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Resistive Associative Processor 
L. Yavits, S. Kvatinsky, A. Morad, and R. Ginosar 

Abstract— Associative Processor (AP) combines data storage and data processing, and functions simultaneously as a 

massively parallel array SIMD processor and memory. Traditionally, AP is based on CMOS technology, similar to other classes 

of massively parallel SIMD processors. The main component of AP is a Content Addressable Memory (CAM) array. As CMOS 

feature scaling slows down, CAM experiences scalability problems. In this work, we propose and investigate an AP based on 

resistive CAM - the Resistive AP (ReAP). We show that resistive memory technology potentially allows scaling the AP from a 

few millions to a few hundred millions of processing units on a single silicon die. We compare the performance and power 

consumption of a ReAP to a CMOS AP and a conventional SIMD accelerator (GPU) and show that ReAP, although exhibiting 

higher power density, allows better scalability and higher performance. 

Index Terms—SIMD, Associative Processor, In-Memory Computing, Memristor, Resistive RAM.   

——————————      —————————— 

1 INTRODUCTION 

ssociative Processor (AP) is a massively parallel 
SIMD array accelerator  [9] [10]. AP comprises a Con-
tent Addressable Memory (CAM) array and periph-

eral circuits, and enables storing and processing data at 
the same location. The execution time of a typical vector 
operation in an AP does not depend on the vector size, 
thus allowing efficient parallel processing of very large 
vectors. The AP is shown to achieve better power efficien-
cy than conventional parallel accelerators  [11]. In general, 
applications with low arithmetic intensity (the ratio of 
arithmetic operations to memory access  [14]), such as 
sparse linear algebra kernels, are likely to benefit from AP 
implementation.  

As CMOS feature scaling slows down, conventional 
memory technology experiences scalability problems. In 
response, resistive memory technologies are explored 
(e.g., ReRAM based CAM  [4] [6] [12] and STT-MRAM 
based CAM  [5] [16]). Resistive memories are expected to 
scale to much smaller geometries. They are non-volatile, 
which provides near-zero leakage power. However, Re-
RAM requires relatively higher write energy and suffers 
from finite endurance, as compared to CMOS memories.  

In this paper, we present the Resistive AP (ReAP), an 
AP based on resistive CAM. We believe our work is the 
first to present a resistive CAM based in-memory acceler-
ator that can scale to hundreds of millions of Processing 
Units (PUs) on a single silicon die, and implement a wide 
range of massively parallel SIMD workloads. It may not 
only outperform a CMOS AP, but also conventional mas-
sively parallel SIMD accelerators, such as GPUs, in float-
ing point performance and/or power efficiency.  

The rest of this paper is organized as follows. Section  2 
presents the architecture of the associative processor and 

principles of associative computing. Section  3 explores the 
Resistive AP. Section  4 discusses the simulation results 
and Section  5 offers conclusions. 

2 ASSOCIATIVE PROCESSING 

AP is a non-von Neumann in-memory computing ac-
celerator. The results of basic computing operations are 
pre-calculated and compiled into a sequence of AP in-
structions. The operands are stored in the CAM array. In 
response to an input combination, the result is written 
into the CAM, typically to multiple locations.  

The architecture of an AP is presented in Fig 1(a). The 
Associative Processing Array (essentially a CAM) com-
prises of bit cells (Fig 1(b)) organized in bit-columns and 
word-rows. Typically, a word-row makes a Processing 
Unit (PU). Several special registers are appended to the 
associative processing array. The KEY register contains a 
key data word to be written or compared against. The 
MASK register defines the active fields for write and read 
operations, enabling bit selectivity. The TAG register 
marks the rows that are matched by the compare opera-
tion and may be affected by a parallel write.  An optional 
interconnect switch allows the PUs within the AP to 
communicate in parallel. A Reduction Tree is an adder 
tree, enabling quick parallel accumulation of TAG bits. It 
is useful whenever a vector needs to be reduced into a 
scalar. An example of a CMOS based associative bit cell as 
well as the tag logic are shown in Fig 1(b). SA is a small 
sense amplifier. A detailed AP design is presented in  [9].  

In a conventional CAM, a compare operation is typi-
cally followed by a read of the matched data word. In AP, 
a compare is usually followed by a parallel write into the 
unmasked bits of all tagged rows.  

