
1556-6056 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/LCA.2014.2374597, IEEE Computer Architecture Letters

Resistive Associative Processor
L. Yavits, S. Kvatinsky, A. Morad, and R. Ginosar

Abstract— Associative Processor (AP) combines data storage and data processing, and functions simultaneously as a

massively parallel array SIMD processor and memory. Traditionally, AP is based on CMOS technology, similar to other classes

of massively parallel SIMD processors. The main component of AP is a Content Addressable Memory (CAM) array. As CMOS

feature scaling slows down, CAM experiences scalability problems. In this work, we propose and investigate an AP based on

resistive CAM - the Resistive AP (ReAP). We show that resistive memory technology potentially allows scaling the AP from a

few millions to a few hundred millions of processing units on a single silicon die. We compare the performance and power

consumption of a ReAP to a CMOS AP and a conventional SIMD accelerator (GPU) and show that ReAP, although exhibiting

higher power density, allows better scalability and higher performance.

Index Terms—SIMD, Associative Processor, In-Memory Computing, Memristor, Resistive RAM.

——————————  ——————————

1 INTRODUCTION

ssociative Processor (AP) is a massively parallel
SIMD array accelerator [9] [10]. AP comprises a Con-
tent Addressable Memory (CAM) array and periph-

eral circuits, and enables storing and processing data at
the same location. The execution time of a typical vector
operation in an AP does not depend on the vector size,
thus allowing efficient parallel processing of very large
vectors. The AP is shown to achieve better power efficien-
cy than conventional parallel accelerators [11]. In general,
applications with low arithmetic intensity (the ratio of
arithmetic operations to memory access [14]), such as
sparse linear algebra kernels, are likely to benefit from AP
implementation.

As CMOS feature scaling slows down, conventional
memory technology experiences scalability problems. In
response, resistive memory technologies are explored
(e.g., ReRAM based CAM [4] [6] [12] and STT-MRAM
based CAM [5] [16]). Resistive memories are expected to
scale to much smaller geometries. They are non-volatile,
which provides near-zero leakage power. However, Re-
RAM requires relatively higher write energy and suffers
from finite endurance, as compared to CMOS memories.

In this paper, we present the Resistive AP (ReAP), an
AP based on resistive CAM. We believe our work is the
first to present a resistive CAM based in-memory acceler-
ator that can scale to hundreds of millions of Processing
Units (PUs) on a single silicon die, and implement a wide
range of massively parallel SIMD workloads. It may not
only outperform a CMOS AP, but also conventional mas-
sively parallel SIMD accelerators, such as GPUs, in float-
ing point performance and/or power efficiency.

The rest of this paper is organized as follows. Section 2
presents the architecture of the associative processor and

principles of associative computing. Section 3 explores the
Resistive AP. Section 4 discusses the simulation results
and Section 5 offers conclusions.

2 ASSOCIATIVE PROCESSING

AP is a non-von Neumann in-memory computing ac-
celerator. The results of basic computing operations are
pre-calculated and compiled into a sequence of AP in-
structions. The operands are stored in the CAM array. In
response to an input combination, the result is written
into the CAM, typically to multiple locations.

The architecture of an AP is presented in Fig 1(a). The
Associative Processing Array (essentially a CAM) com-
prises of bit cells (Fig 1(b)) organized in bit-columns and
word-rows. Typically, a word-row makes a Processing
Unit (PU). Several special registers are appended to the
associative processing array. The KEY register contains a
key data word to be written or compared against. The
MASK register defines the active fields for write and read
operations, enabling bit selectivity. The TAG register
marks the rows that are matched by the compare opera-
tion and may be affected by a parallel write. An optional
interconnect switch allows the PUs within the AP to
communicate in parallel. A Reduction Tree is an adder
tree, enabling quick parallel accumulation of TAG bits. It
is useful whenever a vector needs to be reduced into a
scalar. An example of a CMOS based associative bit cell as
well as the tag logic are shown in Fig 1(b). SA is a small
sense amplifier. A detailed AP design is presented in [9].

In a conventional CAM, a compare operation is typi-
cally followed by a read of the matched data word. In AP,
a compare is usually followed by a parallel write into the
unmasked bits of all tagged rows.

Any computational expression can be efficiently im-
plemented on an AP using line-by-line execution of the
truth table of the expression.

————————————————

 Leonid Yavits, E-mail: yavits@tx.technion.ac.il.
 Shahar Kvatinsky, E-mail: skva@tx.technion.ac.il.
 Amir Morad, E-mail: amirm@tx.technion.ac.il.
 Ran Ginosar, E-mail: ran@ee.technion.ac.il.
 Authors are with the Department of Electrical Engineering, Technion-Israel

Institute of Technology, Haifa 3200000, Israel.

