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Abstract: Front-end integrated circuits for signal processing are useful in neuronal recording systems 

that engage a large number of electrodes. Detection, alignment, and sorting of the spike data at the front-

end reduces the data bandwidth and enables wireless communication. Without such data reduction, large 

data volumes need to be transferred to a host computer and typically heavy cables are required which 

constrain the patient or test animal. We explore Neuroprocessor electronic chips for portable applications. 

The Neuroprocessor can be placed next to the recording electrodes and provide for all stages of spike 

processing, stimulating neuronal tissues and wireless communication to a host computer. It can dissipate 

only a limited amount of power, due to supply constraints and heat restrictions. We introduce hardware 

architectures for automatic spike sorting algorithms in Neuroprocessors, designed for low power. Some of 

the algorithms are based on principal component analysis. Others employ a novel Integral Transform 

analysis and achieve 98% of the precision of a PCA sorter, while requiring only 2.5% of the 

computational complexity. The algorithms execute autonomously, but require off-line training and setting 

of computational parameters. We employ pre-recorded neuronal signals to evaluate the accuracy of the 

proposed algorithms and architectures: The recorded data are processed by a standard PCA spike sorting 

software algorithm, as well as by the several hardware algorithms, and the outcomes are compared.  
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I. INTRODUCTION 

Electrophysiological study of brain structures using wire electrodes is one of the oldest methods 

in neuroscience  [1]. A single electrode can often pick up signals of multiple neurons from a 

small region around its tip. Sorting action potential waveforms (“spikes”) originating from 

different neurons can be performed either on-line  [2]- [5] or off-line  [6]- [8] using various 

methods for pattern recognition. On-line sorting is required for closed loop experiments (in 

which stimulations are generated in response to detected spikes  [9]) and for clinical applications 

 [10]. Off-line sorting is sometimes employed to compute the parameters required for on-line 

algorithms.  

On-line sorting requires high bandwidth communications between the electrodes and the sorting 

computer, as all the recorded data has to be transferred to the host. When a large number of 

signals is to be handled, typical computing resources are insufficient  [11]. Special-purpose 

hardware for spike processing is called for high-volume research and clinical applications.  

Implantable integrated circuits with front-end processing of spikes can significantly reduce the 

communication bandwidth with the back-end computer by transferring only the outcome of the 

sorting algorithm. For instance, given a sampling rate of 24Ksps and 12 bit sampling precision, 

the raw data rate is 288Kbits/second per electrode. Spike sorting converts each spike to a short 

spike notification message (~20 bits). Assuming a high rate of 100 spikes/sec/electrode, the 

required data rate is reduced down to 2Kbits/sec per electrode, less than 1% of the original rate. 

We investigate the Neuroprocessor, a dedicated integrated circuit for front end analog 

processing, conversion to digital  [12], and spike sorting  [13]. If the Neuroprocessor is to be 

implanted in the brain, and/or used in portable applications (such as neuro-prosthetics), it should 

require minimal power for its operation. The purpose of this study is to investigate spike sorting 
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algorithms and architectures that minimize power consumption. Such algorithms trade off some 

classification accuracy in return for significant savings in power. 

The feasibility of hardware implementation of two spike-sorting algorithms from a power 

consumption point of view was discussed in  [14]. Yet, typical spike-sorting algorithms, such as 

based on Principal Component Analysis (PCA  [15]), are unattractive for efficient 

implementation in hardware, as they require storing and iterative processing of large amounts of 

data. We consider five algorithms and architectures that achieve high precision spike sorting 

while minimizing power dissipation, and investigate their sorting errors, relative to a standard 

PCA software algorithm  [16] [17]. All algorithms require off-line training for setting their 

computational parameters. Periodic re-training is typically required.  

The Hard Decision algorithm compares the spike signal with predetermined values. The Soft 

Decision algorithm applies filtering prior to making the comparisons. The Integral Transform 

algorithm applies linear signal separation in a predetermined integral transform space. The PCA 

sorting architecture implements common PCA with linear classification, and the Segmented PC 

algorithm applies PCA with reduced precision. 

Section  II presents an overview of the system. The various algorithms and architectures are 

described in Section  III, and their performance is analyzed in Section  IV. 

II. SYSTEM OVERVIEW 

In typical experimental setups, the signals recorded by the electrodes are amplified and 

transmitted over wires to a host computer where they are digitized and processed according to 

the experimental requirements  [18]. The main disadvantage of that experimental arrangement is 

the need to connect a cable to the subject, restricting its movement. The Neuroprocessor 



 

 4

performs front-end data processing and reduction, to enable bidirectional wireless 

communication that replaces cables and allows free movement of the patient or test subject. 

