
1

Swift Introduction to Neural Networks
Roman Kaplan, November 2016

048874 Parallel Computing Architecture, Fall 2016

The description follows the online book http://neuralnetworksanddeeplearning.com/. Use it freely

as a reference. A short description of its chapters:

 Chapter 1 describes the example neural network we use and includes Python code to

compute it (inference and training).

 Chapter 2 dwells on matrix NN and backpropagation.

 Chapter 3 revisits everything and gets deeper into mathematics.

 Chapter 4 addresses intellectual questions on NN.

 Chapter 5 discusses challenges of deep learning.

 Chapter 6 talks of convolutional (deep) NN.

http://neuralnetworksanddeeplearning.com/

2

1. Neuron

The most basic computational unit in a neural network. Has multiple inputs. Each input

multiplied by a weight (real number). The weighted sum of inputs plus a bias is fed through a

non-linear function 𝜎():

𝑂𝑢𝑡𝑝𝑢𝑡=𝜎(∑𝑤𝑖⋅𝑥𝑖+𝑏)=𝜎(𝑧)

The output (sometimes dented a) is also termed activation and 𝜎() is the activation

function, 𝑎=𝜎(𝑧).

The most common activation functions are: 1) sigmoid (range 0,1), 2) tanh (-1,1) and

3) ReLU [0,∞) (Rectified Linear Unit).

For simplicity, we ignore the bias term 𝑏 in 𝑧=∑𝑤𝑖⋅𝑥𝑖+𝑏 and assume 𝑧=∑𝑤𝑖⋅𝑥𝑖. Later we

will show the full equations, including the bias term.

Further reading: http://neuralnetworksanddeeplearning.com/chap1.html#perceptrons

http://neuralnetworksanddeeplearning.com/chap1.html#perceptrons

3

2. Neural Network (fully connected)

When connecting many neurons together, the complexity of implemented functions increases.

The network is structured in “layers”, where a neuron output from one layer serves as an input

to all neurons in the next layer (hence the term fully-connected neural network).

The output of each neuron in the input layer is constant. For example, if the input is an image

consisting of pixels, then the input layer is a vector of pixels where each neuron in the input

layer outputs the value of its pixel. Multiple hidden layers are possible.

Further reading:

http://neuralnetworksanddeeplearning.com/chap1.html#the_architecture_of_neural_networks

http://neuralnetworksanddeeplearning.com/chap1.html#the_architecture_of_neural_networks

4

3. Calculating Network Output: Feedforward, or Inference

The input is a (constant) vector

𝑖𝑛𝑝𝑢𝑡=(𝑥1,𝑥2,…,𝑥𝑛)

The activation of neuron k in the first hidden layer is therefore

𝑎𝑘
1=𝜎(∑ 𝑤𝑘,𝑖

1 ⋅𝑥𝑖
𝑖

) =𝜎(𝑧𝑘
1)

The weights of the first hidden layer (𝑚-neuron layer with 𝑛 inputs per neuron) can be

represented as a matrix:

𝑊𝑚×𝑛
1 =

(

𝑤1 1 ⋯(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 1)⋯ 𝑤1 𝑛
⋮ ⋮ ⋮
𝑤𝑘 1 ⋯(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘)⋯ 𝑤𝑘 𝑛
⋮ ⋮ ⋮
𝑤𝑚 1 ⋯(𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑚)⋯ 𝑤𝑚 𝑛)

In matrix form,

𝑎1=𝜎(𝑊1⋅𝑖𝑛𝑝𝑢𝑡)

and the dimensions are [𝑚,1]=[𝑚,𝑛]×[𝑛,1]. The activations of the first hidden layer serve as

inputs to the next layer. Assuming a single hidden 𝑚-neuron layer and a 𝑞-neuron output layer,

the output is

𝑜𝑢𝑡𝑝𝑢𝑡=𝜎(𝑊𝑜𝑢𝑡𝑝𝑢𝑡⋅𝑎1)

with dimensions [𝑞,1]=[𝑞,𝑚]×[𝑚,1]. This calculation is called feedforward because the input

is propagated through all layers to the output. It is also termed inference because the output is

inferred from the input by a given neural network. In contrast, learning (described below)

modifies the neural network given many inputs and (possibly) respective desired outputs.

