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Abstract: We introduce algorithms and architectures for automatic spike detection and alignment that 

are designed for low power. Some of the algorithms are based on principal component analysis. Others 
employ a novel Integral Transform analysis and achieve 99% of the precision of a PCA detector, while 
requiring only 0.05% of the computational complexity. The algorithms execute autonomously, but require 
off-line training and setting of computational parameters. We employ pre-recorded neuronal signals to 
evaluate the accuracy of the proposed algorithms and architectures: The recorded data are processed by a 
standard PCA spike detection and alignment software algorithm, as well as by the several hardware 
algorithms, and the outcomes are compared.  

 

I. INTRODUCTION 

Automatic and semiautomatic approaches to analysis of neuronal activity have been the 
subject of extensive research  [1] [2]. A typical setup for a neuronal recording experiment 
in an animal or human subject requires high bandwidth communications between the 
recording electrodes and the processing computer, where spikes are detected and sorted. 
When a large number of recording electrodes is employed, typical transmission resources 
are insufficient and power-hungry  [3]. In addition, the large number of wires results in 
heavy cables that severely constrain the subject. Consequently, it is desirable to pre-
process and reduce the volume of the recorded data so that it can be transmitted 
wirelessly.  

We investigate the Neuroprocessor, an implantable integrated circuit that performs all 
neuronal interface and processing tasks, including spike acquisition, signal processing, 
and stimulation. In particular, it should contain power-efficient front-end processing of 
spikes, in order to minimize the communication bandwidth between the recording 
electrodes and the back-end computer  [4]. In this paper we focus on detection and 
alignment (D&A) of spikes  [5] as a pre-requisite to successful on-chip spike sorting 
 [6] [7]. For instance, given a sampling rate of 24Ksps and 12 bit sampling precision, the 
raw data rate is 288Kbits/second per electrode. Spike D&A enables transmission of only 
active spike data and filtering out the inter-spike noise  [8]. Assuming a high rate of 100 
spikes/sec/electrode and 2msec/spike, D&A reduces the data rate to 60Kbits/sec. If spike 
sorting were also added to the front-end processing,  each spike would be converted into 
a short datagram (~20 bits), reducing the required data rate down to 2Kbits/sec per 
electrode, less than 1% of the original rate. 

The computational task of such data reduction acquired by tens or hundreds of electrodes 
typically requires special purpose hardware. Conventional CPU would either be too large 
and dissipate too much power for a portable device, or would be too slow for the job. The 
special purpose hardware must implement a custom-tailored architecture that is carefully 
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tuned to perform the desired algorithm. In this paper we investigate the algorithms 
together with the architectures that implement them.  

The most limiting constraint on implantable chips for spike detection of many electrodes 
is power dissipation  [3]. While exact prediction of power requirements without 
completely designing the circuits is elusive, we investigate the computational complexity 
of several D&A algorithms as a reasonable predictor of their power. Before undertaking 
the complex endeavor of hardware design, an architectural comparative study is called 
for. Computational complexity is used to compare alternative algorithms and 
architectures. 

The other figure of merit for D&A is the accuracy of subsequent spike processing, which 
depends heavily on the quality of D&A. We consider algorithms and architectures that 
trade off some subsequent classification accuracy in return for significant savings in 
power. The most favorable architecture is shown to achieve 99% of the accuracy of a 
“standard” algorithm, while incurring only 0.05% of its computational complexity. A 
similar approach has been presented in  [9].  

Spike detection algorithms have been discussed previously in  [3], [9]- [14]. An adaptive 
threshold detection circuit that did not perform alignment was described in  [3]. 
Computational complexity of several detection algorithms was discussed in  [9]. D&A 
algorithms for multielectrode arrays were presented in  [10], but power dissipation was 
not optimized. Wavelet based detection were described in  [11]- [13], but without analysis 
of hardware complexity and power requirements. Detection by threshold crossing and 
initial alignment around the point of maximum slope was described in  [14].  

