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Swift Introduction to Neural Networks 
Roman Kaplan, November 2016 

048874 Parallel Computing Architecture, Fall 2016 
 

The description follows the online book http://neuralnetworksanddeeplearning.com/. Use it freely 

as a reference. A short description of its chapters: 

 Chapter 1 describes the example neural network we use and includes Python code to 

compute it (inference and training). 

 Chapter 2 dwells on matrix NN and backpropagation. 

 Chapter 3 revisits everything and gets deeper into mathematics. 

 Chapter 4 addresses intellectual questions on NN. 

 Chapter 5 discusses challenges of deep learning. 

 Chapter 6 talks of convolutional (deep) NN. 

 

 

  

http://neuralnetworksanddeeplearning.com/
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1. Neuron 

The most basic computational unit in a neural network. Has multiple inputs. Each input 

multiplied by a weight (real number). The weighted sum of inputs plus a bias is fed through a 

non-linear function 𝜎(): 

𝑂𝑢𝑡𝑝𝑢𝑡=𝜎(∑𝑤𝑖⋅𝑥𝑖+𝑏)=𝜎(𝑧) 

The output (sometimes dented a) is also termed activation and 𝜎() is the activation 

function, 𝑎=𝜎(𝑧). 

 

The most common activation functions are: 1) sigmoid (range 0,1), 2) tanh (-1,1) and  

3) ReLU [0,∞) (Rectified Linear Unit).  

 

For simplicity, we ignore the bias term 𝑏 in 𝑧=∑𝑤𝑖⋅𝑥𝑖+𝑏 and assume 𝑧=∑𝑤𝑖⋅𝑥𝑖. Later we 

will show the full equations, including the bias term. 

 

Further reading: http://neuralnetworksanddeeplearning.com/chap1.html#perceptrons  

http://neuralnetworksanddeeplearning.com/chap1.html#perceptrons
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2. Neural Network (fully connected) 

When connecting many neurons together, the complexity of implemented functions increases. 

The network is structured in “layers”, where a neuron output from one layer serves as an input 

to all neurons in the next layer (hence the term fully-connected neural network). 

 

 

 

The output of each neuron in the input layer is constant. For example, if the input is an image 

consisting of pixels, then the input layer is a vector of pixels where each neuron in the input 

layer outputs the value of its pixel. Multiple hidden layers are possible. 

Further reading: 

http://neuralnetworksanddeeplearning.com/chap1.html#the_architecture_of_neural_networks  

http://neuralnetworksanddeeplearning.com/chap1.html#the_architecture_of_neural_networks
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3. Calculating Network Output: Feedforward, or Inference 

The input is a (constant) vector 

𝑖𝑛𝑝𝑢𝑡=(𝑥1,𝑥2,…,𝑥𝑛) 

The activation of neuron k in the first hidden layer is therefore 

𝑎𝑘
1=𝜎(∑ 𝑤𝑘,𝑖

1 ⋅𝑥𝑖
𝑖

) =𝜎(𝑧𝑘
1) 

The weights of the first hidden layer (𝑚-neuron layer with 𝑛 inputs per neuron) can be 

represented as a matrix: 

𝑊𝑚×𝑛
1 =

(

 
 

𝑤1 1 ⋯(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 1)⋯ 𝑤1 𝑛
⋮ ⋮ ⋮
𝑤𝑘 1 ⋯(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘)⋯ 𝑤𝑘 𝑛
⋮ ⋮ ⋮
𝑤𝑚 1 ⋯(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑚)⋯ 𝑤𝑚 𝑛)

 
 

 

In matrix form,  

𝑎1=𝜎(𝑊1⋅𝑖𝑛𝑝𝑢𝑡) 

and the dimensions are [𝑚,1]=[𝑚,𝑛]×[𝑛,1].  The activations of the first hidden layer serve as 

inputs to the next layer. Assuming a single hidden 𝑚-neuron layer and a 𝑞-neuron output layer, 

the output is 

𝑜𝑢𝑡𝑝𝑢𝑡=𝜎(𝑊𝑜𝑢𝑡𝑝𝑢𝑡⋅𝑎1) 

with dimensions [𝑞,1]=[𝑞,𝑚]×[𝑚,1]. This calculation is called feedforward because the input 

is propagated through all layers to the output. It is also termed inference because the output is 

inferred from the input by a given neural network. In contrast, learning (described below) 

modifies the neural network given many inputs and (possibly) respective desired outputs. 