3.1 Softmax Layer – Solving a Classification Problem

If the network is used as a classifier, it is common to add ‘softmax’ stage at the end to force all

outputs to [0,1] range. In this case, we consider output k to represent the probability that the

input belongs to the k’th class. Softmax also assures that the sum of all outputs is 1. Softmax

converts the output vector 𝑧 (of arbitrary real values—the output layer may not need 𝜎() when

followed by softmax), to vector 𝜎(𝑧) of real values in the range (0,1) which add up to 1.

𝜎(𝑧)𝑗=
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘
𝑞
𝑘=1

 for 𝑗=1,…,𝑞

5

Practical issue: Numeric stability. When writing code for computing the softmax function in

practice, the intermediate terms 𝑒𝑧𝑗 and ∑ 𝑒𝑧𝑘
𝑞
𝑘=1 may be very large due to exponentials and

may exceed the maximum magnitude allowed by the precision chosen for computation (for

instance, if 16 bit fixed point format is employed, the maximum number that can be represented

is 215−1=32,767). In softmax computation this problem may be address by certain

normalization. One such normalization trick is to expand the fraction by a sufficiently small

constant 𝐶. We can then "push" 𝐶 to the exponents as follows:

𝜎(𝑧)𝑗=
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘
𝑞
𝑘=1

=
𝐶⋅𝑒𝑧𝑗

𝐶⋅∑ 𝑒𝑧𝑘
𝑞
𝑘=1

=
𝑒𝑧𝑗+𝑙𝑜𝑔𝐶

∑ 𝑒𝑧𝑘+𝑙𝑜𝑔𝐶
𝑞
𝑘=1

One common choice for 𝐶 is to set 𝑙𝑜𝑔𝐶=−max
𝑗
𝑧𝑗. This choice implies shifting the values of

the vector 𝑧 so that the highest value is zero. All exponents are then fractions. This choice

works well for floating point representation. Computing with fixed point numbers may require

other choices.

6

4. Example: NN Recognition / Classification of the MNIST Hand-Written

Digits Dataset

The MNIST data set contains 70,000 images of hand-written digits, 28×28=784 eight-bit pixels

each. The goal of the NN is to classify each image into one of ten digits (each such

classification is an inference). Consider a NN with a 784-neuron input layer (the 2D matrix of

pixels is rearranged as a vector), one hidden layer of 100 neurons using ReLU activation and

one output layer with 10 neurons (the number of neurons in the hidden layer, 100, is chosen

arbitrarily). All bias values are assumed zero. The computation can be described as follows. The

NN is applied to a single image at a time.

The input vector is 𝑝[784,1]. The hidden layer, using ReLU activation, computes

𝑎[100]
1 =𝑅𝑒𝐿𝑈(𝑊[100,784]

1 ⋅𝑝[784])

Subscripts indicate dimensions. The output layer (without activation) computes

𝑞[10]=𝑊[10,100]
𝑜𝑢𝑡𝑝𝑢𝑡

⋅𝑎[100]
1

To efficiently compute softmax, the following steps may be applied.

𝑥[10]=𝑒
𝑞[10]=(

𝑒𝑞1

𝑒𝑞2
⋯
𝑒𝑞10

)

𝑆𝑋=∑ 𝑥(𝑘)

10

𝑘=1

𝜎[10]=
𝑥[10]

𝑆𝑋
=

(

𝑒𝑞1
𝑆𝑋
⁄

𝑒𝑞2
𝑆𝑋
⁄
⋯

𝑒𝑞10
𝑆𝑋
⁄)

Clearly, the two weight matrices must be pre-computed and known.