A

mailto:yavits@tx.technion.ac.il
mailto:skva@tx.technion.ac.il
mailto:amirm@tx.technion.ac.il
mailto:ran@ee.technion.ac.il

1556-6056 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/LCA.2014.2374597, IEEE Computer Architecture Letters

R
e

d
u

ctio
n

 T
re

e

T
A
G

Associative
Processing

Array

KEY

(a) (b)

PU

Tag
Latch

SA

Bit Bit

Match Line

Word Line

MASK

match

word

Fig 1. AP: (a) Top-level view; (b) Tag logic and CMOS NOR-type bitcell.

Each argument of the expression is matched with the con-
tents of the entire associative memory, the matching rows
are tagged, and the corresponding expression values are
written into the designated fields of the tagged memory
rows. For an 𝑚-bit argument 𝑥, any 𝑓(𝑥) has 2𝑚 possible
values, therefore the associative computing operation
incurs 𝑂(2𝑚) cycles, regardless of the data set size. All
values of the 𝑓(𝑥) truth table are pre-calculated and com-
piled into a sequence of AP instructions.

More efficiently, arithmetic operations can be per-
formed on AP in a word-parallel, bit-serial manner, re-
ducing compute time from 𝑂(2𝑚) to 𝑂(𝑚). For instance,
vector addition may be performed as follows [2]. Suppose
that two 𝑚 bit columns hold vectors A and B. The sum of
A+B is written onto another 𝑚 bit column S (cf. Fig 2(a)).
A one-bit column C holds the carry bit. The addition is
carried out in 𝑚 single-bit addition parallel steps (1):

𝑐[∗] | 𝑠[∗]𝑖 = 𝑎[∗]𝑖 + 𝑏[∗]𝑖 + 𝑐[∗] ,

∀ 𝑖 = 0, … , 𝑚 − 1

(1)

where 𝑖 is the bit index, ‘∗’ is the word index in the vector,
and c and s are, respectively, the carry and sum bits.

KEY

T
A
G



MASK

Am-1...A0Bm-1...B0Sm-1...S0C

(a) (b)



Fig 2. Vector Addition in AP: (a) Memory Mapping; (b) Full Adder Truth

Table.

The single-bit addition is carried out in a series of
passes, where in each pass, one entry of the truth table (a
three bit input pattern, Fig 2(b)) is matched against the
contents of the 𝑎[∗]𝑖 , 𝑏[∗]𝑖 , 𝑐[∗] bit columns and the match-
ing rows (PUs) are tagged; the logic result (two-bit output
of the truth table as listed in Fig 2(b)) is written into 𝑠𝑖 and
𝑐 bits of all tagged rows. During that operation, all but
three input bit columns and two output bit columns of the
associative array are masked out in each pass. Overall,
eight passes of one compare and one write operation are
performed to complete a single-bit addition.

A fixed-point 𝑚 bit addition and subtraction take
16𝑚 ∝ 𝑂(𝑚) cycles. Fixed point multiplication and divi-
sion in AP require 𝑂(𝑚2) cycles [10]. A detailed descrip-
tion of AP architecture and operations can be found in [9].

3 RESISTIVE ASSOCIATIVE PROCESSOR

Resistive memory (ReRAM) technologies emerge as
scalable, long-term alternatives to CMOS memories, in-
cluding CAM. Resistive memories store information by
modulating the resistance of nanoscale storage elements
(memristors). Memristors are two-terminal devices,
where the resistance of the device is changed by the elec-
trical current or voltage. The resistance of the memristor
is bounded by a minimum resistance 𝑅𝑂𝑁 (low resistive
state, logic ‘1’) and a maximum resistance 𝑅𝑂𝐹𝐹 (high re-
sistive state, logic ‘0’).

A variety of CAM designs, including hybrid
CMOS/Magnetoresistive, CMOS/STT-MRAM, and
CMOS/memristor, as well as memristor-only schemes
have been developed [4] [6] [8] [16] [17]. In this paper, we
introduce a ReRAM crossbar based Resistive Associative
Processing Array (Fig 3(a)), where each bitcell (Fig 3(b))
consists of a pair of neighboring ReRAM bitcells, formed
by a nonlinear bipolar memristor that effectively has a
diode for preventing sneak paths [4] [13]. The second
memory bit serves as a complementary bit. The ad-
vantage of this approach (relative to previous work) is
that it requires no special CAM design. It enables a dual
use, where the crossbar array can be operated either as an
associative processing array or a conventional ReRAM.

