)

Outline of CA DUDE Algorithm:

1. Compute count vectors (same as DUDE)

2. Aggregate the counts for similar contexts: for each context c,

• Step 1: Find A = {c̃ | d(c, c̃) ≤ D}

• Step 2: Compute new context count, mc =
∑
c̃∈A

w(c, c̃)m(c̃)

3. Denoising decision made based on new context count, mc
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DUDE with Context Aggregation

• Possible distance and weight functions include:

d(c, c̃) = Pπ(c̃|c): Distance based on channel crossover probabilities

w(c, c̃) = αe−γd(c,c̃): Closer contexts contribute higher weights
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DUDE with Context Aggregation

Test Results: Binary Markov Source (p = 0.01, δ = 0.2).

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

data length n

E
rr

or
 R

at
e

Blue: CA DUDE, Red: DUDE, Black: Forward-Backward Recursions
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DUDE with Context Aggregation

DUDE: Performance degrades when k is too large

k = 3 (Error rate: 0.0597)

100 200 300 400 500

100

200

300

400

500

k = 4 (Error rate: 0.0839)

100 200 300 400 500

100

200

300
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500

k = 5 (Error rate: 0.1312)

100 200 300 400 500

100

200

300

400

500

k = 6 (Error rate: 0.1687)

100 200 300 400 500

100

200

300

400

500
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DUDE with Context Aggregation

Test Results: Bi-Level image corrupted with BSC δ = 0.2

Original Image

100 200 300 400 500

100

200

300

400

500

Noisy Image (Error rate: 0.2)
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CA DUDE k = 5 (Error rate: 0.051)

100 200 300 400 500

100

200

300

400

500

DUDE k = 3 (Error rate: 0.0597)

100 200 300 400 500

100

200

300

400

500
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Performance Boost Example II:
Iterated DUDE

Possible approaches (in increasing order of sophistication):

• Empirically find the transition matrix H from zn to x̂n (previous
reconstruction), and employ DUDE with Π ·H
Simplistic but surprisingly effective:

Table 2: Trial 1 for sequence length of 103, δ = 0.2, (k = 5)
iteration 0 1 2 3 error rate

# of errors left 198 34 26 25 0.025
Forward-Backward 0.019

Table 3: Trial 1 for sequence length of 104, δ = 0.2, (k = 5)
iteration 0 1 2 3 error rate

# of errors left 2003 213 141 136 0.0136
Forward-Backward 0.0125
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Performance Boost Example II:
Iterated DUDE (cont.)

• Compute new effective channel at each iteration, and employ DUDE

• Same as previous approach, taking channel memory into account [see
“Channels with Memory” below]
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Perf. boost Ex. III: Accommodating Non-Stationarity

Consider following simplistic motivating example:

• “switching” binary symmetric Markov chain corrupted by BSC (n = 106)

0 1

p

p

1 − p1 − p

δ = 0.1

suppose p = p1 = 0.01 → p = p2 = 0.2 at t∗ = 5× 105 (midpoint)

0 1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

k

B
it 
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ro

r 
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te
/δ

Bit error rate plot for DUDE

DUDE
Bayes
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ShifTing Discrete Universal Denoiser (STUD) - 1D data

• can we learn the switch of the source based only on the noisy
observation?

if so, can we do it efficiently?

• reference class: class of k-th order denoisers that allow at most m shifts

3

zn :

{sk} :
1 4 7

• Dk,m(xn, zn) : best performance among Sn
k,m (≤ Dk(xn, zn))
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STUD - Performance Guarantees

• direct (semi-stochastic setting):
when m = o(n), for all x,

lim
n→∞

[
LX̂n,k,m

STUD
(xn, Zn)−Dk,m(xn, Zn)

]
= 0 a.s.

• direct (stochastic setting):
when m = o(n), achieves optimum performance for any piecewise
stationary X

• converse:
if m = Θ(n), no denoiser can achieve above
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Two-pass algorithm

• first pass : forward recursion - update Mt (dynamic programming)

Mt(i, j) = �(zt, j) + min {Mt−1(i, j), min1≤k≤|S| Mt−1(i− 1, k)}

Mt−1 Mt

min

} �(zt, j)+
ii

j j

min

• second pass : backward recursion - extract Ŝ and denoise

linear complexity in both n and m
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Example - 1D data (revisited)

• can STUD achieve the optimal BER ?

0 1 2 3 4 5 6
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Bit error rate plot for (k,m)−S−DUDE

m=0 (DUDE)
m=1
Bayes

• m is another “design parameter” for devising a discrete denoiser
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Extension to 2D data

• what about 2D data?

we need to learn the best segmentation of data
1D : disjoint intervals ⇔ 2D : ?
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STUD - 2D data

• reference class: class of 2D k-th order denoisers that allow at most m
shifts along the “quadtree decomposed” regions

• Dk,m(xn, zn) : best performance among Sn
k,m

• X̂n,k,m

2D STUDdefined in similar way as in 1D case

• guarantee: when m lnm = o(n), for all x ∈ X∞,

lim
n→∞

[
LX̂n,k,m

2D STUD
(xn, Zn)−Dk,m(xn, Zn)

]
= 0 a.s.

