
The Plural Architecture
Shared Memory Many-core with Hardware Scheduling

Ran Ginosar

Technion, Israel

March 2015

1

Outline

ÅMotivation: Programming model

ÅPlural architecture

ÅPlural implementation

ÅPlural programming model

ÅPlural programming examples

ÅManyFlow for the Plural architecture

ÅScaling the Plural architecture

ÅMathematical model of the Plural architecture

2

many-cores

ÅMany-core is:
Åa single chip

Åwith many (how many?) cores and on-chip memory

Å running one (parallel) program at a time, solving one problem

Åan accelerator

ÅMany-core is NOT:
ÅNot a ñnormalò multi-core

ÅNot running an OS

ÅContending many-core architectures
ÅShared memory (the Plural architecture, XMT)

ÅTiled (Tilera, Godson-T)

ÅClustered (Rigel)

ÅGPU (Nvidia)

ÅContending programming models

3

Rx Phy

Tx Phy

Several

Applications

MAC

LINUX

Code Mapping

Plural shared memory architecture

4

One Parallel Program

Shared Memory

Architecture

Context

ÅPlural: homogeneous acceleration for

heterogeneous systems

5

HOST

OS

I/O

Network

Peripherals

Plural

Accelerator

streaming

One (parallel) program ?

ÅBest formal approach to parallel programming is

the PRAM model

ÅManages

Åall cores as a single shared resource

Åall memory as a single shared resource

Åand moreé

6

PRAM matrix-vector multiply

7

Ĭ=

The PRAM algorithm
Ὥis core index

AND slice index

Begin

yi=Aix
End

A,x,y in shared memory

(Concurrent Read of x)

Temp are in private
memories (e.g. computing
actual addresses given Ὥ)

Ax=y

A i x
yi

Ĭ=

Ĭ=

Ĭ=

Ĭ=

Ĭ=

Core 1

Core 2

Core 3

Core 4

Core 5

PRAM logarithmic sum
The PRAM algorithm

// Sum vector A(*)

Begin

B(i) := A(i)

For h=1:log(n)

if Ὥ ὲȾς then

B(i) = B(2i-1) + B(2i)

End

// B(1) holds the sum

8

a1 a2 a3 a4 a5 a6 a7 a8

h=3

h=2

h=1

B(i)=A(i)

if (..) B(i)=B(2i-1)+B(2i)

h

h

PRAM SoP: Concurrent Write

ÅBoolean X=a1b1+a2b2+é

ɆThe PRAM algorithm

Begin

if (aibi) X=1

End

All cores which write into X, write the same value

9

if (aibi) X=1

Outline

ÅMotivation: Programming model

ÅPlural architecture

ÅPlural implementation

ÅPlural programming model

ÅPlural programming examples

ÅManyFlow for the Plural architecture

ÅScaling the Plural architecture

ÅMathematical model of the Plural architecture

10

11

The Plural Architecture: Part I

ñAnti-localò address interleaving

Negligible conflicts

Many small processor cores

Small private memories (stack, L1)
PPPPPPPP

external memory, IO

Shared Memory

P-to-M resolving NoC
Fast NOC to memory

(Multistage Interconnection Network)

NOC resolves conflicts

SHARED memory, many banks

~Equi-distant from cores (2-3 cycles)

PPPPPPPP

P-to-M resolving NoC

Low (zero) latency parallel scheduling

enables fine granularity

scheduler

P-to-S

scheduling NoC

The Plural Architecture: Part II

Hardware scheduler / dispatcher / synchronizer

Shared Memory
ñAnti-localò address interleaving

Negligible conflicts

Many small processor cores

Small private memories (stack, L1)

Fast NOC to memory

(Multistage Interconnection Network)

NOC resolves conflicts

SHARED memory, many banks

~Equi-distant from cores (2-3 cycles)

12
external memory, IO

Outline

ÅMotivation: Programming model

ÅPlural architecture

ÅPlural implementation

ÅPlural programming model

ÅPlural programming examples

ÅManyFlow for the Plural architecture

ÅScaling the Plural architecture

ÅMathematical model of the Plural architecture

13

How does the P-to-M NOC look like?