The top level architecture of the resistive AP (ReAP)
(Fig 3(a)) closely follows the CMOS based AP architecture
of Fig 1, except for the associative processing array which
is memristor based. The Word and Match lines, separate
in CMOS AP, are combined in the ReAP.

Compare in ReAP is similar to compare operation in
resistive CAM [4]. The Match/Word line is precharged
and the key is set on Bit and Bit-not lines. In the columns
that are ignored during comparison, the Bit and Bit-not
lines are kept floating. If all unmasked bits in a row match
the key (i.e., when Bit line ‘1’ is applied to an 𝑅𝑂𝑁
memristor and Bit-not line ‘0’ is applied to an 𝑅𝑂𝐹𝐹
memristor, or vice versa), the Match/Word line remains
high and ‘1’ is sampled into the corresponding TAG bit. If
at least one bit is mismatched, the Match/Word line dis-
charges through an 𝑅𝑂𝐹𝐹 memristor and ‘0’ is sampled
into the TAG.

Write operation is performed in two phases. First, the
𝑉 > 𝑉𝑂𝑁 voltage (where 𝑉𝑂𝑁 is a threshold voltage re-
quired to switch to the "on" state) is asserted to applicable
Bit lines (to write ‘1’s) and Bit-not lines (to write ‘0’s).
Second, the 𝑉 < 𝑉𝑂𝐹𝐹 voltage (where 𝑉𝑂𝐹𝐹 is a threshold
voltage to switch to the "off" state) is asserted to Bit-not
lines (to complement the ‘1’s) and Bit lines (to comple-
ment ‘0’s). The write affects only the tagged rows.

1556-6056 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/LCA.2014.2374597, IEEE Computer Architecture Letters

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

CAM
Bitcell

KEY

MASK

Match/Word Line

Match/Word Line

Match/Word Line

Match/Word Line

(a)

(b)

Bit Bit

Match/Word Line

Precharge

TAGSA

TAGSA

TAGSA

TAGSA

Precharge

Precharge

Precharge

Fig 3. (a) Resistive AP, (b) ReAP bitcell

Compare followed by a write operation are illustrated
in Fig 4, which shows a fragment of ReAP storing ‘0110’
in the first row and ‘0101’ in the second row; The ReAP
content is compared with the ‘011x’ key and a new ‘1xxx’
key is written in the tagged (first) row.

Time

Compare Write

Match

MisMatch

V (Bit)

Compare Write

0

0

1
Von

Voff

1

Time

‘Z’

‘Z’V (Bit)

ONR OFFR ‘0’‘1’

Von

Voff

V (Bit) V (Bit)

V (Match/Word Line)

Fig 4. Compare and Write in ReAP

In ReAP, sneak currents affect the compare operation
(rather than read operation in a standard ReRAM cross-
bar). More specifically, there are sneak paths leading from
a matching Match/Word Line (which is supposed to re-
tain ‘1’) through neighboring mismatching Match/Word
Lines to the ground. The purpose of per-cell diode [4] [13]
is to terminate such sneak path, so that current can only
flow from a Match/Word Line to the ground (through a
Bit Line) in one direction.

ReCAM behavior is verified and its performance and
energy figures are obtained by SPICE simulations using
memristor TEAM model [15].

Utilizing a ReRAM crossbar as CAM enables a ReAp
bitcell of 8𝐹2/𝑘 footprint (where 𝑘 is the number of verti-
cally integrated memristor layers [4]). Such level of inte-
gration allows placing 100M (𝑘=1) 256-bit PU AP on a
single silicon die. To compare, the CMOS based 10-
transistor AP bitcell (cf. Fig 1(b)) area is approximately
250𝐹2 [9], limiting the AP to 4M PU in the same silicon
area.

The switching time of memristor may reach the range
of a hundred picoseconds [1], allowing GHz AP opera-

tion. The energy consumption during compare is less
than 1fJ per bit. Unfortunately, the write energy is in the
range of few tens of fJ per bit [8], which is prohibitively
high for a 100M PU ReAP, as we show below in Section 4.
However, write energy is dependent on material the
memristor produced of. Discovering more efficient
memristor materials will likely result in lower write ener-
gy consumption.

Another factor potentially limiting the use of ReAP is
the resistive memory endurance, which is in the range of
1012 [7]. Given that during arithmetic operations (cf. Sec-
tion 2), write operation typically occurs each second cycle,
with an average of 2 out of 256 bits of 1/8th of the AP
rows being written (with a close to uniform temporal and
spatial distributions of written bits), the probability of a
single bit to be written is (1

2⁄) ∙ (1
8⁄) ∙ (2

256⁄) ≈ 5 ∙ 10−4 per
cycle. At 1GHz, it limits the endurance-driven MTBF of a
ReAP to ~2.05 ∙ 106 sec, or ~570 hours. However, recent
studies predict that the endurance of resistive memories
is likely to grow to the 1014 − 1015 range [7] [8], which
extends the endurance-driven MTBF of a ReAP to a num-
ber of years.