Any computational expression can be efficiently im-
plemented on an AP using line-by-line execution of the 
truth table of the expression. 
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Fig 1. AP: (a) Top-level view; (b) Tag logic and CMOS NOR-type bitcell. 

Each argument of the expression is matched with the con-
tents of the entire associative memory, the matching rows 
are tagged, and the corresponding expression values are 
written into the designated fields of the tagged memory 
rows. For an 𝑚-bit argument 𝑥, any 𝑓(𝑥) has 2𝑚 possible 
values, therefore the associative computing operation 
incurs 𝑂(2𝑚) cycles, regardless of the data set size. All 
values of the 𝑓(𝑥) truth table are pre-calculated and com-
piled into a sequence of AP instructions.  

More efficiently, arithmetic operations can be per-
formed on AP in a word-parallel, bit-serial manner, re-
ducing compute time from 𝑂(2𝑚) to 𝑂(𝑚).  For instance, 
vector addition may be performed as follows  [2]. Suppose 
that two 𝑚 bit columns hold vectors A and B. The sum of 
A+B is written onto another 𝑚 bit column S (cf. Fig 2(a)). 
A one-bit column C holds the carry bit. The addition is 
carried out in 𝑚 single-bit addition parallel steps (1):  

𝑐[∗] | 𝑠[∗]𝑖 = 𝑎[∗]𝑖 + 𝑏[∗]𝑖 + 𝑐[∗] ,  

∀ 𝑖 = 0, … , 𝑚 − 1 

(1) 

 

where 𝑖 is the bit index, ‘∗’ is the word index in the vector, 
and c and s are, respectively, the carry and sum bits.  
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Fig 2. Vector Addition in AP: (a) Memory Mapping; (b) Full Adder Truth 

Table. 

The single-bit addition is carried out in a series of 
passes, where in each pass, one entry of the truth table (a 
three bit input pattern, Fig 2(b)) is matched against the 
contents of the 𝑎[∗]𝑖 , 𝑏[∗]𝑖 , 𝑐[∗] bit columns and the match-
ing rows (PUs) are tagged; the logic result (two-bit output 
of the truth table as listed in Fig 2(b)) is written into 𝑠𝑖  and 
𝑐 bits of all tagged rows. During that operation, all but 
three input bit columns and two output bit columns of the 
associative array are masked out in each pass. Overall, 
eight passes of one compare and one write operation are 
performed to complete a single-bit addition. 

A fixed-point 𝑚 bit addition and subtraction take 
16𝑚 ∝ 𝑂(𝑚) cycles. Fixed point multiplication and divi-
sion in AP require 𝑂(𝑚2) cycles  [10]. A detailed descrip-
tion of AP architecture and operations can be found in  [9].  

3 RESISTIVE ASSOCIATIVE PROCESSOR 

Resistive memory (ReRAM) technologies emerge as 
scalable, long-term alternatives to CMOS memories, in-
cluding CAM. Resistive memories store information by 
modulating the resistance of nanoscale storage elements 
(memristors). Memristors are two-terminal devices, 
where the resistance of the device is changed by the elec-
trical current or voltage. The resistance of the memristor 
is bounded by a minimum resistance 𝑅𝑂𝑁 (low resistive 
state, logic ‘1’) and a maximum resistance 𝑅𝑂𝐹𝐹 (high re-
sistive state, logic ‘0’).  

A variety of CAM designs, including hybrid 
CMOS/Magnetoresistive, CMOS/STT-MRAM, and 
CMOS/memristor, as well as memristor-only schemes 
have been developed  [4] [6] [8] [16] [17]. In this paper, we 
introduce a ReRAM crossbar based Resistive Associative 
Processing Array (Fig 3(a)), where each bitcell (Fig 3(b)) 
consists of a pair of neighboring ReRAM bitcells, formed 
by a nonlinear bipolar memristor that effectively has a 
diode for preventing sneak paths  [4] [13]. The second 
memory bit serves as a complementary bit. The ad-
vantage of this approach (relative to previous work) is 
that it requires no special CAM design. It enables a dual 
use, where the crossbar array can be operated either as an 
associative processing array or a conventional ReRAM.  

