
The Plural Architecture
Shared Memory Many-core with Hardware Scheduling

Ran Ginosar

Technion, Israel

January 2012

1

Outline

• Plural architecture and programming

• Mathematical model

• Examples

2

many-cores

• Many-core is:
• a single chip

• with many (?) cores and on-chip memory

• running a single (parallel) program at a time, solving one
problem

• an accelerator

• Many-core is NOT:
• Not a “normal” multi-core

• Not running an OS

• Contending many-core architectures
• Shared memory (the Plural architecture, XMT)

• Tiled (Tilera, Godson-T)

• Clustered (Rigel)

• GPU (Nvidia)

• Contending programming models

3

Rx Phy

Tx Phy

Several

Applications

MAC

LINUX

Code Mapping

Plural shared memory architecture

4

One Parallel Program

Shared Memory

Architecture

Context

• Plural: homogeneous acceleration for

 heterogeneous systems

5

HOST

[linux,windows,…]

I/O

Network

Peripherals

Plural

Accelerator

One (parallel) program ?

• Plural programming model: de-synchronized

PRAM

• Manages all cores as a single shared resource

• Manages all memory as a single shared resource

• Plural programming model is NOT CSP

• CSP [Hoare 1978], a.k.a. message-passing,

means long processes

• Plural PM is fine grain tasks

• CSP blocks on communications and synchronization

• Plural PM has no communications (only shared memory)

• Plural PM kills when synchronization is needed

6

PRAM matrix-vector multiply

7

× =

The PRAM algorithm
𝑖 is core index
 AND slice index

 Begin

 yi=Aix
 End

A,x,y in shared memory

(Concurrent Read of x)

Temp are in private
memories (e.g. computing
actual addresses given 𝑖)

Ax=y

Ai x
yi

× =

× =

× =

× =

× =

Core 1

Core 2

Core 3

Core 4

Core 5

PRAM logarithmic sum
The PRAM algorithm

// Sum vector A(*)

Begin

B(i) := A(i)

For h=1:log(n)

 if 𝑖 ≤ 𝑛/2ℎ then

 B(i) = B(2i-1) + B(2i)

End

// B(1) holds the sum

8

a1 a2 a3 a4 a5 a6 a7 a8

h=3

h=2

h=1

B(i)=A(i) B(i)=A(i)

if (..) B(i)=B(2i-1)+B(2i) if (..) B(i)=B(2i-1)+B(2i)

h

h

PRAM SoP: Concurrent Write

• Boolean X=a1b1+a2b2+…

• The PRAM algorithm

 Begin

 if (aibi) X=1

 End

All cores which write into X, write the same value

9

if (aibi) X=1 if (aibi) X=1

10

The Plural Architecture: Part I

“Anti-local” address interleaving

Negligible conflicts

Many small processor cores

Small private memories
P P P P P P P P

external memory

Shared L1 banks

P-to-M resolving NoC
Fast NOC to memory

(Multistage Interconnection Network)

NOC resolves conflicts

SHARED memory (cache), many banks

~Equi-distant from cores (2-3 cycles)

P P P P P P P P

external memory

P-to-M resolving NoC

Low (zero) latency parallel scheduling

enables fine granularity

scheduler

P-to-S

scheduling NoC

The Plural Architecture: Part II

Hardware scheduler / dispatcher / synchronizer

Shared L1 banks
“Anti-local” address interleaving

Negligible conflicts

Many small processor cores

Small private memories

Fast NOC to memory

(Multistage Interconnection Network)

NOC resolves conflicts

SHARED memory (cache), many banks

~Equi-distant from cores (2-3 cycles)

Example floorplan + layout

12

1MByte Data Memory

1MByte Data Memory
6

4
k
B

 In
s
tru

c
tio

n

M
e

m
o

ry

6
4

k
B

 In
s
tru

c
tio

n

M
e

m
o

ry

S
y
n
c
/S

c
h

e
d

64 cores

40nm GP

4×4mm

64 cores

16 FPU

2MB D$

in 128 banks

128kB I$

400 MHz

1 Watt

PLURALITY

But does it scale?