Section  II presents the spike-processing section of the Neuroprocessor architecture in a 
top-down manner. D&A algorithms and architectures are specified in Section  III, and 
their performance is compared in Section  IV. 

II. SYSTEM OVERVIEW 

In typical neuronal recording experiments, the signals recorded by the electrodes are 
amplified and transmitted over wires to a host computer where they are digitized and 
processed according to the experimental requirements  [15]. The main disadvantage of 
that experimental arrangement is the need to connect a cable to the subject, restricting its 
movement. We investigate the Neuroprocessor, an implantable integrated circuit that 
performs all neuronal interface and processing tasks, including spike acquisition, signal 
processing, and stimulation. Its acquisition stage contains front-end analog processing, 
spike detection, alignment and sorting. Significant data reduction is achieved enabling 
wireless communications to replace cables and allow free movement of the patient or the 
test subject.  

The architecture of the part of the Neuroprocessor that processes the signal from a single 
electrode is shown in Figure 1. Spike processing must be adaptable, due to unstable 
recording conditions  [3] [14]. Therefore, periodically, raw data is transmitted to the host 
computer for re-training, and the recalculated parameters are sent back to the 
Neuroprocessor (training algorithms, as well as the important question of how often they 
need to be executed, are beyond the scope of this paper). The Spike Detector detects the 
presence of spikes in the input, determines their starting point, and initiates the operation 
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of the Spike Sorter. The output logic produces the spike notification datagram.  Although 
we consider a single channel in this paper, the results can be extended to Neuroprocessors 
handling multi-electrode arrays. Some of the hardware may be shared among the 
channels, if appropriate. 

Performance of the spike sorter depends critically on the accuracy of the D&A algorithm. 
In this paper we focus on the D&A algorithms and assume a given Spike Sorter. 

Logic

 
Figure 1: Neuroprocessor channel architecture: Each channel processes the signals of a single electrode, 

and comprises an analog and digital front-end and a programmable spike detector / sorter  . 

 

III. HARDWARE ALGORITHMS AND ARCHITECTURES FOR DETECTION AND ALIGNMENT 

When exploring VLSI architectures for real time spike sorting to be carried out at the 
head-stage, we seek to minimize the required resources while still achieving acceptable 
levels of accuracy. The primary goal is to minimize power dissipation. Following  [16], 
we consider the relative computational complexity of several architectures as a predictor 
of their power requirements.  

Three different spike detection and alignment architectures and algorithms are 
considered: Maximum Projection Alignment (MPA), Maximum Integral Transform 
Alignment (MITA), and Segmented PCA (K-PCA). 

Spike detection for all algorithms is based on threshold crossing. Threshold values are 
obtained by off-line training on the host computer and downloaded into the 
Neuroprocessor. They are set to optimize the ratio between the amount of threshold-
crossing events due to the background noise (false alarms) and the amount of missed 
spikes.   

We assume that most spike waveforms can be represented as a linear combination of a set 
of base vectors. Moreover, spikes generated by the same neuron are clustered together in 
the space spanned by the base vectors. The alignment procedure is based on the 
correlation of the input signal with the base vectors, which are determined off-line and 
downloaded to the Neuroprocessor.  

A. Maximum Projection Alignment (MPA) Algorithm 

The Maximum Projection Alignment (MPA) algorithm computes the correlations of the 
input signal with the first two principal components  [17]. The spike is aligned to the point 
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of maximal correlation of the input signal with the first PC. It is a VLSI-oriented version 
of a common software detection algorithm  [18]. The MPA algorithm comprises two 
steps: extraction and alignment, as follows. 

1) MPA Extraction 

During extraction, a segment of M=K+N samples of the input signal is acquired. 
Extraction is triggered by threshold crossing at the input. The first K samples precede the 
triggering crossing event, and the remaining N samples follow it. 