3.1 Softmax Layer – Solving a Classification Problem 

If the network is used as a classifier, it is common to add ‘softmax’ stage at the end to force all 

outputs to [0,1] range. In this case, we consider output k to represent the probability that the 

input belongs to the k’th class. Softmax also assures that the sum of all outputs is 1. Softmax 

converts the output vector 𝑧 (of arbitrary real values—the output layer may not need 𝜎() when 

followed by softmax), to vector 𝜎(𝑧) of real values in the range (0,1) which add up to 1. 

𝜎(𝑧)𝑗=
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘
𝑞
𝑘=1

         for 𝑗=1,…,𝑞 
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Practical issue: Numeric stability. When writing code for computing the softmax function in 

practice, the intermediate terms 𝑒𝑧𝑗 and ∑ 𝑒𝑧𝑘
𝑞
𝑘=1  may be very large due to exponentials and 

may exceed the maximum magnitude allowed by the precision chosen for computation (for 

instance, if 16 bit fixed point format is employed, the maximum number that can be represented 

is 215−1=32,767). In softmax computation this problem may be address by certain 

normalization. One such normalization trick is to expand the fraction by a sufficiently small 

constant 𝐶. We can then "push" 𝐶 to the exponents as follows: 

𝜎(𝑧)𝑗=
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘
𝑞
𝑘=1

=
𝐶⋅𝑒𝑧𝑗

𝐶⋅∑ 𝑒𝑧𝑘
𝑞
𝑘=1

=
𝑒𝑧𝑗+𝑙𝑜𝑔𝐶

∑ 𝑒𝑧𝑘+𝑙𝑜𝑔𝐶
𝑞
𝑘=1

 

One common choice for 𝐶 is to set 𝑙𝑜𝑔𝐶=−max
𝑗
𝑧𝑗. This choice implies shifting the values of 

the vector 𝑧 so that the highest value is zero. All exponents are then fractions. This choice 

works well for floating point representation. Computing with fixed point numbers may require 

other choices. 
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4. Example: NN Recognition / Classification of the MNIST Hand-Written 

Digits Dataset 

The MNIST data set contains 70,000 images of hand-written digits, 28×28=784 eight-bit pixels 

each. The goal of the NN is to classify each image into one of ten digits (each such 

classification is an inference). Consider a NN with a 784-neuron input layer (the 2D matrix of 

pixels is rearranged as a vector), one hidden layer of 100 neurons using ReLU activation and 

one output layer with 10 neurons (the number of neurons in the hidden layer, 100, is chosen 

arbitrarily). All bias values are assumed zero. The computation can be described as follows. The 

NN is applied to a single image at a time. 

The input vector is 𝑝[784,1]. The hidden layer, using ReLU activation, computes 

𝑎[100]
1 =𝑅𝑒𝐿𝑈(𝑊[100,784]

1 ⋅𝑝[784]) 

Subscripts indicate dimensions. The output layer (without activation) computes 

𝑞[10]=𝑊[10,100]
𝑜𝑢𝑡𝑝𝑢𝑡

⋅𝑎[100]
1  

To efficiently compute softmax, the following steps may be applied. 

𝑥[10]=𝑒
𝑞[10]=(

𝑒𝑞1

𝑒𝑞2
⋯
𝑒𝑞10

) 

𝑆𝑋=∑ 𝑥(𝑘)

10

𝑘=1

 

𝜎[10]=
𝑥[10]

𝑆𝑋
=

(

 
 

𝑒𝑞1
𝑆𝑋
⁄

𝑒𝑞2
𝑆𝑋
⁄
⋯

𝑒𝑞10
𝑆𝑋
⁄ )

 
 

 

Clearly, the two weight matrices must be pre-computed and known. 