The top level architecture of the resistive AP (ReAP) 
(Fig 3(a)) closely follows the CMOS based AP architecture 
of Fig 1, except for the associative processing array which 
is memristor based. The Word and Match lines, separate 
in CMOS AP, are combined in the ReAP. 

Compare in ReAP is similar to compare operation in 
resistive CAM  [4]. The Match/Word line is precharged 
and the key is set on Bit and Bit-not lines. In the columns 
that are ignored during comparison, the Bit and Bit-not 
lines are kept floating. If all unmasked bits in a row match 
the key (i.e., when Bit line ‘1’ is applied to an 𝑅𝑂𝑁  
memristor and Bit-not line ‘0’ is applied to an 𝑅𝑂𝐹𝐹 
memristor, or vice versa), the Match/Word line remains 
high and ‘1’ is sampled into the corresponding TAG bit. If 
at least one bit is mismatched, the Match/Word line dis-
charges through an 𝑅𝑂𝐹𝐹 memristor and ‘0’ is sampled 
into the TAG.    

Write operation is performed in two phases. First, the 
𝑉 > 𝑉𝑂𝑁  voltage (where 𝑉𝑂𝑁 is a threshold voltage re-
quired to switch to the "on" state) is asserted to applicable 
Bit lines (to write ‘1’s) and Bit-not lines (to write ‘0’s). 
Second, the 𝑉 < 𝑉𝑂𝐹𝐹 voltage (where 𝑉𝑂𝐹𝐹  is a threshold 
voltage to switch to the "off" state) is asserted to Bit-not 
lines (to complement the ‘1’s) and Bit lines (to comple-
ment ‘0’s). The write affects only the tagged rows. 
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Fig 3. (a) Resistive AP, (b) ReAP bitcell 

Compare followed by a write operation are illustrated 
in Fig 4, which shows a fragment of ReAP storing ‘0110’ 
in the first row and ‘0101’ in the second row; The ReAP 
content is compared with the ‘011x’ key and a new ‘1xxx’ 
key is written in the tagged (first) row.  
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Fig 4. Compare and Write in ReAP 

In ReAP, sneak currents affect the compare operation 
(rather than read operation in a standard ReRAM cross-
bar). More specifically, there are sneak paths leading from 
a matching Match/Word Line (which is supposed to re-
tain ‘1’) through neighboring mismatching Match/Word 
Lines to the ground. The purpose of per-cell diode  [4] [13] 
is to terminate such sneak path, so that current can only 
flow from a Match/Word Line to the ground (through a 
Bit Line) in one direction.  

ReCAM behavior is verified and its performance and 
energy figures are obtained by SPICE simulations using 
memristor TEAM model  [15]. 

Utilizing a ReRAM crossbar as CAM enables a ReAp 
bitcell of 8𝐹2/𝑘 footprint (where 𝑘 is the number of verti-
cally integrated memristor layers  [4]). Such level of inte-
gration allows placing 100M (𝑘=1) 256-bit PU AP on a 
single silicon die. To compare, the CMOS based 10-
transistor AP bitcell (cf. Fig 1(b)) area is approximately 
250𝐹2  [9], limiting the AP to 4M PU in the same silicon 
area.   

The switching time of memristor may reach the range 
of a hundred picoseconds  [1], allowing GHz AP opera-

tion. The energy consumption during compare is less 
than 1fJ per bit. Unfortunately, the write energy is in the 
range of few tens of fJ per bit  [8], which is prohibitively 
high for a 100M PU ReAP, as we show below in Section  4. 
However, write energy is dependent on material the 
memristor produced of. Discovering more efficient 
memristor materials will likely result in lower write ener-
gy consumption. 

Another factor potentially limiting the use of ReAP is 
the resistive memory endurance, which is in the range of 
1012  [7]. Given that during arithmetic operations (cf. Sec-
tion  2), write operation typically occurs each second cycle, 
with an average of 2 out of 256 bits of 1/8th of the AP 
rows being written (with a close to uniform temporal and 
spatial distributions of written bits), the probability of a 
single bit to be written is (1

2⁄ ) ∙ (1
8⁄ ) ∙ (2

256⁄ ) ≈ 5 ∙ 10−4 per 
cycle. At 1GHz, it limits the endurance-driven MTBF of a 
ReAP to ~2.05 ∙ 106 sec, or ~570 hours. However, recent 
studies predict that the endurance of resistive memories 
is likely to grow to the 1014 − 1015 range  [7] [8], which 
extends the endurance-driven MTBF of a ReAP to a num-
ber of years. 