2) MPA  Alignment 

The alignment step seeks a spike of N samples within the M samples segment, starting at 
an offset {1, ..., }i K∈  from the start of the segment. MPA alignment selects offset i that 
yields the maximum (absolute value of the) correlation of the segment with the first 
principal component (PC1). Thus, it finds offset i such that 
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where sj are signal samples and μr are elements of PC1.  

A VLSI architecture for the MPA algorithm is shown in Figure 2. The input is digitized 
by the ADC (analog to digital converter) and transferred through a FIFO. The Threshold 
block triggers operation of the PC1 projection unit, which computes the K projections 
according to (1).  

We take advantage of the observation that the correlation function in (1) typically shows 
a single maximum over the entire range i=1,…,K. The FindMax unit computes the 
maximum of Pi

1 by comparing each pair of consecutive projections. Upon detecting a 
maximum P1, P2 is also computed and both projections are sent to subsequent spike 
sorting. If no maximum is detected within the range of possible offsets, the last offset is 
selected (the spike is aligned with threshold crossing). 

 
Figure 2: A VLSI architecture for the MPA algorithm  

The MPA architecture provides an efficient real-time implementation of the common 
software PC-based detection algorithm. One potential shortcoming of MPA is that it 
employs only PC1 for computing the alignment.  
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B. Maximum Integral Transform Alignment (MITA) Algorithm 

The Maximum Integral Transform Alignment (MITA) algorithm is based on separate 
integration of the positive and negative phases of the spike. The integral values are useful 
both for detection and for subsequent spike sorting  [6]. As in the MPA case, the MITA 
algorithm can be divided into two steps, extraction and alignment. The extraction step is 
identical to that of MPA, whereas alignment uses a different set of base vectors for 
correlation. Figure 3 shows a typical spike. We define two time windows, α and β, 
matched (by off-line training) to the principal phases of the spike, positive and negative. 
Once trained, the sizes and relative positions of the two time windows remain fixed. The 
MITA algorithm computes the integral A of the input signal over window α, at all 
possible offsets, and selects the offset which yields the maximal absolute value of A. 
Once alignment has been determined, integral B is computed over the β window, the two 
integral values are produced at the output and can be employed for subsequent spike 
sorting. 

Time
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Figure 3: Spike projection on integral space. 
 The integrals over windows α and β can be considered as correlating the input  

signal with the vectors ν1 and ν2 , 

 

Computing the two integrals can be considered as correlating the input signals with the 
following two vectors: 
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A VLSI architecture for the MITA algorithm is shown in Figure 4. Since integrals A and 
B do not overlap in time, we first compute integral A, find the spike alignment, and only 
then compute integral B.  

 
Figure 4: A VLSI architecture for the MITA algorithm. 

 

Integration is implemented with a Moving Average filter, computing the sum of elements 
held in a K-stage FIFO. With every input sample, the oldest element is removed from the 
sum and the new sample is added.  Consider the first integral, 

 1 2 1
1

,i i r
r

A s t t
α

α αα+ −
=

= = −∑  (3) 

Then 

 1i i i iA A s sα+ += + −  (4) 

A recursive implementation of a Moving Average filter for the A integral is depicted in 
Figure 5. Unlike the MPA architecture, there is no need to maintain K sums in parallel. 
Initially, the A-FIFO contains α zeroes. During the first α steps, the accumulator 
computes A1. Henceforth, one old element is subtracted from A1 and a new one is added. 
Thanks to eliminating multiplications, the MITA architecture incurs a lower hardware 
cost than MPA.  

Spike
A-FIFO

A - Register

-+

+

{s }

 
Figure 5: Architecture of the recursive Moving Average filter . 