Further reading:

http://neuralnetworksanddeeplearning.com/chap1.html#a_simple_network_to_classify_handwritt

en_digits

http://yann.lecun.com/exdb/mnist/
http://neuralnetworksanddeeplearning.com/chap1.html#a_simple_network_to_classify_handwritten_digits
http://neuralnetworksanddeeplearning.com/chap1.html#a_simple_network_to_classify_handwritten_digits

7

5. Convolutional Neural Network

When processing very large inputs it may be impractical to connect all inputs to all neurons in

the first hidden layer, as in the fully-connected NN. The same difficulty applies to the internal

hidden layers. Instead, in convolutional neural networks (CNN) each neuron may process only a

small subset of the previous layer. When the same set of weights (kernel) is used in many

neurons of same layer, to cover the complete set of subsets of a previous layer, the

computation is clearly a convolution.

For instance, when the NN processes images, convolutions are typically employed to detect

image features. Since multiple features may be sought in an image, a layer may comprise of

many separate convolutions, all applied to the same previous layer.

Data reduction steps, such as pooling, are usually applied in between layers of convolutions.

After several (or many) such layers, several fully-connected layers may be employed for final

classification. The following sub-sections briefly describe these structures.

5.1 Convolution Layer

Each step of the convolution (one linear combination of values, applying one kernel) is

performed by one neuron. The neuron receives only a local region of the previous layer. The

neuron may be viewed as a filter. The idea is to apply a small filter on the entire input by sliding

the filter across the width and height of the (two-dimensional) input.

Consider the following example of a 3×3 input convolved with a 2×2 filter kernel. The kernel is

shifted by 1 pixel in either or both dimensions for other output values. The size of this shift is

called stride.

Convolution of a single 3×3 input array with a 2×2 size filter with stride of 1.

Mathematically, the convolution of a 𝐾×𝐾 kernel 𝑤 with 2D input array 𝑥 produces activation

array 𝑎.

𝑎𝑖,𝑗=∑ ∑ 𝑥𝑖+𝑝−1,𝑗+𝑞−1⋅𝑤𝑝,𝑞

𝐾

𝑞=1

𝐾

𝑝=1

8

Care must be applied to array boundaries. Convolving an input with a kernel results in an output

of somewhat smaller dimensions than the input, as can be seen in the above figure. For

simplicity, it may be desirable for the output to be of the same size as the input. Therefore, a

zero padding of the image may be applied by adding rows and columns of zeroes to the input

boundaries.

In practice, multiple filters are applied to the same input, resulting in multiple outputs. These

outputs are called feature maps. Every feature map uses a different filter (kernel matrix).

Consequently, the input of a convolutional layer can also be composed of multiple feature maps.

Every input feature map has its own filter. An output feature map equals the sum of combined

filter results of all feature maps. Every output feature map has a different set of kernel to be

applied on all input feature maps. Therefore, in a convolutional layer, usually there are multiple

input feature maps and multiple output feature maps. The following figure demonstrates this

concept.

General convolutional layer. 𝑀 input and 𝑁 output feature maps. Filter kernels are of size 𝐾×𝐾. Every output feature
map has its set of kernel filter to be applied on the input feature maps.

Side note: the definition of convolution is multiplying the transpose of the above kernel matrix by

the matching input window. The above operation is actually correlation. Both operations,

convolution and correlation, are similar and differ only in their indexing notation. For simplicity,

despite calling the layer in the neural network “convolutional layer,” we use the correlation

indexing notation. The following figure demonstrates the difference between convolution and

correlation.

Difference in indexing notation between correlation and convolution.

M N

X

Y

K

1

Nw

N

Mw

9

5.2 Pooling Layer (also called Subsampling)

The pooling operation takes a small region of the input and outputs a single value. The common

max pooling outputs the maximal value of the region and discards the other values. Below is an

image demonstrating max pooling. Other options for pooling include average pooling or L2-norm

pooling. As with the convolutional layer, stride size is a parameter. The main purpose of pooling

is to progressively reduce the data.

10

5.3 Putting it All Together – The LeNet Convolutional Neural Net

CNN, the precursor of Deep Learning, was originally developed in the 1980s. The LeNet CNN

(see Yann Le Cun 1989[1] and 1998[2]) was applied to recognition of the handwritten digits

database. We discuss here the complete architecture of LeNet-5 as presented in the 1998

paper. LeNet-5 comprises the following 7 layers, not including the input.