• Research question:

• Access to distant memory is slow and

energy-inefficient

• What if we use the full chip

• Instead of 4x4 mm?

13

Possible Full-Chip Plan

14

 Multi-bank 256MB L2

Memory Control, high-speed I/O

2
0
 m

m

4
 m

m

2-3 cycle

L1

10-30 cycles

L2

2MB L1

64

cores

But does it scale (more processors)?

15

64 Cores

2 MB shared L1

256 MB shared L2

256 Cores

8 MB shared L1

192 MB shared L2

1024 Cores

32 MB shared L1

64 MB shared L2

256 MB L2

2MB

64

192 MB L2

8 MB L1

256

64 MB L2

32 MB L1

1024

Long, high
energy
access to
larger
shared
memory

Cluster,
Not a
shared
memory

192 MB L2

2MB

64

2MB

64

2MB

64

2MB

64

64 MB L2

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

2MB

64

Compare with “tiled” CMP using mesh NOC

16

20×20mm

64 tiles

32 kB L1 x64

= 2 MB

4 MB L2 x64

= 256 MB

Directory:

All L2’s = L3

2
0
 m

m

1 cycle

L1

7cycles

L2

70cycles

L3

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

L1
L2

P

Modeling Many-core Architectures

17

Why model many-cores?

• Wish to fine-tune the Plural architecture

• Cores:

• How many? What type(s)?

• What are performance, power, area?

– Let’s try Pollack’s rule to inter-connect these parameters

• Memories:

• What architecture? How accessed?

• What are performance, power, area?

• Wish to compare to other architectures

• By performance, power, perf/power, area, …

• And maybe ease of programming / parallelization

18

The many-core research question

• Given fixed area, into how many processor

cores should we divide it?

• Analysis can be based on Pollack’s rule

• Other good questions (not dealt here):

• Given fixed power, how many cores? which cores?

• Given fixed energy, how many cores? which cores?

• Given target performance, how many? Which?

19

Process Technology

1.5µ 1.0µ 0.8µ 0.6µ 0.35µ 0.25µ 0.18µ 130nm 90nm 65nm 45nm 32nm
Processor

Performance = Microarchitecture x Process
M

ic
ro

ar
ch

it
ec

tu
re

Intel386™ DX
Processor

Intel486™ DX
Processor

Pentium®
Processor

Pentium® II Processor

Pentium® 4 Processor

Pentium® III
Processor

Pentium M

Intel Core ® i7

Pentium® Duo 2

20

The history at the basis of Pollack’s analysis

21

Technology

generations

P1

P2

P3

P4

P5

G1 G2 G3 G4 G5

Shrink, scaling

New architecture,

same process

Q: On red arrows, how

much more performance

for how much more

area?

Pollack’s rule for processors:

Area or Power vs. Performance

22

• Pollack (& Borkar & Ronen, Micro 1999)

observed many years of (intel) architecture

• In each Intel technology node, they compared:

• Old uArch (shrink from previous node)

• New uArch (faster clock and/or higher IPC)

• They noted:

• New uArch used 2-3X larger area

• New uArch achieved 1.5-1.7X higher performance

• Resulting from both higher frequency and higher IPC

• They did not consider power increase

• Who thought about power in 1999?

• Observation: Performance ~ 𝑎𝑟𝑒𝑎

Performance = IPC × Frequency

• Experience shows: for higher performance,

both IPC and frequency must be increased

23

1.6

0.57 0.6

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Series11

Series12

Series13

Series14

Series15

Series16Speed demons

SPECInt92 = 100 50

MHz

ALPHA

X86

PowerPC

PENTIUM

PENTIUM PRO

21164

21064

1.0

0.