A wireless neuronal recording system comprises a Neuroprocessor, electrodes, a wireless 

modem, and a power source. While it is feasible to transfer some raw signal recordings over the 

wireless channel, the large volume of data collected by many electrodes is prohibitive  [11], and 

data reduction must be carried out by the Neuroprocessor. In many neuronal experiments, the 

most important data is the indication of spikes, their sources (electrode and identifiable unit 

within the electrode), and the time of their occurrence. These indications are produced with a 

real-time hardware spike sorting algorithm; the Neuroprocessor transmits only the spike 

indications and avoids sending the raw signal. Such indications require much lower 

communication bandwidth and could be made feasible with low-power wireless links. As 

indicated above, spike sorting may lead to more than 99% reduction in the data bandwidth 

requirements. 

The architecture of the part of the Neuroprocessor that processes the signal from a single 

electrode is shown in Figure 1. The signal is first amplified and digitized. The Spike Detector 

detects the presence of spikes in the input, determines their starting point, and initiates the 

operation of the Spike Sorter. Both spike detection and sorting must be adaptable, due to 

unstable recording conditions. Therefore, raw data is periodically transmitted to the host 

computer for retraining and recalculated parameters are sent back to the Neuroprocessor. At all 

other times, the spike signal is processed by the Spike Detector and Spike Sorter. In this paper 

we focus on spike sorting algorithms and assume a given Spike Detector. The output logic 

produces the spike notification message. 
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III. HARDWARE ALGORITHMS AND ARCHITECTURES FOR  SPIKE SORTING  

When exploring VLSI architectures for real time spike sorting to be carried out at the head-stage, 

we seek to minimize the required resources while still achieving acceptable levels of accuracy. 

The primary goal is to minimize power dissipation. Following  [14], we consider the relative 

computational complexity of a few architectures as a predictor of their power measure.  

Five different hardware sorting algorithms are considered. The first two algorithms, Hard 

Decision (HD) and Soft Decision (SD), perform classification in the time domain. The remaining 

three algorithms, Integral Transform (IT), Principal Component Sorting (PC) and Segmented PC 

(k-PC), classify in transform domains. 

A. The Hard Decision (HD) Algorithm 

The Hard decision (HD) algorithm compares the spike signal with a pre-computed separation 

line. It is relatively simple to implement in VLSI and incurs a low computational complexity, 

potentially requiring small circuit area and dissipating low power. However (as discussed in 

Section  IV below), it is sensitive to noise, resulting in rather high classification errors. 

The HD algorithm operates as follows: The preliminary recorded spikes in the training set are 

clustered into separate groups. Clustering can be human supervised  [3] [19] or unsupervised  [20]-

 [22]. Figure 2a shows an example of two clusters in a space spanned by the first two principal 

components (“PC space”)  [15]. The separation line is represented by the black waveform. 

Sometimes it can be generated by the inverse PCA transform of a “center point” (on the PC 

space) that is placed between the two clusters (Figure 2b). However, when the clusters are too 

close to each other, the separation line may need to be generated directly on the time series 

representation (Figure 2a). The spike signal can then be split into several time intervals, 
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according to the positive and negative phases of the spikes (marked A, B in Figure 2a). For each 

time interval we can determine whether a spike of a specific cluster is expected to have values 

either above or below the separation line. For instance, spikes of the cluster colored green (light) 

are above the separation line in time interval A and below it in time interval B. This algorithm 

may also be generalized for cases where more than two separate units (neurons) are identifiable. 

A VLSI architecture for the HD algorithm is shown in Figure 3. The input x(i) is compared to the 

synchronized value of the separation line M(i). The comparator outputs are series of bits, which 

are accumulated into SA and SB, during the A and B time intervals, respectively. These two 

sums represent the number of signal points within the respective time intervals that are above the 

separation line. In the second stage, these sums are compared with the sorting threshold values 

TA and TB. If the two comparisons agree with the predefined values, a “spike notification 

message” is sent to the host computer. For instance, a spike from the green (light) cluster (Figure 

2a) would generate a high number in time interval A (ideally equal to the number of samples 

included in A) and a low number (ideally zero) in time interval B. The computational complexity 

and sorting performance (in terms of errors relative to an off-line PCA algorithm) are discussed 

in Section  IV below. 