0. The input is a 32×32 pixel image.

1. C1: Convolution layer with 6 feature maps. Kernel sizes of 5×5 and a stride of 1.

2. S2: Subsampling (pooling) with filter sizes of 2×2 and a stride of 2.

3. C3: Convolutional layer with 16 feature maps. Kernel sizes of 5×5 and a stride of 1.

4. S4: Subsampling with filter sizes of 2×2 and a stride of 2.

5. C5: Convolutional layer with 120 feature maps. Kernel sizes of 5×5 (= input size).

6. F6: Fully connected layer with 84 units and 𝑡𝑎𝑛ℎ activation.

7. Output: 10 neurons

 Refer to the 1998 paper for details.

State-of-the-art CNNs (deep learning networks, such as Alex Net[3]) are larger in almost every

aspect: larger inputs with RGB channels, more convolutional layers, larger fully connected

layers and more output classes. In addition, LeNet uses activation and output functions which

are no longer in widespread use. Nowadays, the fully connected layers are usually ReLU and

the output layer is a softmax.

1 Le Cun, Yann, et al. "Handwritten digit recognition: Applications of neural network chips and automatic
learning." IEEE Communications Magazine 27.11 (1989): 41-46.
2 LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the
IEEE 86.11 (1998): 2278-2324.
3 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." Advances in neural information processing systems. 2012.

11

6. Learning: Setting Net Weights by Backward Propagation

(Backpropagation)

Setting all net weights manually is impractical. Therefore we seek a "learning" algorithm to

automatically determine the optimal weights. The learning algorithm should minimize some cost

function, 𝐶. The cost function is a measure for the distance of the output from its target.

Therefore, the cost is calculated from output layer activations (net’s output) and the

corresponding target values for each output. Target values mark the right class for that output,

meaning they are known before learning has started. Every input sample (e.g., image) used for

training has its known target. This is called a supervised learning process, where training is

performed from a set of inputs with known target values.

An example cost function is the Mean Squared Error (MSE): 𝐶(𝑥)=
1

2
∑(𝑡𝑎𝑟𝑔𝑒𝑡(𝑥)𝑖−𝑎𝑖

𝐿(𝑥))𝑖
2
.

During backpropagation, each weight should be updated to minimize the cost function. For each

weight, 𝑤𝑗,𝑘
𝑙 , the partial derivative of the cost function with respect to that weight,

𝜕𝐶

𝜕𝑤𝑗,𝑘
𝑙 , sets the

direction of update. This direction should be opposite to the derivative. The following figure

provides intuition into the learning process.

Notes: Descending the gradient towards the desired target is appropriately called “Gradient

Descent” (GD). Usually, this process achieves only a local minimum, if there are multiple minima.

Selecting the steepest gradient (when multiple gradients are possible) is called “Steepest

Gradient Descent.” In large NNs, a Stochastic Gradient Descent (SGD) is typically employed.

12

Calculating
𝜕𝐶

𝜕𝑤𝑗 𝑘
𝑙 requires to know the relation between 𝐶 and 𝑤𝑗 𝑘

𝑙 . For a hidden layer neuron

this relation is hard to reach due to the distribution of neuron’s activation to all neurons in the

next layer. The simplest
𝜕𝐶

𝜕𝑤𝑗 𝑘
𝑙 to calculate is of a weight in the output layer 𝐿.This calculation

relies on the chain rule.