5

1.5

2.0

50 100 150 200 250 300 350 400

1

 S

P
E

C
In

t9
2
 /
 M

H
z

=

 a

 A

v
e

ra
g

e
 I

P
C

Frequency Diep, Nelson & Shen, ISCA 1995

The many-core fixed-total-area model

• Assume fixed chip area (typically 300-500 mm2)

• Split chip area A = Acores + Amem
• Split (memory size) affects on-chip hit rate

• Amem may be further split into AL1+AL2

• Divide Acores into m cores. How many ?

• Area of each core: 𝑎 =
𝐴𝑐𝑜𝑟𝑒𝑠

𝑚
 . Thus, m ~1 𝑎

• [Pollack’s]: core area determines core performance. Select
IPC and frequency f so that:
• Performance (core) = IPC × 𝑓 ~ 𝑎. Thus, a ~ 𝐼𝑃𝐶2𝑓2 , m ~ 1 𝐼𝑃𝐶2𝑓2

• Power (core) ~ a × 𝑓 ~ 𝐼𝑃𝐶2𝑓3

• Assume perfect parallelism (at least as upper bound)

• Performance (m cores) = IPC × 𝑓 ×𝑚 ~
𝐼𝑃𝐶∙𝑓

𝐼𝑃𝐶2𝑓2
=

1

𝐼𝑃𝐶∙𝑓
 ~

𝐼𝑃𝐶∙𝑚

𝐼𝑃𝐶 𝑚
= 𝑚

• Power (m cores) = a × 𝑓 ×𝑚 ~
 𝐼𝑃𝐶2𝑓3

𝐼𝑃𝐶2𝑓2
= f ~

1

𝐼𝑃𝐶 𝑚

24

Summary: Performance~
1

𝑓
~ 𝑚, Power~

1

𝑚
~𝑓, m ~

1

𝑓2

Performance (core) = IPC × 𝑓

25

a ~ 𝐼𝑃𝐶2𝑓2

26

For each IPC curve, a ~ 𝑓2

m ~
1

𝐼𝑃𝐶2𝑓2

27

For each IPC curve, m ~
1

𝑓2

Performance~
1

𝑓
~ 𝑚

28

Power~𝑓~
1

𝑚

29

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑃𝑜𝑤𝑒𝑟
~
1 𝑓

𝑓
=

1

𝑓2
~

𝑚

1 𝑚
= 𝑚

Analysis of the results so far:

• Slower frequency and lower IPC higher performance, lower power

• Thanks to Pollack’s square rule

But this changes when we also consider memory power…

Now add memory

• So far, only computing power

• Including power to access local cache/memory in each

core

• Only small private memory is local in the SM Plural architecture

• But we also need to access not-so-local shared

memory

• Access rate to memory: once every rm instructions

• About every 20 instructions in the SM Plural architecture

• Ignore cache misses, assume using only on-chip memory

• Need to add memory access power to the

computing power

• Relative energy: assume access is 10x higher than exec.

30

Comparing SM Plural to TILED architecture

• Local memory is:
• SM: private memory

• TILED: local L1 & L2 (L2 access less frequent but higher energy)

• Global memory is:
• SM: Shared memory (L1), possibly LLC

• Via fast cores-to-memories net

• TILED: other cores’ local L2 caches (L3)
• Via complex NoC incl. directory access

• Access rate: global memory access every rm instructions
• SM: every 20 instructions to L1, every 5000 instructions to LLC

• TILED: Assume every 500 instructions

• Energy to access global memory (higher than exec
energy)
• SM: 10x to L1, 100x to L2

• TILED: 1x to L1, 5x to L2, 1000x to L3

31

32

𝑚 1

𝑓

𝑚

𝑚+
1
𝑚

1
𝑓

1
𝑓

+𝑓

𝑚+
1

𝑚

1

𝑓
+ 𝑓

Summary of the model

• Considering only cores, fixed-total-area model

implies: for highest performance and lowest

power, use

• smallest / weakest cores (lowest IPC)

• lowest frequency

• Adding on-chip access to memory leads to a

different conclusion: for lowest power and

highest performance/power ratio, use

• Strongest cores (high IPC)

• But stay with lowest frequency

• Lower frequency lower access rate to global memory

33

34

The Plural task-oriented programming model

• Programmer generates TWO parts:

• Task-dependency-graph = ‘task map’

• Sequential task codes

• Task maps loaded into scheduler

• Tasks loaded into memory

 singular

 duplicable task xxx(dependencies)

 control

{

 … # …. // # is instance number

 …..