Formally, consider a discrete-time signal input:  

 { }( ) | 1,...,x i i N= , 

two index sets (corresponding to two decision intervals in the time domain):  

 { } { }1 2 3 4= ( ) | , = ( ) | , A x i i i i B x i i i i≤ ≤ ≤ ≤  

and a given discrete-time separation line { }( ) | 1,...,M i i N= . Note that all given factors (short of 

the input signal) are pre-computed by means of off-line training. First, compute two sums: 
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Then the classification is made as follows: 

 
, 0 0
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A A A B B B

I if U S T and U S T
Class II if U S T and U S T

unsorted otherwise

− ≥ − ≥⎧
⎪= − < − <⎨
⎪
⎩

 (1) 

where AT , BT  are two threshold values and { }, 1,1A BU U ∈ − are two sign values that indicate 

whether S is expected to be larger or smaller than T for each of the two time intervals and for 

each of the two clusters. The sorting performance of the HD algorithm may be improved by 

considering more than two decision intervals. 

B. The Soft Decision (SD) Algorithm 

The Soft Decision (SD) algorithm is similar to the HD algorithm, with classification made as 

follows: the input signal is integrated for each of the pre-defined time intervals and the integrals 

are compared with the respective integrals of the separation line. Note that while the HD 

algorithm sums up (within each time interval) the results of comparing the signal with the 

separation line, the SD algorithm on the other hand performs the summation first and then 

compares the signal with the separation line, potentially resulting in improved classification 

accuracy thanks to lower noise sensitivity.  

A VLSI architecture for the SD algorithm is shown in Figure 4. The input is integrated within 

each time interval (A, B). The two integrals AS  and BS  are compared with the predefined 
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threshold values AT  and BT . If the two integrals fall within the expected ranges, the 

Neuroprocessor issues a “spike notification message” to the host computer.  

  

The SD algorithm may be perceived as operating on an Integral Transform (IT) space instead of 

the PC space (See Figure 5b). The two axes represent the normalized values of the signal 

integrals over A and B. The integrals of the separation line result in a single point in IT space. 

Similar to the HD classification, the time-domain comparisons made by the SD algorithm 

effectively define two recognition quadrants in IT space on opposite sides of the “center point.” 

Such a separation criterion does not obtain reliable results for closely located clusters—many 

points from both clusters may fall into "unrecognized" quadrants and as a result are unclassified 

(See Section  IV below, Figure 11). 

The formal definition of SD is similar to HD, except for the definition of AS , BS , AT  and BT :  

{ }

{ }

1 1, ( ), ( )

1 1, ( ), ( )

A B
i A i BA B

A B
i A i BA B

S S x i x i
N N

T T M i M i
N N

∈ ∈

∈ ∈

⎧ ⎫
= ⎨ ⎬
⎩ ⎭
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

∑ ∑

∑ ∑
 

where 2 1 4 31, 1,A BN i i N i i= − + = − + and { }( ) | 1,...,M i i N=  is a given separation line. 

Classification is performed according to Eq. (1).  

C. The Integral Transform (IT) Algorithm 

The Integral Transform (IT) sorting algorithm classifies the spikes projected in the two-

dimensional Integral Transform space. The two axes of the IT space represent the normalized 

signal integrals over the time intervals A and B (Figure 5b):     
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Where NA and NB are the number of samples in A and B, respectively.  

Both IT and SD algorithms apply a similar integration step, but whereas the SD algorithm 

employs time domain discrimination, the IT algorithm uses linear classification in IT space, as 

follows: 

,
,

B A

B A

I if I m I n
Class

II if I m I n
> ⋅ +⎧

=⎨ < ⋅ +⎩
 

Here m and n are the parameters of the separation line (Figure 5b). They are determined by off-

line learning, which may be based on any appropriate technique, such as SVM  [23].  

Linear classification has been selected in an attempt to minimize hardware and computational 

complexities. In simple cases, one line may suffice for sorting spikes into two clusters. In 

general, any number of lines may be employed, either to further constrain the classification 

space, or to enable sorting into three or more clusters, or both. An example of PC and IT 

classification into three clusters by two lines is shown in Figure 6. Comparing the signal against 

each line requires one multiplication, one addition and one comparison.  

The transformations of a given signal into the PC and IT spaces, as seen in Figure 5a and b, 

appear similar. Both transformations apply linear FIR filters, whose step response is either the 

principal components (for PC) or rectangular (for IT).  The integration intervals are ideally 

positioned at times when signals from different clusters are expected to differ the most, 
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providing for a good discrimination in IT space. In Section  IV below we show empirically that 

the IT algorithm can achieve classification to within 2.2% of PCA. 