The following comments may be noted regarding the MITA algorithm. First, it is inspired 
by the observation that integral A shows a single maximum near the threshold. Second, 
aligning to the maximum of the signal integral results in lower noise sensitivity than 
aligning to the maximum of either the signal itself or its derivative (as proposed, e.g., in 
 [14]). Third, an even more robust algorithm could apply threshold detection to the 
integral A rather than to the original signal.  
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The foregoing description of the MITA algorithm assumes that the two typical spikes 
recorded by the same electrode have roughly the same support, so that windows α and β 
roughly coincide with the first and second phases of both typical spikes, respectively. In 
many other cases, it is possible to either place the two windows at positions that do not 
necessarily overlap the first and second phases of either spike, but would still be 
sufficient for successful alignment (and even sorting). In yet other cases, it may be 
possible to use three windows instead of two.  

 

C. Principal Component Detection 
A common software algorithm for D&A is based on principal component analysis (PCA) 
 [18]. For each potential offset, the signal is projected on the first two principal 
components, and those projections are used to estimate the signal. The offset which 
results in minimum estimation error is selected as the best alignment. Formally, the 
projections at offset i are 
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The estimated signal at offset i is the vector 

 1 1 2 2
i i iP P= ⋅ + ⋅$s μ μ  (6) 

and the algorithm seeks i that minimizes the error 
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VLSI architecture for on-chip D&A by means of PCA is shown in Figure 6. The input is 
transferred through a FIFO register of K stages. The Threshold unit triggers operation of 
the Estimation unit. The Estimation unit computes the 2K projections on the two PC 
vectors (two projections at each offset i) and produces the estimated signal per each i. 
Once the Min Error unit finds the offset that yields the minimal estimation error, the 
corresponding projections Pi

1 and Pi
2 are sent to the output. If no minimum is detected 

within the range of possible offsets, the last offset is selected. 
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Figure 6: A VLSI architecture for PCA-based detection and alignment  

D. Segmented PC Detection 
The segmented PC (“K-PC”) algorithm approximates PCA using a reduced number of 
multiplications. This is achieved by down-sampling the principal components. The signal 
is integrated over several time intervals (k1 intervals for PC1 and k2 intervals for PC2). 
Each integral is multiplied by the average of the principal component values over the 
respective interval, as follows: 
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The expressions for Φ2 are similar. Segmentation helps reduce only the rate of 
multiplications. The k integrals are computed by sliding windows similar to the moving 
average of Figure 5, incurring 2(k1+k2) additions per input sample. The two projections 
require additional k1+k2 multiplications and additions per each input sample. A VLSI 
architecture for the K-PC algorithm is shown in Figure 7.  
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Figure 7: A VLSI architecture for the K-PC algorithm. 
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Another level of savings in computational complexity can be achieved by approximating 
the multiplication coefficients γ1,2

p by powers of 2 (the multiplications can be achieved by 
simple bit-shifting).  

IV. RESULTS 

A. Algorithm Validation  
In order to evaluate our methods, all D&A algorithms are applied to the same data set, 
comprising a large number of digitized signals obtained from neuronal recordings. The 
signals are very similar to real spikes in the time domain.    

We compare our results with a PCA based D&A algorithm  [18]. A spike sorting 
algorithm (a standard PCA-based software sorter  [18]- [20]) is executed subsequently to 
D&A, and the comparison is based on the accuracy of the sorting. Several other papers 
evaluate and compare D&A algorithms by considering the minimal distance between a 
noise-free template of the expected spike and the detected one  [11] [14] [21] [22].  
However, since detection in our application is merely a preparation for sorting, it is more 
appropriate to evaluate D&A not in its own right but based on how it affects sorting. Note 
that such an approach may not apply to action potentials with significantly different 
shapes or SNR levels. 

Figure 8 illustrates the algorithm validation scheme. First, part of the data is used for off-
line training, producing configuration parameters for the hardware algorithm. Second, the 
parameters are downloaded into the Neuroprocessor. Third, the Neuroprocessor hardware 
D&A algorithm is applied to the entire data set. The software D&A algorithm is also 
applied to the same data; and the results of both hardware and software algorithms are 
processed by the software spike sorter  [20] and compared. The results are reported in 
Table 1 below. 