Further reading: 

http://neuralnetworksanddeeplearning.com/chap1.html#a_simple_network_to_classify_handwritt

en_digits 

http://yann.lecun.com/exdb/mnist/
http://neuralnetworksanddeeplearning.com/chap1.html#a_simple_network_to_classify_handwritten_digits
http://neuralnetworksanddeeplearning.com/chap1.html#a_simple_network_to_classify_handwritten_digits
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5. Convolutional Neural Network 

When processing very large inputs it may be impractical to connect all inputs to all neurons in 

the first hidden layer, as in the fully-connected NN. The same difficulty applies to the internal 

hidden layers. Instead, in convolutional neural networks (CNN) each neuron may process only a 

small subset of the previous layer. When the same set of weights (kernel) is used in many 

neurons of same layer, to cover the complete set of subsets of a previous layer, the 

computation is clearly a convolution.  

For instance, when the NN processes images, convolutions are typically employed to detect 

image features. Since multiple features may be sought in an image, a layer may comprise of 

many separate convolutions, all applied to the same previous layer. 

Data reduction steps, such as pooling, are usually applied in between layers of convolutions. 

After several (or many) such layers, several fully-connected layers may be employed for final 

classification. The following sub-sections briefly describe these structures. 

5.1 Convolution Layer 

Each step of the convolution (one linear combination of values, applying one kernel) is 

performed by one neuron. The neuron receives only a local region of the previous layer. The 

neuron may be viewed as a filter. The idea is to apply a small filter on the entire input by sliding 

the filter across the width and height of the (two-dimensional) input.  

Consider the following example of a 3×3 input convolved with a 2×2 filter kernel. The kernel is 

shifted by 1 pixel in either or both dimensions for other output values. The size of this shift is 

called stride.  

 

Convolution of a single 3×3 input array with a 2×2 size filter with stride of 1. 

Mathematically, the convolution of a 𝐾×𝐾 kernel 𝑤 with 2D input array 𝑥 produces activation 

array 𝑎.  

𝑎𝑖,𝑗=∑ ∑ 𝑥𝑖+𝑝−1,𝑗+𝑞−1⋅𝑤𝑝,𝑞

𝐾

𝑞=1

𝐾

𝑝=1
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Care must be applied to array boundaries. Convolving an input with a kernel results in an output 

of somewhat smaller dimensions than the input, as can be seen in the above figure. For 

simplicity, it may be desirable for the output to be of the same size as the input. Therefore, a 

zero padding of the image may be applied by adding rows and columns of zeroes to the input 

boundaries. 

In practice, multiple filters are applied to the same input, resulting in multiple outputs. These 

outputs are called feature maps. Every feature map uses a different filter (kernel matrix). 

Consequently, the input of a convolutional layer can also be composed of multiple feature maps. 

Every input feature map has its own filter. An output feature map equals the sum of combined 

filter results of all feature maps. Every output feature map has a different set of kernel to be 

applied on all input feature maps. Therefore, in a convolutional layer, usually there are multiple 

input feature maps and multiple output feature maps. The following figure demonstrates this 

concept. 

 

General convolutional layer. 𝑀 input and 𝑁 output feature maps. Filter kernels are of size 𝐾×𝐾. Every output feature 
map has its set of kernel filter to be applied on the input feature maps. 

Side note: the definition of convolution is multiplying the transpose of the above kernel matrix by 

the matching input window. The above operation is actually correlation. Both operations, 

convolution and correlation, are similar and differ only in their indexing notation. For simplicity, 

despite calling the layer in the neural network “convolutional layer,” we use the correlation 

indexing notation. The following figure demonstrates the difference between convolution and 

correlation. 

 

Difference in indexing notation between correlation and convolution. 

M N

X

Y

K

1

Nw

N

Mw
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5.2 Pooling Layer (also called Subsampling) 

The pooling operation takes a small region of the input and outputs a single value. The common 

max pooling outputs the maximal value of the region and discards the other values. Below is an 

image demonstrating max pooling. Other options for pooling include average pooling or L2-norm 

pooling. As with the convolutional layer, stride size is a parameter. The main purpose of pooling 

is to progressively reduce the data. 
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5.3 Putting it All Together – The LeNet Convolutional Neural Net  

CNN, the precursor of Deep Learning, was originally developed in the 1980s. The LeNet CNN 

(see Yann Le Cun 1989[1] and 1998[2])  was applied to recognition of the handwritten digits 

database. We discuss here the complete architecture of LeNet-5 as presented in the 1998 

paper. LeNet-5 comprises the following 7 layers, not including the input.  