 

A VLSI architecture for the IT algorithm is shown in Figure 7. The input is integrated over the 

first time interval (A) and the result is stored as IA  (storage is omitted from the figure). During 

the second interval (B), the integrator generates IB. Subsequently, for each possible dividing line, 

the parameters m and n are used to generate the corresponding mIA+n value that is compared 

with IB.  

D. Principal Component Sorting 

A VLSI architecture for on-chip sorting by means of principal component analysis (PCA) using 

two principal components and linear classification is shown in Figure 8. Each input sample is 

multiplied by two PC coefficients, and the two accumulated projections are linearly compared, 

similarly to the IT algorithm. 

E. Segmented PC Sorting 

The segmented PC (“K-PC”) algorithm approximates PCA by down sampling the principal 

component vectors, reducing the number of multiplications. The signal is integrated over several 

time intervals (k1 intervals for PC1 and k2 intervals for PC2). Each integral is multiplied by the 

average of the principal component values over the same interval, as follows: 

1

1 1
1

( ) ( )
k

p
S I p pα

=

= ⋅∑  

where 
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The expressions for PC2 are similar. A VLSI architecture for the K-PC algorithm is shown in 

Figure 9.  

Another level of savings in computational complexity can be achieved by approximating the 

multiplication coefficients K-PC1,2 by powers of 2 (achieved by simple bit-shifting). 

IV. RESULTS 

A. Algorithm Validation 

The hardware spike sorting algorithms described above are compared (by simulation) to a 

software implementation of PCA  [16]. Details of the PCA sorting are described in  [17]. All 

algorithms are applied to the same data set, comprising a large number of digitized recorded 

spikes. Figure 10 illustrates the algorithm validation scheme. First, a part of the data is used for 

training, producing configuration parameters for the hardware algorithm. Second, the parameters 

are downloaded to the Neuroprocessor. Third, a simulation of the Neuroprocessor hardware 

spike-sorting algorithm is applied to the entire data set. After the software (PCA) algorithm is 

also executed on the same data, the results are compared.  

B. Spike Recording Method 

Spike data was taken from electrophysiological recordings of multiple spike trains, obtained 

from microelectrodes implanted in various cortical regions  [24]. Neuronal signals from the 
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electrodes were amplified, bandpass filtered (300 – 6000 Hz, four poles Butterworth filter), and 

sampled at 24 Ksps/electrode. Spike detection was done offline  [17] [25]; only stable spike trains 

(as judged by stable spike waveforms, stable firing rate and consistent responses to behavioral 

events) were included in this study. The data set contains about 1000 spikes per cluster. 

The hardware algorithms have been applied to this data under a number of simplifying 

assumptions, ignoring classification errors such as overlapping signals, burst-firing neurons and 

non-stationary background noise. The study focuses on the basic problem of hardware-based 

classification of single neuron spikes contaminated by noise. 

C. Analysis of Spike Sorting  Algorithms 

The reduced computational complexity of the proposed VLSI algorithms comes at the expense of 

precision. Two types of errors emerge when the VLSI algorithms are compared with software 

PCA sorting: A spike may be unclassified or mis-classified by a hardware algorithm. The two 

error types are combined into a cumulative error rate, which serves as a figure of merit for the 

algorithm. 

Another measure of the various architectures relates to their computational complexity, which is 

roughly related to the power consumption. We count the number of additions and multiplications 

required for every algorithm to process a single spike. Multiplication is counted as about ten 

additions. Computational complexity is expressed in the total number of equivalent additions. 

1) HD and SD Algorithms 

Classification errors of the HD and SD algorithms range from 10% to 25%, for clusters that are 

closely located in the PC space (see Table 1). The vast majority of errors is due to unclassified 
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spikes. Depending on the goals of the experiment, these error rates may or may not be 

acceptable.  

The low performance of the HD and SD algorithms relates to the fact that they perform time-

domain classification. This type of crude classification can be represented as two recognition 

quadrants on the opposite sides of the “center point” in IT space (Figure 11). This separation 

criterion does not obtain reliable results, especially for closely located clusters: Many spikes 

from both clusters fall into the adjacent quadrants and as a result are unclassified.  

2) The IT Algorithm 

The IT algorithm was developed to address the high sorting errors of the HD and SD algorithms. 

The IT algorithm separates the clusters by means of lines (Figure 5b), thus eliminating the 

unclassified regions. The IT algorithm reduces the error rate to 2.2% (Table 1). It is evident in 

Figure 12b that the IT algorithm incurs the least computational complexity among all low-error, 

low-complexity solutions. 