ÅFull bi-partite connectivity required

ÅBut full cross-bar not required: minimize conflicts
and allow stalls/re-starts 14

P

P

P

P

P

P

P

P

P

P

P

P

M

M

M

M

M

M

M

M

M

M

M

M

Logarithmic multistage interconnection network

P

P

P

P

P

P

P

P

P

P

P

P

M

M

M

M

M

M

M

M

M

M

M

M

Pipeline stage (registers)Combinational switches 15

16

Floorplans

and an example of one route The dual floor plan. Why?

access sequence: fixed latency (when successful)

time

Processors

MEMORY

pipeline stage 3

Pipeline Stage 1

Pipeline Stage 2

cycle
Read Request

17

Example floorplan + layout

18

1MByte Data Memory

1MByte Data Memory
6

4
k
B

 In
s
tru

c
tio

n

M
e

m
o

ry

6
4

k
B

 In
s
tru

c
tio

n

M
e

m
o

ry

S
y
n
c
/S

c
h

e
d

64 cores

40nm GP

4Ĭ4mm

64 cores

16 FPU

2MB D$

in 128 banks

128kB I$

400 MHz

1 Watt

PLURALITY

Outline

ÅMotivation: Programming model

ÅPlural architecture

ÅPlural implementation

ÅPlural programming model

ÅPlural programming examples

ÅManyFlow for the Plural architecture

ÅScaling the Plural architecture

ÅMathematical model of the Plural architecture

19

20

The Plural task-oriented programming model

ÅProgrammer generates TWO parts:

ÅTask-dependency-graph = ótask mapô

ÅSequential task codes

ÅTask maps loaded into scheduler

ÅTasks loaded into memory

regular

duplicable taskName (instance_id)

{

é instance_idé.
// instance_id is instance number

é..

}

Task template: PPPPPPPP

P-to-M resolving NoC

scheduler

P-to-S

scheduling NoC

Shared memory

Outline

ÅMotivation: Programming model

ÅPlural architecture

ÅPlural implementation

ÅPlural programming model

ÅPlural programming examples

ÅManyFlow for the Plural architecture

ÅScaling the Plural architecture

ÅMathematical model of the Plural architecture

21

Fine Grain Parallelization

Convert (independent) loop iterations

for (i= 0; i< 10000 ; i++) { a[i] = b[i]*c[i]; }

into parallel tasks
set_task_quota (doLargeLoop , 10000)

void doLargeLoop (id)

{ a[id] = b[id]*c[id]; } //id is instance number

22

duplicable doLargeLoop

23

Task map example (2D FFT)

Duplicable task é
é
é

é
é
é

Condition

Join / fork

Singular task

24

Another task map (linear solver)

25

Linear Solver: Simulation snap-shots

Plural Task Oriented Programming Model:

Task Rules 1
ÅTasks are sequential

ÅAll ready tasks, or any subset, can be executed in

parallel on any number of cores

ÅAll computing organized in tasks. All code lines belong to

tasks

ÅTasks use shared data in shared memory

ÅMay employ local private memory.

Å Its contents disappear once a task completes

ÅPrecedence relations among tasks:

ÅDescribed in task map

ÅManaged by scheduler: receive task completion messages,

schedule dependent tasks

ÅNesting task spawning is easy and natural

26

Plural Task Oriented Programming Model:

Task Rules 2
Å 2 types of tasks:

Å Regular task (Executes once)

Å Duplicable task

ÅDuplicated into quota=d independent concurrent instances

ÅIdentified by entry point (same for all d instances) and by unique
instance number.