 
Figure 8: Validation scheme for detection and alignment algorithms . 

B. Spike Data Preparation 
Real spike data was taken from electrophysiological recordings of multiple spike trains, 
obtained from various cortical neurons  [23]. Neuronal signals from the electrodes were 
amplified, bandpass filtered (300 – 6000 Hz, four poles Butterworth filter), and sampled 
at 24 Ksps/electrode. The data is up-sampled 4 times for improved alignment precision. 
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Spikes last about 2 msec, resulting in 200 samples per spike. Software spike detection 
and alignment were first applied on the data sets; only stable spike trains (as judged by 
stable spike waveforms and stable firing rate) were included in this study. The data set 
contained about 1,000 spikes per cluster. Samples of the recorded spikes and their 
projections on PC space are shown in Figure 9. To validate the performance of the 
proposed architectures on a particularly hard case, we have chosen one with near-by 
clusters sharing an edge (Figure 9b).  

 
Figure 9: Neural spikes and their projection on PC space: 
(a) Several recorded spikes after extraction and alignment, 

 (b) Clusters in PC space. 

 

For evaluation of the hardware algorithms (implemented and simulated in MATLAB), 
segments of background noise, recorded form the same system, were added at the 
beginning and the end of every spike. An example of one such segment is shown in 
Figure 11a. That way we know the starting point and the cluster of every spike; yet such 
an arrangement is very close to the real data.  

The principal cost measure of the various architectures is their computational complexity, 
which is roughly related to their power consumption. We count the number of additions 
and multiplications required in every algorithm for processing a single spike. 
Multiplication is counted as about ten additions, and computational complexity is 
expressed in the total number of equivalent additions.  

C. Analysis of Spike D&A Algorithms 
The results of a linear classifier applied to the output of the MPA D&A algorithm are 
shown in Figure 10. Most classification errors occur near the common edge of the two 
clusters. Compared to the PCA off-line algorithm, developed by Alpha-Omega Eng., 
 [18], the MPA algorithm obtains similar results: the sorting error is small (0.3%, Table 
1), and the cluster appear visually identical (see Figure 9b).  
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Figure 10: PC space representation of spikes detected by the MPA algorithm. 

 Mis-classified spikes are indicated as green and black points. 

. 

The operation of the MPA algorithm is illustrated on Figure 11. A sample input signal is 
shown as a blue waveform in Figure 11a. MPA continuously computes the correlation of 
the input signal with the first PC vector. This can be represented as a trace of points on 
the PC space (Figure 11b). When no spike is present at the input, the trace fluctuates 
around zero, as a result of correlation with the background noise. When a spike is present, 
the trace leads away from the origin, and the peak corresponds to the alignment point of 
the spike. The red waveform in Figure 11a has been reconstructed from the PC1 and PC2 
values of the “best alignment” point in Figure 11b. 

  
Figure 11: Spike detection and alignment using the MPA algorithm: 

(a) Synthetic signal combining noise segments with a real spike (blue) and a best aligned reconstructed 
spike (red) (b) Trace of points on the PC space, progressively generated during the alignment process 

Figure 12a shows an example where the offsets computed by MPA and by off-line PCA 
differ. The trace in Figure 12b represents the alignment process, and the green part of the 
trace shows points following threshold crossing. The two circles on PC space show that 
the two offsets lead to different mappings. These two mappings result in the two different 
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reconstructed spikes in the time domain (Figure 12a). However, both results map the 
spike into the same cluster.  

 

 
Figure 12: Spike detection and alignment  using MPA and off-line PCA algorithms:  

(a) Spikes reconstructed from estimations by MPA and PCA,  
(b) Trace of points on the PC space. Both alignments map the spike onto the same cluster 

 

Similar behavior characterizes the remaining simulated algorithms. Figure 13 shows the 
results of the MITA algorithm projected on PC space and linearly classified using SVM 
technique  [24].  

 

 
Figure 13: Integral space representation of spikes detected by the MITA algorithm. 