3) The Segmented PC Algorithm 

Four versions of the segmented PC algorithm have been studied: seven and fifteen segments 

were simulated both with full and reduced precision. In reduced precision we have taken 

coefficients of the form 2n, reducing the cost of multiplication to a single addition.. The 

segmented PC algorithms achieve error rates that are somewhat better than IT, at the cost of 

increased complexity. Note that their computational complexity is more than an order of 

magnitude better than a full PCA. 

Computational complexity and error rates are compared in Table 1and Figure 12. Three 

conclusions are proposed: First, time-domain classification results in high error rates and does 
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not yield a complexity advantage relative to IT. Second, IT classification constitutes the “knee 

point” of the complexity versus error graph, and is thus suggested as the preferred architecture. 

Third, PCA-based classification algorithms incur an order of magnitude lower complexity than 

the full-fledged PCA, yet, they yield only a marginal error performance over IT. 

V. CONCLUSIONS 

We have considered low-power spike sorting algorithms and suitable architectures. Such systems 

may be useful for implanting near the recording electrodes, or for using in large multi-electrode 

arrays, in either research or clinical applications. They enable substantial reduction of the 

communication bandwidth, which is essential when a large number of recording electrodes is 

involved. 

We have described five VLSI algorithms for spike sorting: Hard Decision (HD) compares the 

signal with pre-computed thresholds. Soft Decision (SD) integrates the signal in segments and 

compares the integrals with pre-computed thresholds. Integral Transform (IT) also integrates the 

signal in segments but uses the results for linear classification in a two-dimensional “integral 

space.” PC implements a common PCA analysis with linear classification, and segmented PC 

applies PCA in segments. 

The algorithms have been simulated with real neuronal spike data. The results are analyzed in 

terms of classification errors (relative to sorting achieved with software PCA classification). The 

computational complexity of each algorithm was estimated based on the number of additions and 

multiplications involved. 

The two time-domain classification algorithms, HD and SD, produce high error rates. The 

segmented PC algorithms incur significantly lower complexity than full PCA. They yield only a 
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marginal error performance over IT, while requiring higher complexity. The IT algorithm turns 

out to constitute the “knee point” of the complexity versus error graph, and is thus suggested as 

the preferred architecture for implementation in Neuroprocessors. 
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Figure 1:  Neuroprocessor Architecture: one electrode section. 
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Figure 2: (a) Inversely transformed signals, (b) PC space representation. 
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Figure 3: HD – VLSI architectures 



 

 21

Sorting threshold values

CMP

REG

Neuron
IDSpike

x(i) SA
SB

TA
TB

ACCADC

 

Figure 4: SD – VLSI architecture. 
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Figure 5: Clustered signals on the Principal Component (PC) space (a)  

and on the Integral Transform (IT) space (b). 
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Figure 6: PC and IT classification of three clusters 



 

 24

REG FILE
{mi, ni }

Cmp Neuron
ID

+
nm

mIA+n
Spike

x(i)

IA

IB

ADC ACC

 

Figure 7: IT – VLSI architecture 



 

 25

REG FILE

Cmp

N
eu

ro
n 

ID+
nm

Spike
x(i)

ADC

PC1(i)

ACC

ACC

PC2(i)

 

Figure 8: PC – VLSI architecture 



 

 26

REG FILE

Cmp

N
eu

ro
n 

ID

+
nm

Spike
x(i) ADC

K-PC1(p)

ACC

ACC

K-PC2(q)

ACC

ACC
I1(p)

I2(q)
 

Figure 9: Segmented PC – VLSI architecture 
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Figure 10: Algorithm validation 
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Figure 11: Classification regions for HD and SD algorithms 
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Figure 12: (a) Classification error vs. computational complexity,  
(b) Close-up on low-complexity, low-error architectures 
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Algorithm Add Mult 
Comput  

Compelxity
Unclass Misclass 

Error 

Rate 

HD 200  200 20% 2.7% 23% 

SD 100  100 19% 2.2% 21% 

IT 100 1 110 0.8% 1.4% 2.2% 

7-PC 165 15 315 0.4% 1.0% 1.4% 

15-PC 190 30 490 0.4% 0.9% 1.3% 

7-PC red 175 1 185 0.5% 1.2% 1.7% 

15-PC red 200 1 210 0.5% 1.1% 1.6% 

PC 400 400 4400 0.0% 0.0% 0.0% 

Table 1: Computational complexity and classification errors of the hardware spike sorting architectures 
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