4 SIMULATION 

We simulate the ReAP using the cycle-accurate AP 
simulator introduced in  [10], employing the resistive 
CAM performance and power figures obtained by SPICE 
simulations.  

To evaluate the performance and power consumption 
of ReAP, we use the following set of workloads  [3]: 𝑁- 
pairs Black-Scholes option pricing (BSC), 𝑁-point Fast 
Fourier Transform (FFT), and Dense Matrix Multiplica-
tion (DMM) of two √𝑁×√𝑁 matrices, where 𝑁 is the data 
set size, for simplicity scaled to the AP size (the number 
of PUs). The parallel portion of each workload is simulat-
ed. We simulate all workloads for 16 different values of 
𝑁, ranging from 212 to 226. In all simulations, the PU size 
is 256 bits. We assume the 22nm technology node, operat-
ing frequency of 1GHz, and single precision floating 
point arithmetic.  

The simulated performance as a function of the AP ar-
ea for the CMOS based AP is presented in Fig 5(a). The 
power consumption results for the CMOS based AP are 
presented in Fig 5(b). The simulated performance and 
power consumption as functions of the AP area for the 
ReAP is presented, respectively, in Fig 5(c) and Fig 5(d). 
Both performance and power in both CMOS AP and 
ReAP grow linearly with the AP area (and data set size). 
Two constraint envelopes are displayed in Fig 5: the max-
imum area (250𝑚𝑚2) and maximum power (200𝑊), de-
fined for example by the chip’s thermal design point. Ad-
ditionally, we show the performance and power con-
sumption of three workloads on GTX480  [16], which area 
is scaled to 22nm to compare with CMOS AP and ReAP 
areas.   

Our analysis shows that CMOS AP is limited by its 
maximum area (corresponding to 4M AP PUs), with max-
imum DMM performance reaching 670 GFLOPs/s.  
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Fig 5. Simulated CMOS AP (a) performance and (b) power, and ReAP (c) 
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Fig 6. Max ReAP (a) size and (b) performance vs. memristor write energy 

Due to the dense nature of resistive memory, ReAP 
scales much better than CMOS AP. However, due to 
ReAP’s relatively high power density (2.7 𝑊/𝑚𝑚2 vs. 
0.14 𝑊/𝑚𝑚2 for CMOS AP) it is limited by the maximum 
power. The maximum DMM performance of the ReAP is 
slightly above 2 TFLOPs/s, achieved at ReAP size of 14M 
PUs. Both CMOS AP and ReAP exhibit better DMM pow-
er efficiency (18 GFLOPs/W and 8 GFLOPs/W respec-
tively) than GTX480 (5 GFLOPs/W).   

One noticeable power advantage of ReAP is its near-
zero leakage power, while static power consumption in 
GPUs or CMOS AP cannot be neglected  [10]. If a way to 
reduce the write energy of memristor is found, so that the 
ReAP performance is no longer limited by its power den-
sity, it can reach above 6 TFLOPs/s while processing data 
sets of above 40M elements in a 250𝑚𝑚2 or smaller die. 
The relationship between the memristor write energy and 
the maximum achievable size and peak theoretical per-
formance of ReAP is presented in Fig 6.   

5 CONCLUSIONS 

This paper explores a Resistive AP (ReAP), which has 
the potential to scale the AP from a few millions of PUs to 
a few hundred millions of PUs on a single silicon die, ad-
hering to the ever growing computing needs of big data 
era. We compare the performance and power consump-
tion of ReAP to those of traditional CMOS AP and con-
ventional SIMD accelerator (GPU). We conclude that alt-

hough high power density and finite endurance of 
memristors limit the potential of ReAP, it allows much 
better scalability and higher performance compared to 
CMOS AP and conventional SIMD accelerators. Future 
progress in development of new materials for memristors 
will ensure continuous scalability, improved power effi-
ciency, and higher endurance for ReAP.   
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