4 SIMULATION

We simulate the ReAP using the cycle-accurate AP
simulator introduced in [10], employing the resistive
CAM performance and power figures obtained by SPICE
simulations.

To evaluate the performance and power consumption
of ReAP, we use the following set of workloads [3]: 𝑁-
pairs Black-Scholes option pricing (BSC), 𝑁-point Fast
Fourier Transform (FFT), and Dense Matrix Multiplica-
tion (DMM) of two √𝑁×√𝑁 matrices, where 𝑁 is the data
set size, for simplicity scaled to the AP size (the number
of PUs). The parallel portion of each workload is simulat-
ed. We simulate all workloads for 16 different values of
𝑁, ranging from 212 to 226. In all simulations, the PU size
is 256 bits. We assume the 22nm technology node, operat-
ing frequency of 1GHz, and single precision floating
point arithmetic.

The simulated performance as a function of the AP ar-
ea for the CMOS based AP is presented in Fig 5(a). The
power consumption results for the CMOS based AP are
presented in Fig 5(b). The simulated performance and
power consumption as functions of the AP area for the
ReAP is presented, respectively, in Fig 5(c) and Fig 5(d).
Both performance and power in both CMOS AP and
ReAP grow linearly with the AP area (and data set size).
Two constraint envelopes are displayed in Fig 5: the max-
imum area (250𝑚𝑚2) and maximum power (200𝑊), de-
fined for example by the chip’s thermal design point. Ad-
ditionally, we show the performance and power con-
sumption of three workloads on GTX480 [16], which area
is scaled to 22nm to compare with CMOS AP and ReAP
areas.

Our analysis shows that CMOS AP is limited by its
maximum area (corresponding to 4M AP PUs), with max-
imum DMM performance reaching 670 GFLOPs/s.

1556-6056 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/LCA.2014.2374597, IEEE Computer Architecture Letters

0 1 10 100 1000
1

10

100

1000

10000

(a) Area (mm
2
)

P
e

rf
o

rm
a

n
c
e

 (
G

F
L

O
P

/s
)

0 1 10 100 1000

1

10

100

1000

(b) Area (mm
2
)

P
o

w
e

r
(W

)

BSC ReAP

DMM ReAP

FFT ReAP

BSC GTX480

DMM GTX480

FFT GTX480

0 1 10 100 1000
0.1

1

10

100

1000

(a) Area (mm
2
)

P
e

rf
o

rm
a

n
c
e

 (
G

F
L

O
P

/s
)

0 1 10 100 1000
0.01

0.1

1

10

100

(b) Area (mm
2
)

P
o

w
e

r
(W

)

BSC CMOS AP

DMM CMOS AP

FFT CMOS AP

BSC GTX480

DMM GTX480

FFT GTX480

Max Power Constraint

Max DMM Performance

Max Power
Constraint

Max DMM Performance

Max Area Constraint

(c) (d)

(a) (b)

Max Area
Constraint

Fig 5. Simulated CMOS AP (a) performance and (b) power, and ReAP (c)

performance and (d) power

Fig 6. Max ReAP (a) size and (b) performance vs. memristor write energy

Due to the dense nature of resistive memory, ReAP
scales much better than CMOS AP. However, due to
ReAP’s relatively high power density (2.7 𝑊/𝑚𝑚2 vs.
0.14 𝑊/𝑚𝑚2 for CMOS AP) it is limited by the maximum
power. The maximum DMM performance of the ReAP is
slightly above 2 TFLOPs/s, achieved at ReAP size of 14M
PUs. Both CMOS AP and ReAP exhibit better DMM pow-
er efficiency (18 GFLOPs/W and 8 GFLOPs/W respec-
tively) than GTX480 (5 GFLOPs/W).

One noticeable power advantage of ReAP is its near-
zero leakage power, while static power consumption in
GPUs or CMOS AP cannot be neglected [10]. If a way to
reduce the write energy of memristor is found, so that the
ReAP performance is no longer limited by its power den-
sity, it can reach above 6 TFLOPs/s while processing data
sets of above 40M elements in a 250𝑚𝑚2 or smaller die.
The relationship between the memristor write energy and
the maximum achievable size and peak theoretical per-
formance of ReAP is presented in Fig 6.