 Mis-classified spikes are indicated by green and black points. 

D. Comparison 
The computational complexity and error rate of the various spike D&A algorithms and 
architectures are compared in Table 1 and Figure 14 for K=50 and spikes of 200 samples. 
The algorithms were applied to a difficult data set, in which the two spike clusters were 
very close to each other. The error rate of the algorithms was maximal in this case (when 
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clusters are further apart, lower detection and alignment error rates are obtainable). For 
the sake of comparison, we also performed an experiment based solely on maximum 
detection (marked Maximum in the table), where spikes are aligned to the first maximum 
of the signal following threshold crossing.  

 
TABLE 1: COMPUTATIONAL COMPLEXITY AND CLASSIFICATION ERRORS 

OF SPIKE DETECTION AND ALIGNMENT ALGORITHMS 

Algorithm Additions Multiplications Computational 
Complexity 

Classification 
Error 

Maximum 50 0 50 9.4% 

MITA  250 0 250 1.2% 

7-PCA  2,600 1,750 20,000 0.7% 

MPA 10,250 10,200 112,250 0.3% 

PCA 50,000 50,000 550,000 0.0% 

K=50,   N=200,   M=K+N=250 

 

Based on these results, three observations can be made:  (a) the MPA algorithm performs 
as well as the software D&A, but incurs a high computational complexity; (b) the MITA 
algorithm achieves about 99% precision at about 0.05% of the complexity (relative to 
PCA); (c) MITA constitutes the “knee point” of the complexity versus error graph, and is 
thus suggested as the preferred architecture. 
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Figure 14: Classification error vs. computational complexity 

 of several spike detection and alignment algorithms 
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V. CONCLUSIONS 

We have considered low-power architectures and algorithms for spike detection and 
alignment (D&A). Such systems may be useful for implanting near recording electrodes, 
or for using in large multi-electrode arrays, in either research or clinical applications. 
These systems enable substantial reduction of the communication bandwidth, which is 
essential when a large number of recording electrodes is involved.  

Three VLSI architectures have been described and analyzed Maximum Projection 
Alignment (MPA), Maximum Integral Transform Alignment (MITA), and Segmented PC 
(K-PC). The algorithms have been simulated with real data obtained from neuronal 
recordings. The results are analyzed in terms of classification errors (relative to sorting 
achieved with software PCA classification) and computational complexity (estimated 
based on the number of additions and multiplications). The MITA algorithm yields only 
marginal accuracy degradation relative to MPA, while incurring only a very small 
fraction of the computational complexity. Thus, we have selected the MITA algorithm for 
power-efficient spike detection in a neuronal processing integrated circuit. 

ACKNOWLEDGMENT 

This research was funded in part by a grant from the Office of Chief Scientist, Israel 
Ministry of Industry and Trade. Guidance from Moshe Abeles, Hagai Bergman, Eilon 
Vaadia, Shimon Marom, Izhar Bar-Gad and Alpha-Omega, Inc. is greatly appreciated. 
Constructive comments by the anonymous referees helped improve this paper 
significantly. 

REFERENCES 
[1] Lewicki M.S., "A review of methods for spike sorting: the detection and classification of neural 

action potentials."  Network: Comp. Neural Syst. 9(4): 53-78, 1998. 
[2] Schmidt E. “Computer separation of multi-unit neuroelectric data: A review”. J Neurosc Meth., 

12:95-11. 1984. 
[3] Harrison R., “A low-power integrated circuit for adaptive detection of action potentials in noisy 

signals,” Proc. Inl. Conf. IEEE EMBS, 17-21, 2003. 
[4] Perelman Y.  and Ginosar R., “An Integrated System for Multichannel Neuronal Recording with 

Spike / LFP Separation and Digital Output,”  2nd Int. IEEE EMBS Conf. Neural Eng., 377-380, 
2005. 

