=

=

The Plural Architecture
Shared Memory Many-core with Hardware Scheduling

Ran Ginosar
Technion, Israel

March 2015

Outline

[A Motivation: Programming model]
A Plural architecture
A Plural implementation
A Plural programming model
A Plural programming examples
A ManyFlow for the Plural architecture
A Scaling the Plural architecture
A Mathematical model of the Plural architecture

=]

=]

many-cores

A Many-core is:
A a single chip
A with many (how many?) cores and on-chip memory
A running one (parallel) program at a time, solving one problem
A an accelerator

A Many-core is NOT:

ANot a fAnoxomal 6 mul t i
A Not running an OS

A Contending many-core architectures
A Shared memory (the Plural architecture, XMT)
A Tiled (Tilera, Godson-T)
A Clustered (Rigel)
A GPU (Nvidia)
A Contending programming models

=]

Plural shared memory architecture

rchitecture

Shared Memory

Code Mapping

1 One Parallel Program

=]

Context

A Plural: homogeneous acceleration for
heterogeneous systems

HOST

OS

/O
Network
Peripherals

Plural
Accelerator

ZANIVZAN

(—

™~
—
/

%
%

streaming

=

One (parallel) program ?

A Best formal approach to parallel programming is
the PRAM model

A Manages
A all cores as a single shared resource
A all memory as a single shared resource

Aand mor eé

=

PRAM matrix-vector multiply

AX=y

o

Y

("

-

q
Y
>
—
U
U
>
—
U

Corel

Core 2

Core 3

Core 4

Core 5

The PRAM algorithm

Qis core inc_lex
AND slice index

Begin
Yi=AX
End

A,x,y in shared memory
(Concurrent Read of x)

Temp are in private
memories (e.g. computing
actual addresses given)

=

PRAM logarithmic sum

The PRAM algorithm
// Sum vector A(*)

Begin

B(i) := A(i) h=3

For h=1:log(n)

0 &7 then h=2

B(i) = B(2i-1) + B(2i)

End h=1

/I B(1) holds the sum d; &, az a4 as ag a7 ag

B(1)=A() I
.\ §0SKS
({'\(\6 grc\“y fa § h \ “\OX\\I

2

\def*‘cc\

/ ‘\05\‘5

if (..) B(>i)=B(2i-1)+B(2i)

=]

PRAM SoP: Concurrent Write

A Boolean X=a,b,+a,b,+ é
£ The PRAM algorithm
Begin |

It (ab;) X=1 f(ab) X=1 |
End

All cores which write into X, write the same value

Outline

A Motivation: Programming model
| A Plural architecture]
A Plural implementation
A Plural programming model
A Plural programming examples
A ManyFlow for the Plural architecture
A Scaling the Plural architecture
A Mathematical model of the Plural architecture

=]

10

=

The Plural Architecture: Part |

P-to-M resolving NoC

Shared Memory

external memory, 10

Many small processor cores
Small private memories (stack, L1)

Fast NOC to memory
(Multistage Interconnection Network)
NOC resolves conflicts

SHARED memory, many banks
~Equi-distant from cores (2-3 cycles)

A A Adcaloaddress interleaving
Negligible conflicts

11

=

The Plural Architecture: Part Il

scheduler

A A A A AAAA

VYVYVYVVYVYYVYY

P-to-S
scheduling NoC

A a A a a a a a

Yy ¥V VvV VvV VvV Vv VvV ¥V
EEEEE D EE
¥ % % % % ¥ 7§ %

A\ 4 \ 4 A\ 4 A\ 4 \ 4 \ 4 \ 4 \ 4

P-to-M resolving NoC

Shared Memory

external memory, 10

Hardware scheduler / dispatcher / synchronizer

Low (zero) latency parallel scheduling
enables fine granularity

Many small processor cores
Small private memories (stack, L1)

Fast NOC to memory
(Multistage Interconnection Network)
NOC resolves conflicts

SHARED memory, many banks
~Equi-distant from cores (2-3 cycles)