0. The input is a 32×32 pixel image.  

1. C1: Convolution layer with 6 feature maps. Kernel sizes of 5×5 and a stride of 1. 

2. S2: Subsampling (pooling) with filter sizes of 2×2 and a stride of 2. 

3. C3: Convolutional layer with 16 feature maps. Kernel sizes of 5×5 and a stride of 1. 

4. S4: Subsampling with filter sizes of 2×2 and a stride of 2. 

5. C5: Convolutional layer with 120 feature maps. Kernel sizes of 5×5 (= input size). 

6. F6: Fully connected layer with 84 units and 𝑡𝑎𝑛ℎ activation. 

7. Output: 10 neurons 

 Refer to the 1998 paper for details. 

 

State-of-the-art CNNs (deep learning networks, such as Alex Net[3]) are larger in almost every 

aspect: larger inputs with RGB channels, more convolutional layers, larger fully connected 

layers and more output classes. In addition, LeNet uses activation and output functions which 

are no longer in widespread use. Nowadays, the fully connected layers are usually ReLU and 

the output layer is a softmax. 

                                                 
1 Le Cun, Yann, et al. "Handwritten digit recognition: Applications of neural network chips and automatic 
learning." IEEE Communications Magazine 27.11 (1989): 41-46. 
2 LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the 
IEEE 86.11 (1998): 2278-2324. 
3 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep 
convolutional neural networks." Advances in neural information processing systems. 2012. 
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6. Learning: Setting Net Weights by Backward Propagation 

(Backpropagation) 

Setting all net weights manually is impractical. Therefore we seek a "learning" algorithm to 

automatically determine the optimal weights. The learning algorithm should minimize some cost 

function, 𝐶. The cost function is a measure for the distance of the output from its target. 

Therefore, the cost is calculated from output layer activations (net’s output) and the 

corresponding target values for each output. Target values mark the right class for that output, 

meaning they are known before learning has started. Every input sample (e.g., image) used for 

training has its known target. This is called a supervised learning process, where training is 

performed from a set of inputs with known target values. 

An example cost function is the Mean Squared Error (MSE): 𝐶(𝑥)=
1

2
∑(𝑡𝑎𝑟𝑔𝑒𝑡(𝑥)𝑖−𝑎𝑖

𝐿(𝑥))𝑖
2
. 

During backpropagation, each weight should be updated to minimize the cost function. For each 

weight, 𝑤𝑗,𝑘
𝑙 , the partial derivative of the cost function with respect to that weight, 

𝜕𝐶

𝜕𝑤𝑗,𝑘
𝑙 , sets the 

direction of update. This direction should be opposite to the derivative. The following figure 

provides intuition into the learning process. 

 

Notes: Descending the gradient towards the desired target is appropriately called “Gradient 

Descent” (GD). Usually, this process achieves only a local minimum, if there are multiple minima. 

Selecting the steepest gradient (when multiple gradients are possible) is called “Steepest 

Gradient Descent.” In large NNs, a Stochastic Gradient Descent (SGD) is typically employed. 
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Calculating 
𝜕𝐶

𝜕𝑤𝑗 𝑘
𝑙  requires to know the relation between 𝐶 and 𝑤𝑗 𝑘

𝑙 . For a hidden layer neuron 

this relation is hard to reach due to the distribution of neuron’s activation to all neurons in the 

next layer. The simplest 
𝜕𝐶

𝜕𝑤𝑗 𝑘
𝑙  to calculate is of a weight in the output layer 𝐿.This calculation 

relies on the chain rule. 