[5] Zviagintsev A., Perelman Y.  and Ginosar R., “A Low-Power Spike Detection and Alignment 
Algorithm,” 2nd Int. IEEE EMBS Conf. Neural Eng., 317-320, 2005. 

[6] Zviagintsev A., Perelman Y.  and Ginosar R., “Low-Power Architectures for Spike Sorting,” 2nd 
Int. IEEE EMBS Conf. Neural Eng., 162-165, 2005.. 

[7] Wheeler B.C., Nicolelis M.A., “Automatic discrimination of single units,” in Methods for Neural 
Ensemble Recordings, Ed. Boca Raton, FL: CRC Press LLC, 1999. 

[8] Moxon K., Morizio J., Chapin J., Nicolelis M., Wolf  P. “Designing a brain-machine interface for 
neuroprosthetic control,” in Neural Prostheses for Restoration of Sensory and Motor Function, 
J.K.Chapin and K. A. Moxon, Eds. Boca Raton, FL: CRC Press, 2001. 

[9] Obeid I., Wolf P., “Evaluation of Spike-Detection Algorithms for a Brain-Machine Interface 
Application”, IEEE Trans. Biomed. Eng., 51:905-911, 2004 

[10] Guillory K.S. and Normann R.A., “A 100-channel system for real time detection and storage of 
extracellular spike waveforms,” J. Neurosci. Meth.,91:21–29, 1999. 

[11] Nakatani H., Watanabe T., and Hoshiyama N., “Detection of nerve action potentials under low 
signal-to-noise ratio condition”, IEEE Trans. Biomed. Eng.,48:845-849, 2001. 



 

 15 

[12] Oweiss K. G.,  and Anderson D. J., “A multiresolution generalized maximum- likelihood approach 
for the detection of unknown transient multichannel signals in colored noise with unknown 
covariance,” in Proc. ICASSP, 2993–2996, 2002. 

[13] Kim K.H. and Kim S.J., “A Wavelet-Based Method for Action Potential Detection From 
Extracellular Neural Signal Recording With Low Signal-to-Noise Ratio,” IEEE Tans. Biomed. Eng., 
50:999-1011, 2003. 

[14] Chandra R., Optican L., “Detection, classification, and superposition resolution of action potentials 
in multiunit single channel recordings by an on-line real-time neural network,” IEEE Trans. Biomed. 
Eng., 44: 403–412,1997.  

[15] Nicolelis M., “Actions from thoughts,” Nature, 409:403-407, 2001. 
[16] Zumsteg Z., Ahmed R., Santhanam G., Shenoy K., Meng T., “Power Feasibility of Implantable 

Digital Spike-Sorting Circuits for Neural Prosthetic Systems,” Proc. 26th Ann. Int. Conf. IEEE 
EMBS, 4237-4240, 2004. 

[17] Abeles M, Goldstein MHJ., “Multispike train analysis,” IEEE Trans. Biomed. Eng., 65:762–73, 
1977. 

[18] Bar-Gad I., Ritov Y., Vaadia E., and Bergman H., ”Failure in identification of multiple neuron 
activity causes artificial correlations,” J. Neurosci. Methods., 107: 1-13, 2001. 

[19] Alpha Omega Engineering Ltd., Multi-Spike Detector (MSD). 
[20] Alpha-Omega Engineering Co., Ltd, Alpha Sort Ref. Manual, 1996-2002. 
[21] Atiya, A. F., “Recognition of multiunit neural signals,” IEEE Trans. Biomed. Eng. 39:723–9, 1992. 
[22] Lewicki M. S., “Bayesian modeling and classification of neural signals,” Neural Comput. 6:1005–

30, 1994. 
[23] Eytan D., Brenner N. and Marom S., “Selective Adaptation in Networks of Cortical Neurons, “ J. 

Neurosci. Methods. 23(28):9349-9356, 2003 
[24] Chang, C.C. and C.J. Lin (2001). LIBSVM: a library for support vector machines. Software 

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 
 
 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