A A Adcaloaddress interleaving
Negligible conflicts

12

Outline

A Motivation: Programming model
A Plural architecture
[A Plural implementation]
A Plural programming model
A Plural programming examples
A ManyFlow for the Plural architecture
A Scaling the Plural architecture
A Mathematical model of the Plural architecture

=]

13

How does the P-to-M NOC look like?

i

|

Y\A \an) AN
N

U|U|U|U|U|U|U|0V|(U|TUV |0V |0

HE8888888888

A Full bi-partite connectivity required

A But full cross-bar not required: minimize conflicts
g and allow stalls/re-starts 14

=

Logarithmic multistage interconnection network

U|U|U|U|U|U|0U|U|U |0V |0V |0

T T T T e T e T e T e T e T T

I \

Combinational switches Pipeline stage (registeisy

Floorplans

and an example of one route

The dual floor plan. Why?

16

access sequence: fixed latency when successtui)
ReadRequest

cycle
time

; Processors

Pipeline Stage 1 |

Pipeline Stage 2 |

/ pipeline stage 3 |

40nm GP

41 4mm

64 cores

2MB D$
In 128 banks
400 MHz

1 Watt

18

Example floorplan + layout

B TNERVA =i umwanﬂ.ﬂm ddEe ekl n W
mgﬁ\wﬂmﬁﬂ_ﬁ‘ ; SESTURC LS

E‘

"Sync/Sched

W

12

Outline

A Motivation: Programming model
A Plural architecture
A Plural implementation
[A Plural programming model]
A Plural programming examples
A ManyFlow for the Plural architecture
A Scaling the Plural architecture
A Mathematical model of the Plural architecture

=]

The Plural task-oriented programming model

A Programmer generates TWO parts:

A Task-dependency-gr aph = 0t scheduler
A Sequential task codes

A Task maps loaded into scheduler / P-to-S \
A Tasks loaded into memory __ scheduling NoC
\ \ 4 A 4 \ 4 \ 4 \ 4 \ 4 \ 4

| A A

P-to-M resolving NoC
taskName (instance_id) \

{ L
é instance id é .

/l instance_id is instance number Shared memory

Task template:

regular
duplicable

é .

=

Outline

A Motivation: Programming model

A Plural architecture

A Plural implementation

A Plural programming model

u& Plural programming examples]

A ManyFlow for the Plural architecture

A Scaling the Plural architecture

A Mathematical model of the Plural architecture

=]

=

Fine Grain Parallelization

Convert (Independent) loop iterations

for (i= 0;i< 10000 ; i++) { a[i] = b[i*c[i]; }

l

duplicable doLargelLoop
Into parallel tasks

set task quota (doLargeLoop , 10000)

void dolLargeLoop (id)
{ a[id] = Db[id]*clid]; }/hd Is instance number

22

Task map example (2D FFT)

Singular task —

—

Duplicable task— //éi W

Condition

\’*
A

Join / fork

é L]
e
R
&
— & =

=]

g
¥

23

=]

Another task map (linear solver)

24

{

Linear Solver: Simulation snap-shots

M S
ANty
R

H.

25

=

Plural Task Oriented Programming Model:
Task Rules 1

A Tasks are sequential

A All ready tasks, or any subset, can be executed in
parallel on any number of cores

A All computing organized in tasks. All code lines belong to
tasks

A Tasks use shared data in shared memory
A May employ local private memory.
A lts contents disappear once a task completes

A Precedence relations among tasks:
A Described in task map

A Managed by scheduler: receive task completion messages,
schedule dependent tasks

A Nesting task spawning is easy and natural

26

=]

Plural Task Oriented Programming Model:
A ~ Task Rules 2
2 types of tasks:

A Regular task (Executes once)
A Duplicable task
A Duplicated into quota=d independent concurrent instances

A Identified by entry point (same for all d instances) and by unique
instance number.