Assuming a MSE cost function, then 
𝜕𝐶

𝜕𝑤𝑗 𝑘
𝐿  with respect to some output neuron weight, 𝑤𝑗 𝑘

𝐿 , can 

be visually explained as follows: 

 

The full calculation: 

𝜕𝐶

𝜕𝑤𝑗 𝑘
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿⋅
𝜕𝑎𝑗
𝐿

𝜕𝑤𝑗 𝑘
𝐿       (chain rule) 

Clarification 

           =
𝜕𝐶

𝜕𝑎𝑗
𝐿⋅
𝜕𝜎(∑𝑤𝑗 𝑖

𝐿⋅𝑎𝑖
𝐿−1

𝑖 )

𝜕𝑤𝑗 𝑘
𝐿  𝑎𝑗

𝐿=𝜎(∑ 𝑤𝑗 𝑖
𝐿⋅𝑎𝑖

𝐿−1

𝑖
)=𝜎(𝑧𝑗

𝐿) 

           =(𝑡𝑎𝑟𝑔𝑒𝑡𝑗−𝑎𝑗
𝐿)⋅𝜎′(𝑧𝑗

𝐿)⋅𝑎𝑘
𝐿−1 

𝐶=
1

2
∑(𝑡𝑎𝑟𝑔𝑒𝑡(𝑥)𝑖−𝑎𝑖

𝐿(𝑥))𝑖
2
, but when 𝑖=𝑗 then: 

𝜕(𝑡𝑎𝑟𝑔𝑒𝑡(𝑥)𝑗−𝑎𝑗
𝐿(𝑥))

𝜕𝑤𝑗 𝑘
𝐿 ≠0 

           =𝛿𝑗
𝐿⋅𝑎𝑘

𝐿−1 

 (𝑡𝑎𝑟𝑔𝑒𝑡𝑗−𝑎𝑗
𝐿)⋅𝜎′(𝑧𝑗

𝐿)=𝛿𝑗
𝐿 

 𝜎′(𝑧𝑗
𝐿) can be calculated from the activation 

function 

 𝑎𝑘
𝐿−1 is the activation of neuron 𝑘 in layer 𝐿-1 

Notes: 

1. (𝒕𝒂𝒓𝒈𝒆𝒕𝒋−𝒂𝒋
𝑳)⋅𝝈′(𝒛𝒋

𝑳)=𝜹𝒋
𝑳 is the output error. It marks the difference between output 

neuron activation and its target value.  

2. 𝝈′(∑𝒘𝒋 𝒊
𝑳⋅𝒂𝒊

𝑳−𝟏
𝒊 )=𝝈′(𝒛𝒋

𝑳) is activation function’s derivative. For example, if 𝜎() is the ReLU 

function, then 𝜎′(𝒛𝒋
𝑳≤0)=0 and 𝜎′(𝒛𝒋

𝑳>0)=1. 

In matrix notation, all partial derivatives of the cost for an output neuron 𝑗 is: 
𝜕𝐶

𝜕𝑤𝑗
𝐿 
=𝛿𝑗

𝐿⋅𝑎𝐿−1,  where 𝛿𝑗
𝐿=∇𝑎𝐶⊙𝜎′(𝑧𝑗

𝐿) 
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The ‘Hadamard Product’ operator ⊙ is applied as follows:  [
2
3
]⊙[

5
6
]=[

2⋅5
3⋅6
]  ( “.* ” in Matlab). 

The ∇𝑎𝐶 operator is a vector whose 𝑗-th component is the partial derivative 
𝜕𝐶

𝜕𝑎𝑗
𝐿: ∇𝑎𝐶=

(

 
 
 

𝜕𝐶

𝜕𝑎1
𝐿

𝜕𝐶

𝜕𝑎2
𝐿

⋯
𝜕𝐶

𝜕𝑎𝑁
𝐿)

 
 
 

  

In case of a weight in a hidden layer neuron, neuron’s activation serves as an input to all 

neurons in the following layer. Consider a neuron in the last hidden layer (layer 𝐿-1). Assume 

neuron’s index is 𝑘 and the weight index within the neuron is 𝑚: 𝑤𝑘   𝑚
𝐿−1. The figure below 

presents the main terms of 
𝜕𝐶

𝜕𝑤𝑗 𝑘
𝐿−1. Partial derivatives belong to the orange arrows were 

computed in 
𝜕𝐶

𝜕𝑤𝑗
𝐿, blue arrows mark the currently computed terms. 