Assuming a MSE cost function, then
𝜕𝐶

𝜕𝑤𝑗 𝑘
𝐿 with respect to some output neuron weight, 𝑤𝑗 𝑘

𝐿 , can

be visually explained as follows:

The full calculation:

𝜕𝐶

𝜕𝑤𝑗 𝑘
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿⋅
𝜕𝑎𝑗
𝐿

𝜕𝑤𝑗 𝑘
𝐿 (chain rule)

Clarification

 =
𝜕𝐶

𝜕𝑎𝑗
𝐿⋅
𝜕𝜎(∑𝑤𝑗 𝑖

𝐿⋅𝑎𝑖
𝐿−1

𝑖)

𝜕𝑤𝑗 𝑘
𝐿 𝑎𝑗

𝐿=𝜎(∑ 𝑤𝑗 𝑖
𝐿⋅𝑎𝑖

𝐿−1

𝑖
)=𝜎(𝑧𝑗

𝐿)

 =(𝑡𝑎𝑟𝑔𝑒𝑡𝑗−𝑎𝑗
𝐿)⋅𝜎′(𝑧𝑗

𝐿)⋅𝑎𝑘
𝐿−1

𝐶=
1

2
∑(𝑡𝑎𝑟𝑔𝑒𝑡(𝑥)𝑖−𝑎𝑖

𝐿(𝑥))𝑖
2
, but when 𝑖=𝑗 then:

𝜕(𝑡𝑎𝑟𝑔𝑒𝑡(𝑥)𝑗−𝑎𝑗
𝐿(𝑥))

𝜕𝑤𝑗 𝑘
𝐿 ≠0

 =𝛿𝑗
𝐿⋅𝑎𝑘

𝐿−1

 (𝑡𝑎𝑟𝑔𝑒𝑡𝑗−𝑎𝑗
𝐿)⋅𝜎′(𝑧𝑗

𝐿)=𝛿𝑗
𝐿

 𝜎′(𝑧𝑗
𝐿) can be calculated from the activation

function

 𝑎𝑘
𝐿−1 is the activation of neuron 𝑘 in layer 𝐿-1

Notes:

1. (𝒕𝒂𝒓𝒈𝒆𝒕𝒋−𝒂𝒋
𝑳)⋅𝝈′(𝒛𝒋

𝑳)=𝜹𝒋
𝑳 is the output error. It marks the difference between output

neuron activation and its target value.

2. 𝝈′(∑𝒘𝒋 𝒊
𝑳⋅𝒂𝒊

𝑳−𝟏
𝒊)=𝝈′(𝒛𝒋

𝑳) is activation function’s derivative. For example, if 𝜎() is the ReLU

function, then 𝜎′(𝒛𝒋
𝑳≤0)=0 and 𝜎′(𝒛𝒋

𝑳>0)=1.

In matrix notation, all partial derivatives of the cost for an output neuron 𝑗 is:
𝜕𝐶

𝜕𝑤𝑗
𝐿
=𝛿𝑗

𝐿⋅𝑎𝐿−1, where 𝛿𝑗
𝐿=∇𝑎𝐶⊙𝜎′(𝑧𝑗

𝐿)

13

The ‘Hadamard Product’ operator ⊙ is applied as follows: [
2
3
]⊙[

5
6
]=[

2⋅5
3⋅6
] (“.* ” in Matlab).

The ∇𝑎𝐶 operator is a vector whose 𝑗-th component is the partial derivative
𝜕𝐶

𝜕𝑎𝑗
𝐿: ∇𝑎𝐶=

(

𝜕𝐶

𝜕𝑎1
𝐿

𝜕𝐶

𝜕𝑎2
𝐿

⋯
𝜕𝐶

𝜕𝑎𝑁
𝐿)

In case of a weight in a hidden layer neuron, neuron’s activation serves as an input to all

neurons in the following layer. Consider a neuron in the last hidden layer (layer 𝐿-1). Assume

neuron’s index is 𝑘 and the weight index within the neuron is 𝑚: 𝑤𝑘 𝑚
𝐿−1. The figure below

presents the main terms of
𝜕𝐶

𝜕𝑤𝑗 𝑘
𝐿−1. Partial derivatives belong to the orange arrows were

computed in
𝜕𝐶

𝜕𝑤𝑗
𝐿, blue arrows mark the currently computed terms.