5 CONCLUSIONS

This paper explores a Resistive AP (ReAP), which has
the potential to scale the AP from a few millions of PUs to
a few hundred millions of PUs on a single silicon die, ad-
hering to the ever growing computing needs of big data
era. We compare the performance and power consump-
tion of ReAP to those of traditional CMOS AP and con-
ventional SIMD accelerator (GPU). We conclude that alt-

hough high power density and finite endurance of
memristors limit the potential of ReAP, it allows much
better scalability and higher performance compared to
CMOS AP and conventional SIMD accelerators. Future
progress in development of new materials for memristors
will ensure continuous scalability, improved power effi-
ciency, and higher endurance for ReAP.

ACKNOWLEDGMENT

We thank Uri Weiser for inspiring this research. Present
work was partially funded by the Intel Collaborative Re-
search Institute for Computational Intelligence and by
Hasso-Plattner-Institut.

REFERENCES

[1] A. Torrezan et al. "Sub-nanosecond switching of a tantalum oxide
memristor." Nanotechnology 22.48 (2011): 485203.

[2] C. Foster, “Content Addressable Parallel Processors”, Van Nostrand
Reinhold Company, NY, 1976

[3] E. Chung et al. "Single-chip heterogeneous computing: Does the future
include custom logic, FPGAs, and GPGPUs?” 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, 2010.

[4] F. Alibart, T. Sherwood, D. Strukov. "Hybrid CMOS/nanodevice cir-
cuits for high throughput pattern matching applications”, IEEE Confer-
ence on Adaptive Hardware and Systems, 2011

[5] G. Qing, et al. "AP-DIMM: Associative Computing with STT-MRAM,"
ISCA 2013.

[6] J Li, et al. "1Mb 0.41 µm 2 2T-2R cell nonvolatile TCAM with two-bit
encoding and clocked self-referenced sensing", IEEE Symposium
on VLSI Circuits, 2013.

[7] J. Nickel, "Memristor Materials Engineering: From Flash Replacement
Towards a Universal Memory," Proceedings of the IEEE International
Electron Devices Meeting, December 2011.

[8] K. Eshraghian, et al. "Memristor MOS content addressable memory
(MCAM): Hybrid architecture for future high performance search en-
gines”, IEEE Transactions on VLSI Systems, 19.8 (, 2011): 1407-1417.

[9] L. Yavits, “Architecture and design of Associative Processor for image
processing and computer vision”,
http://webee.technion.ac.il/publication-link/index/id/633, 1994

[10] L. Yavits, A. Morad, R. Ginosar, “Computer Architecture with Associa-
tive Processor Replacing Last Level Cache and SIMD Accelerator”,
IEEE Transactions on Computers, 2014

[11] L. Yavits, A. Morad, R. Ginosar, “Sparse Matrix Multiplication on Asso-
ciative Processor”,
http://webee.technion.ac.il/~ran/papers/YavitsSpMMonAP.pdf

[12] O. Kavehei, et al. "An associative capacitive network based on nanoscale
complementary resistive switches for memory-intensive compu-
ting”, Nanoscale 5.11 (2013): 5119-5128.

[13] R. Patel, et al. "Multistate Register Based on Resistive RAM", IEEE
Transactions on VLSI, 2014.

[14] S. Kamil et al., “An Auto-Tuning Framework for Parallel Multicore
Stencil Computations”, IEEE International Symposium on Parallel &
Distributed Processing 2010, pages 1-12.

[15] S. Kvatinsky, et al. "TEAM: threshold adaptive memristor model”, IEEE
Transactions on Circuits and Systems I, 2013.

[16] S. Matsunaga et al. "Standby-power-free compact ternary content-
addressable memory cell chip using magnetic tunnel junction devic-
es”, Applied Physics Express 2.2 (2009): 023004.

[17] W. Xu, T. Zhang, Y. Chen, "Design of spin-torque transfer magnetore-
sistive RAM and CAM/TCAM with high sensing and search speed”,
IEEE Transactions VLSI Systems, 18.1 (2010): 66-74.J.

0 10 20 30 40
5

10

15

20

25

30

35

40

(a) Per-bit memristor Write Energy (fJ)

M
a

x
 R

e
A

P
 S

iz
e

 (
M

 u
n

it
s
)

0 10 20 30 40
0

1000

2000

3000

4000

5000

6000

(b) Per-bit memristor Write Energy (fJ)

M
a

x
 R

e
A

P
 D

M
M

 P
e

rf
o

rm
a

n
c
e

 (
G

F
L

O
P

s
/s

)

http://webee.technion.ac.il/publication-link/index/id/633
http://webee.technion.ac.il/~ran/papers/YavitsSpMMonAP.pdf