 

Calculating 
𝜕𝐶

𝜕𝑤𝑘 𝑚
𝐿−1 is similar to the equivalent computation in the output layer: 

𝜕𝐶

𝜕𝑤𝑘 𝑚
𝐿−1=

𝜕𝐶

𝜕𝑎𝑘
𝐿−1⋅

𝜕𝑎𝑘
𝐿−1

𝜕𝑤𝑘 𝑚
𝐿−1      (chain rule) 

Clarification 

 𝑧𝑘
𝐿−1=∑𝑤𝑘 𝑖

𝐿−1⋅𝑎𝑖
𝐿−2

𝑖  

      =
𝜕𝐶

𝜕𝑎𝑘
𝐿−1⋅

𝜕𝜎(∑𝑤𝑘 𝑖
𝐿−1⋅𝑎𝑖

𝐿−2
𝑖 )

𝜕𝑤𝑘 𝑚
𝐿−1  

 
𝜕𝑎𝑘
𝐿−1

𝜕𝑤𝑘 𝑚
𝐿−1=𝜎

′(𝑧𝑘
𝐿−1)⋅𝑎𝑚

𝐿−2 

 𝑎𝑘
𝐿−1 is an input in all output layer neurons, 

therefore 
𝜕𝐶

𝜕𝑎𝑘
𝐿−1=∑(

𝜕𝐶

𝜕𝑎𝑖
𝐿⋅

𝜕𝑎𝐼
𝐿

𝜕𝑎𝐼
𝐿−1)𝑖  

      =∑ (
𝜕𝐶

𝜕𝑎𝑖
𝐿⋅
𝜕𝑎𝑖
𝐿

𝜕𝑎𝑘
𝐿−1
)

𝑖

⋅𝜎′(𝑧𝑘
𝐿−1)⋅𝑎𝑚

𝐿−2 
 

𝜕𝐶

𝜕𝑎𝑖
𝐿=𝑡𝑎𝑟𝑔𝑒𝑡𝑖−𝑎𝑖

𝐿 from layer 𝐿. 

 
𝜕𝑎𝑖
𝐿

𝜕𝑎𝑘
𝐿−1=

𝜕𝜎(∑𝑤𝑖 𝑡
𝐿⋅𝑎𝑡

𝐿−1
𝑡 )

𝜕𝑎𝑘
𝐿−1 =𝜎′(𝑧𝑘

𝐿−1)⋅𝑤𝑖 𝑘
𝐿   

     =∑ (𝛿𝑖
𝐿⋅𝑤𝑖 𝑘

𝐿)

𝑖

⋅𝜎′(𝑧𝑘
𝐿−1)⋅𝑎𝑚

𝐿−2  

      =𝜹𝒌
𝑳−𝟏⋅𝒂𝒎

𝑳−𝟐   𝛿𝑘
𝐿−1=∑(𝛿𝑖

𝐿⋅𝑤𝑖 𝑘
𝐿)𝑖 ⋅𝜎′(𝑧𝑘

𝐿−1) 
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By applying the process on all layers, starting from the output layer 𝐿, we can reach a general 

iterative formula for each layer 𝑙: 

 𝛿𝑙=((𝑤𝑙+1)𝑇⋅𝛿𝑙+1)⊙𝜎′(𝑧𝑙).   

It can also be written as 𝛿𝑙=((𝛿𝑙+1)
𝑇
⋅𝑤𝑙+1)⊙𝜎′(𝑧𝑙) to avoid transposing the weights 

matrix. 

  
𝜕𝐶

𝜕𝑤𝑗 𝑘
𝑙 =𝛿𝑗

𝑙⋅𝑎𝑘
𝑙−1 

For the output layer, the output error is calculated as follows: 

 𝛿𝐿=∇𝑎𝐶⊙𝜎′(𝑧
𝐿) 

Backpropagation with a Softmax Output Layer 

In case of a softmax output layer, MSE cost function does not fit well. A good cost function is the 

cross entropy: 

𝐶=− ∑ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖⋅log(𝑎𝑖)

𝑖∈𝑜𝑢𝑡𝑝𝑢𝑡

 

The output activations equal to 𝑎𝑗
𝐿=𝜎(𝑧𝑗)=

𝑒
𝑧𝑗

∑ 𝑒𝑧𝑘
𝑞
𝑘=1

. The above backpropagation equations will 

then be changed to: 

 𝛿𝑖
𝐿=𝑎𝑖

𝐿−𝑡𝑎𝑟𝑔𝑒𝑡𝑖 

 
𝜕𝐶

𝜕𝑤𝑖 𝑗
𝐿 =𝛿𝑖

𝐿⋅𝑎𝑗
𝐿−1 

When calculating 𝛿𝐿 note that softmax is a classifier, therefore only a single target value will 

equal to 1, the rest will equal to 0.  