Calculating
𝜕𝐶

𝜕𝑤𝑘 𝑚
𝐿−1 is similar to the equivalent computation in the output layer:

𝜕𝐶

𝜕𝑤𝑘 𝑚
𝐿−1=

𝜕𝐶

𝜕𝑎𝑘
𝐿−1⋅

𝜕𝑎𝑘
𝐿−1

𝜕𝑤𝑘 𝑚
𝐿−1 (chain rule)

Clarification

 𝑧𝑘
𝐿−1=∑𝑤𝑘 𝑖

𝐿−1⋅𝑎𝑖
𝐿−2

𝑖

 =
𝜕𝐶

𝜕𝑎𝑘
𝐿−1⋅

𝜕𝜎(∑𝑤𝑘 𝑖
𝐿−1⋅𝑎𝑖

𝐿−2
𝑖)

𝜕𝑤𝑘 𝑚
𝐿−1

𝜕𝑎𝑘
𝐿−1

𝜕𝑤𝑘 𝑚
𝐿−1=𝜎

′(𝑧𝑘
𝐿−1)⋅𝑎𝑚

𝐿−2

 𝑎𝑘
𝐿−1 is an input in all output layer neurons,

therefore
𝜕𝐶

𝜕𝑎𝑘
𝐿−1=∑(

𝜕𝐶

𝜕𝑎𝑖
𝐿⋅

𝜕𝑎𝐼
𝐿

𝜕𝑎𝐼
𝐿−1)𝑖

 =∑ (
𝜕𝐶

𝜕𝑎𝑖
𝐿⋅
𝜕𝑎𝑖
𝐿

𝜕𝑎𝑘
𝐿−1
)

𝑖

⋅𝜎′(𝑧𝑘
𝐿−1)⋅𝑎𝑚

𝐿−2

𝜕𝐶

𝜕𝑎𝑖
𝐿=𝑡𝑎𝑟𝑔𝑒𝑡𝑖−𝑎𝑖

𝐿 from layer 𝐿.

𝜕𝑎𝑖
𝐿

𝜕𝑎𝑘
𝐿−1=

𝜕𝜎(∑𝑤𝑖 𝑡
𝐿⋅𝑎𝑡

𝐿−1
𝑡)

𝜕𝑎𝑘
𝐿−1 =𝜎′(𝑧𝑘

𝐿−1)⋅𝑤𝑖 𝑘
𝐿

 =∑ (𝛿𝑖
𝐿⋅𝑤𝑖 𝑘

𝐿)

𝑖

⋅𝜎′(𝑧𝑘
𝐿−1)⋅𝑎𝑚

𝐿−2

 =𝜹𝒌
𝑳−𝟏⋅𝒂𝒎

𝑳−𝟐 𝛿𝑘
𝐿−1=∑(𝛿𝑖

𝐿⋅𝑤𝑖 𝑘
𝐿)𝑖 ⋅𝜎′(𝑧𝑘

𝐿−1)

14

By applying the process on all layers, starting from the output layer 𝐿, we can reach a general

iterative formula for each layer 𝑙:

 𝛿𝑙=((𝑤𝑙+1)𝑇⋅𝛿𝑙+1)⊙𝜎′(𝑧𝑙).

It can also be written as 𝛿𝑙=((𝛿𝑙+1)
𝑇
⋅𝑤𝑙+1)⊙𝜎′(𝑧𝑙) to avoid transposing the weights

matrix.

𝜕𝐶

𝜕𝑤𝑗 𝑘
𝑙 =𝛿𝑗

𝑙⋅𝑎𝑘
𝑙−1

For the output layer, the output error is calculated as follows:

 𝛿𝐿=∇𝑎𝐶⊙𝜎′(𝑧
𝐿)

Backpropagation with a Softmax Output Layer

In case of a softmax output layer, MSE cost function does not fit well. A good cost function is the

cross entropy:

𝐶=− ∑ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖⋅log(𝑎𝑖)

𝑖∈𝑜𝑢𝑡𝑝𝑢𝑡

The output activations equal to 𝑎𝑗
𝐿=𝜎(𝑧𝑗)=

𝑒
𝑧𝑗

∑ 𝑒𝑧𝑘
𝑞
𝑘=1

. The above backpropagation equations will

then be changed to:

 𝛿𝑖
𝐿=𝑎𝑖

𝐿−𝑡𝑎𝑟𝑔𝑒𝑡𝑖

𝜕𝐶

𝜕𝑤𝑖 𝑗
𝐿 =𝛿𝑖

𝐿⋅𝑎𝑗
𝐿−1

When calculating 𝛿𝐿 note that softmax is a classifier, therefore only a single target value will

equal to 1, the rest will equal to 0.