ÅTask quota is actually a variable. The only reason for the synchronizer
to access data memory

Å Conditions on tasks executed by scheduler

Å Tasks are not functions

Å No arguments, no inputs, no outputs

Å Share data only in shared memory

Å No synchronization points other than task completion

Å No BSP, no barriers

Å No locks, no access control in tasks

Å Conflicts are designed into the algorithm (they are no surprise)

Å Resolved only by NoC

27

Example: Matrix Multiplication

28

set_task_quota (mm, N*N); // create N ĬN tasks

extern float A[],B[],C[] // A,B,C in shared mem

void mm(id) // id = instance number

{

i = id mod N; // row number

k = id / N ; // column number

sum = 0;

for(m= 0; m<N; m++){

sum += A[i][m] * B[m][k]; // read row & column from

// shared mem

}

C[i][k] = sum ; // store result in shared mem

}

duplicable MM

What if parallelism is limited ?

ÅSo far, examples were highly parallel

ÅWhat if algorithm CANNOT be parallelized?

ÅExecute many (serial) instances in parallel

ÅEach instance on different data

ÅWhat if algorithm is mixture of serial / parallel

segments?

ÅUse ManyFlow

29

Outline

ÅMotivation: Programming model

ÅPlural architecture

ÅPlural implementation

ÅPlural programming model

ÅPlural programming examples

ÅManyFlow for the Plural architecture

ÅScaling the Plural architecture

ÅMathematical model of the Plural architecture

30

Stream Processing

ÅData arrives in a sequence of blocks

ÅIn parallel:

ÅProcess current block (K)

ÅOutput results of previous block (K-1)

ÅInput next block (K+1)

31

time

Process block K K + 1K - 1

Output

block K-1

Input

block K+1

Output

block K

Input

block

K+2

Output

block K-2

Input

block K

ProcessOut+In

data block cycle time

PIPELINED stream processing

ÅFor faster data & slower processing

32

time

Process block K K + 3

Input

block K

Process block K+1 K + 4

Process block K+2K - 1

K - 2

K - 3

K - 4

Input

K-1

Input

K-2

Input

K+2

Input

K+1

Input

K+4

Input

K+3

Input

K+

Input

K+5

Output

K-4

Output

K-5

Output

K-6

Output

K-2

Output

K-3

Output

block K

Output

K-1

Out

K+

Output

K+1

data block cycle time

PIPELINED stream processing: ManyFlow

ÅParallel execution of pipelined stream

processing on the shared-memory manycore

Plural architectures

ÅFlexible, dynamic, out-of-order, task-oriented

execution

33

Example: A DWT image compression

algorithm

34

)

A

B

C

)D

E

B

A C

D

E

Low utilization: only 65%

Image compression time: 160 (relative time units)

DWT

(highly

parallel *)

Bit-plane

encoding

(highly

parallel *)
Time

Num. cores

utilized

Max 64 cores

serial

serial

serial

Speed it up with a pipeline?

25 50 18 54 13 =160

54 54 54 54 54

Sequential

Pipeline

35

Hardware-like Pipeline

Needs 5 stages: two with 64 cores each, three with one core each (total 131 cores)

If only 64 cores, time / step = 64x2 + 25 = 153 (how ? What is the utilization?)

Hard to program, inefficient, inflexible, fixed task per core. Need to store 5 images
36

Step i

Time step i+1 Step i+2 Step i+3 Step i+4 Step i+5 Step i+6

Step i+7Image k+4

Image k+5

Image k+6

Image k+7

Image k+3

Image k+2

Image k+1

Parallel / pipelined ñManyFlowò

37

All 5 stages are independent (order does not matter)

Ą Can run concurrently

Ą Scheduler will dispatch most efficiently

)A B C)D E

Pipeline Stage

Sync

Image

k

Image

k+1

Image

k+2

Image

k+3

Image

k+4

Step i

Still need to store 5 images (and their temporary storage)

Parallel / pipelined ñManyFlowò

38

)A B C)D EInput

raw image

Output

compressed

image

Pipeline Stage

Sync

Task map for continuous execution

Includes two more pipe stages, for I/O of images

Now need to store 7 images (and their temporary storage)

Parallel / pipelined ñManyFlowò
(automatically scheduled)

39

Higher utilization: 99%

B

A C

D

E

Image compression time (piped): 95