The above softmax terms apply only for the output layer since the hidden layers don't use 

softmax.  

The Bias Term 

In Section 1 we have seen the bias term in 𝑧=∑𝑤𝑖⋅𝑥𝑖+𝒃, but omitted it. Since it is a constant 

scalar which also requires to update during learning, similar to the weights, it can be treated as 

a constant 1 neuron input, which also has a weight.  

In this case, we can rewrite 𝑧 as follows: 𝑧=𝑤𝑖⋅𝑥𝑖+𝒘𝑵+𝟏⋅1. Since the bias weight input is 

constant 1, the partial derivative of 
𝜕𝐶

𝜕𝑤𝑗  𝑁+1
𝑙 =𝛿𝑗

𝑙. 
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The Backpropagation algorithm 

1. Input 𝒙: Set the corresponding activation 𝑎1 for the input layer. 

2. Feedforward: For each 𝑙=2,3,…,𝐿 compute: 𝑧𝑙=𝑤𝑙𝑎𝑙−1   and   𝑎𝑙=𝜎(𝑧𝑙)  

3. Output error 𝜹𝑳: Compute the vector 𝛿𝐿=∇𝑎𝐶⊙𝜎′(𝑧
𝐿) 

4. Backpropagate the error: For each 𝑙=𝐿-1,𝐿-2,…,2 compute:  

𝛿𝑙=((𝑤𝑙+1)
𝑇
⋅𝛿𝑙+1)⊙𝜎′(𝑧𝐿) 

5. Output: The cost function gradient is given by 
𝜕𝐶

𝜕𝑤𝑗,𝑘
𝑙 =𝑎𝑘

𝑙−1⋅𝛿𝑗
𝑙    
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7. Putting It All Together – Training the Net 

Training the net requires both algorithms, feedforward and backpropagation. In practice, it is 

common to combine backpropagation with a learning algorithm such as a stochastic gradient 

descent, in which we compute the gradient for a group of training examples. Such a group is 

called a mini-batch, marked 𝑚. The learning rate ratio 𝜂 sets the amount of change for each 

weight in the opposite direction to the gradient. 

The learning algorithm based on stochastic gradient descent with a mini-batch of size 𝑚: 

1. For each sample 𝑥 out of the total 𝑚 samples, do: 

i) Feedforward: For each 𝑙=2,3,..,𝐿 compute  

                                     𝑧𝑙(𝑥)=𝑤𝑙⋅𝑎𝑙−1(𝑥)  and  𝑎𝑙(𝑥)=𝜎(𝑧𝑙(𝑥)) 

ii) Output error 𝜹𝑳(𝒙): Compute the vector  

𝛿𝐿(𝑥)=∇𝑎𝐶⊙𝜎′(𝑧
𝐿(𝑥)) 

iii) Backpropagation: For each 𝑙=𝐿-1,𝐿-2,…,2 compute  

𝛿𝑙(𝑥)=((𝑤𝑙+1)
𝑇
⋅𝛿𝑙+1(𝑥))⊙𝜎′(𝑧𝑙(𝑥)) 

 

2. Gradient Descent: For each 𝑙=𝐿,𝐿-1,…2, update the weights according to the rule: 

𝑤𝑙←𝑤𝑙−
𝜂

𝑚
∑ 𝛿𝑙(𝑥)⋅(𝑎𝑙(𝑥))

𝑇

𝑥

 

In the last step, we update the weights in the opposite direction to the gradient. For each weight, 

all 𝑚 mini-batch gradients are averaged and multiplied by the learning rate. To achieve cost 

function convergence, the learning rate is usually small, such as 𝜂=0.05. 

 

 