• we have a practical scheme with linear complexity in both n and m
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Example - 2D data

• experimental results (δ = 0.1)

(a) clean image (b) noisy image
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Example - 2D data (cont’d)

• experimental results (δ = 0.1)

1 2 3 4 5 6 7
0.055

0.06

0.065

0.07

0.075

0.08

k

B
E

R

BER plot for Einstein−Shannon block image (d=0.1)

2D Quadtree S−DUDE
2D DUDE
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Channel Uncertainty

Question: In the case of channel uncertainty is there still hope to find a
denoiser with the theoretical performance guarantees of the DUDE?
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Channel Uncertainty

Question: In the case of channel uncertainty is there still hope to find a
denoiser with the theoretical performance guarantees of the DUDE?

Answer: Unfortunately not
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Channel Uncertainty

Approaches that are fruitful in practice:

• DUDE with a “knob”

• DUDE with a channel estimate

• DUDE-like scheme with a channel-independent rule
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Channels with Memory

• “Single-letter” nature of the DUDE is lost

• Can devise denoisers with performance guarantees analogous to those
of DUDE

• Case of “additive” noise yields a graceful solution
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The Sequential LZ-DUDE

• LZ78 incremental parsing: Defined recursively to include shortest phrase
not previously parsed: 00000010001110zt → 0, 00, 000, 1, 0001, 11, 0zt

• At any time t let kt be the position of zt in current phrase. Consider
subsequence of past data symbols which are the kt -th symbol in
phrases that are identical to the current phrase up through time t − 1 :
0, 00, 000, 1, 0001, 11, 0zt

• Reconstruct at time t, x̂t, as the DUDE would, using as counts those of
the node (in the LZ tree) corresponding to zt
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The Sequential LZ-DUDE: Performance Guarantees

• Performance guarantees analogous to those of DUDE in:

semi-stochastic setting
� reference class not only of Markov but of Finite-State filters
stochastic setting

• Fundamental limit different (worse) than for non-sequential case

• Unlike LZ-based predictor, LZ-DUDE does not need to randomize
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Filtering (causal estimation) ⇔ Prediction ⇔ Compression

We will derive, make mathematically precise, and exploit the following
relationships:

• Filtering ⇔ Prediction ⇔ Lossless compression

⇓

• Universal compression ⇔ universal predictor ⇒ universal filter

⇓

• LZ compression ⇒ LZ predictor ⇒ LZ-DUDE
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Application Example: Wyner-Ziv Problem

Unknown
Source

DMC

Encoder

Decoder/
Denoiser

i(xn) ∈ {1, . . . , 2nR}

xn

xn

zn x̂n
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Wyner-Ziv DUDE

Encoder

Unknown
Source

DMC Decoder/
Denoiser

x
n x̂

n

y
n

z
n

• Encoding: among yn s.t. LZ(yn) ≤ nR, describe yn most conducive to
“DUDE with S.I.” decoder

• Decoding: “DUDE with S.I.”, with yn as a side information sequence
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Wyner-Ziv DUDE: Main Theoretical Result

• For a source X define:

DX(R) = inf{D : (R,D) is achievable}

Theorem: For any R ≥ 0, and any stationary ergodic source X,

lim
n→∞

E[distortion (Xn, Reconstruction using Wyner-Ziv DUDE)] = DX(R)
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Example: Binary Image + WZ-DUDE

Original BSC(0.15)-corrupted version
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Example: Binary Image + WZ-DUDE (cont.)

Left : Lossy JPEG coding of original image: R = 0.22 b.p.p., BER = 0.0556

Center : DUDE output: BER = 0.0635

Right : WZ-DUDE output: R = 0.22 b.p.p., BER = 0.0407
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DUDE for Error Correction

Transmitted codeword

Received signalPreprocessed signal

using DUDE

Correct decoding radius
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So why take this course ?

• Intellectual + practical value of the specific problems considered

• An excuse to learn other topics in information theory

• Opportunity to acquire some tools and see how they are applied

• Learn IT approach to universality
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Excuse to learn other topics in IT

Beyond our “target” topics, we will pick up:

• State estimation in HMPs and the Forward-Backward scheme

• R-D theory for ergodic sources

• Shannon Lower Bound

• Empirical distribution of good codes

• Indirect R-D

• Ziv-Lempel compression

• Universal prediction

• Compound sequential decision problem

• R-D with decoder side information (Wyner-Ziv problem)

• Systematic channel coding
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Opportunity to learn some tools and how they are applied

• Martingales

• Concentration Inequalities

• Dynamic Programming

• Markov Chain Monte Carlo

• Density Estimation Techniques
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Learn IT approach to Universality

Typical IT way of viewing problems:

• Characterization of fundamental limits

• Existence of universal schemes ?

• Universality

Stochastic setting
Individual sequence setting

• Low complexity, practicality, cuteness and grace of schemes

We’ll see this structure for denoising, lossy compression, lossless
compression, prediction, filtering, Wyner-Ziv coding, . . .

Can then apply to your own problems
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