A Task quota is actually a variable. The only reason for the synchronizer
to access data memory

A Conditions on tasks executed by scheduler
A Tasks are not functions

A No arguments, no inputs, no outputs
A Share data only in shared memory

A No synchronization points other than task completion
A No BSP, no barriers
A No locks, no access control in tasks

A Conflicts are designed into the algorithm (they are no surprise)
A Resolved only by NoC

27

=

Example: Matrix Multiplication

set _task_quota (mm, N*N);

extern float A[],B[],C[]

void mm(id)

{
I = id modN;
k= i1d /N ;
sum= 0;

for(m= 0; m<N; m++){

sum += A[i][m] * B[m][K];

}
Cli]K] =sum :

/I create N T N tasks
/I A,B,C in shared mem
//'id = instance number
/[row number
/[column number
Il read row & column from

/I shared mem

/] store result in shared mem

l

duplicable MM

28

=]

What if paralle

A So far, examples were

Ism IS limited ?

nighly parallel

A What if algorithm CANNOT be parallelized?

A Execute many (serial) instances in parallel
A Each instance on different data

A What if algorithm is mixture of serial / parallel

segments?
A Use ManyFlow

29

=]

Outline

A Motivation: Programming model
A Plural architecture
A Plural implementation
A Plural programming model
A Plural programming examples
| A ManyFlow for the Plural architecture |
A Scaling the Plural architecture
A Mathematical model of the Plural architecture

Stream Processing

A Data arrives in a sequence of blocks
Out+l Process
A In parallel: —~

A Process current block (K) \O/
A Output results of previous block (K-1)
A Input next block (K+1)

time
K-1 Process block K K+1
Output Input >< Output Input >< Output :)ngi
block K-2 block K block K-1 block K+1 block K K+2
~ 31
4 data block cycle time

PIPELINED stream processing

A For faster data & slower processing

time
put Input Input Input Input Input Input Input
-2 K-1 block K K+1 K+2 K+3 K+4 K+5
K-3 Process block K K+3
e K-2 Process block K+1
- 4 K-1 Process block K+2

tput Output Output Output Output Output Output
-6 K-5 K-4 K-3 K-2 K-1 K+1

data block cycle time
32

A

=

PELINED stream

Parallel execution of

Plural architectures

execution

orocessing: ManyFlow

nipelined stream

processing on the shared-memory manycore

~lexible, dynamic, out-of-order, task-oriented

33

Example: A DWT image compression
algorithm

Num. cores Max 64 cores

utilized

60 -

DWT o
parallel *) | 20 -
C

30 -

serial
20 - —
D Jencoding : , ,
(highly EEEEEEEEE o gl
parallel *)

serial Image compression time: 160 (relative time units)

Low utilization: only 65%
34

=]

=

Speed It up with a pipeline?

Sequential —I L

25 50 18 54 13 =160

Pipeline

54 54 54 54 54

35

Hardware-like Pipeline

Time step i+1 Step i+2 Step i+3 Step i+4 Step i+5 Step i+6

Step i Image k+4 Step i+7
] — =
] Image k+5
— ——] —]
e k+1 Image k+6
== ——] — =
B Image k+2 Image k+7 I
— — — —
Image k+3 |
- - e —

Needs 5 stages: two with 64 cores each, three with one core each (total 131 cores)
If only 64 cores, time / step = 64x2 + 25 = 153 (how ? What is the utilization?)
gHard to program, inefficient, inflexible, fixed task per core. Need to store 5 |maqes

Parallel/p i p e | Nlany&lowo

Step | All 5 stages are independent (order does not matter)
A Can run concurrently
'Tage . A Scheduler will dispatch most efficiently
+
Image
Kk ==
Image
k+1
1[5
Image
k+2 —
Image Pipeline Stage
k+3 Sync
~. Still need to store 5 images (and their temporary storage) 37

¥

Parallel / pipelined iManyFlowo

Input C D Output
raw image compressed
image
Pipeline Stage
Sync
Task map for continuous execution
Includes two more pipe stages, for I/O of images
Now need to store 7 images (and their temporary storage) 38

¥

Paral | el MNManyrlowoe | |

(automatically scheduled) o
Image compression time (piped): 95 Higher utilization: 99%

A A

=