The above softmax terms apply only for the output layer since the hidden layers don't use

softmax.

The Bias Term

In Section 1 we have seen the bias term in 𝑧=∑𝑤𝑖⋅𝑥𝑖+𝒃, but omitted it. Since it is a constant

scalar which also requires to update during learning, similar to the weights, it can be treated as

a constant 1 neuron input, which also has a weight.

In this case, we can rewrite 𝑧 as follows: 𝑧=𝑤𝑖⋅𝑥𝑖+𝒘𝑵+𝟏⋅1. Since the bias weight input is

constant 1, the partial derivative of
𝜕𝐶

𝜕𝑤𝑗 𝑁+1
𝑙 =𝛿𝑗

𝑙.

15

The Backpropagation algorithm

1. Input 𝒙: Set the corresponding activation 𝑎1 for the input layer.

2. Feedforward: For each 𝑙=2,3,…,𝐿 compute: 𝑧𝑙=𝑤𝑙𝑎𝑙−1 and 𝑎𝑙=𝜎(𝑧𝑙)

3. Output error 𝜹𝑳: Compute the vector 𝛿𝐿=∇𝑎𝐶⊙𝜎′(𝑧
𝐿)

4. Backpropagate the error: For each 𝑙=𝐿-1,𝐿-2,…,2 compute:

𝛿𝑙=((𝑤𝑙+1)
𝑇
⋅𝛿𝑙+1)⊙𝜎′(𝑧𝐿)

5. Output: The cost function gradient is given by
𝜕𝐶

𝜕𝑤𝑗,𝑘
𝑙 =𝑎𝑘

𝑙−1⋅𝛿𝑗
𝑙

16

7. Putting It All Together – Training the Net

Training the net requires both algorithms, feedforward and backpropagation. In practice, it is

common to combine backpropagation with a learning algorithm such as a stochastic gradient

descent, in which we compute the gradient for a group of training examples. Such a group is

called a mini-batch, marked 𝑚. The learning rate ratio 𝜂 sets the amount of change for each

weight in the opposite direction to the gradient.

The learning algorithm based on stochastic gradient descent with a mini-batch of size 𝑚:

1. For each sample 𝑥 out of the total 𝑚 samples, do:

i) Feedforward: For each 𝑙=2,3,..,𝐿 compute

 𝑧𝑙(𝑥)=𝑤𝑙⋅𝑎𝑙−1(𝑥) and 𝑎𝑙(𝑥)=𝜎(𝑧𝑙(𝑥))

ii) Output error 𝜹𝑳(𝒙): Compute the vector

𝛿𝐿(𝑥)=∇𝑎𝐶⊙𝜎′(𝑧
𝐿(𝑥))

iii) Backpropagation: For each 𝑙=𝐿-1,𝐿-2,…,2 compute

𝛿𝑙(𝑥)=((𝑤𝑙+1)
𝑇
⋅𝛿𝑙+1(𝑥))⊙𝜎′(𝑧𝑙(𝑥))

2. Gradient Descent: For each 𝑙=𝐿,𝐿-1,…2, update the weights according to the rule:

𝑤𝑙←𝑤𝑙−
𝜂

𝑚
∑ 𝛿𝑙(𝑥)⋅(𝑎𝑙(𝑥))

𝑇

𝑥

In the last step, we update the weights in the opposite direction to the gradient. For each weight,

all 𝑚 mini-batch gradients are averaged and multiplied by the learning rate. To achieve cost

function convergence, the learning rate is usually small, such as 𝜂=0.05.