}

Task template: P P P P P P P P

external memory

P-to-M resolving NoC

scheduler

P-to-S

scheduling NoC

Shared L1 banks

Fine Grain Parallelization

Convert (independent) loop iterations

for (i=0; i<10000; i++) { a[i] = b[i]*c[i]; }

 into parallel tasks
Singular task init { set_quota (XX,10000); }

duplicable task XX(init)

{ a[#] = b[#]*c[#]; } // # is instance number

35

36

Task map example (2D FFT)

Duplicable task …
…
…

…
…
…

Condition task

Join / fork task

Singular task

37

Another task map (linear solver)

38

Linear Solver: Simulation snap-shots

Task Rules 1

• Tasks are sequential

• All ready tasks, or any subset, can be executed in

parallel on any number of cores

• All computing organized in tasks. All code lines belong to

tasks

• Tasks use shared data in shared memory

• May employ local private memory.

• Its contents disappear once a task completes

• Precedence relations among tasks:

• Described in task map

• Managed by scheduler: receive task completion messages,

schedule dependent tasks

• Nesting task spawning is easy and natural

39

Task Rules 2
• 3 types of tasks:

• Singular task (Executes once)

• Duplicable task
• Duplicated into quota=d independent concurrent instances

• Identified by entry point (same for all d instances) and by unique instance
number.

• Task quota is actually a variable. The only reason for the synchronizer to
access data memory

• Control task
• No executable code.

• Controls branch, merge and conditional points in task map.

• Executed by scheduler

• Tasks are not functions
• No arguments, no inputs, no outputs

• Share data only in shared memory

• No synchronization points other than task completion
• No BSP, no barriers

• No locks, no access control in tasks
• Conflicts are designed into the algorithm (they are no surprise)

• Resolved only by NoC

40

JPEG compression algorithm:

Pipelined, limited parallelism per block

RGB pixel

stream
Convert RGB

to YCrCb

Compress

color 4:2:0

DCT 8X8

16X16 pl

Y,Cr,Cb

8X8 pl

4Y 1Cr 1Cb

Quantization

8X8 Coeff

4Y 1Cr 1Cb

DPCM

ZigZag Scan

DC

AC

8X8 Coeff

4Y 1Cr 1Cb

DC Huffman

AC Huffman

8X8 Coeff

4Y 1Cr 1Cb

Combine

Bit Stream

DC

AC

DC

AC

Variable

Length code

4Y 1Cr 1Cb

Compressed

bit stream

JPEG compression: pipelined / parallel

42

43

JPEG compression: Task Allocation

44

JPEG compression: Most cores active

Memory pattern

• For stream processing (e.g. JPEG), cache
management is inefficient
• Even with pre-fetching

• Instead, manage memory as local store
• Planned data I/O in parallel with processing

• On DMA unit or by one core

• But stream I/O is not a must
• Any random access to data is allowed

45

time

Process block K K + 1 K - 1

Output

block K-1

Input

block K+1

Output

block K

Input

block

K+2

Output

block K-2

Input

block K

Process Process Out+In

Example: JPEG2000 Encoder

46
Parallel fraction 𝑓=95%

A

B B

C

D D

E

Number of busy cores

X10 msec

Serial: 220 msec

Parallel:

1280/64=20 msec

Serial: 60 msec

Parallel:

1920/64 = 30 msec

Serial: 70 msec

Serial time 𝑇1 = 3.55 sec

Parallel time 𝑇64 = 400 msec

Speed-up: 𝑆𝑈(64) = 𝑇1/𝑇64 ≈ 9

Efficiency: 𝐸 64 =
𝑆𝑈 64

64
= 0.14

Image: 1𝐾 × 1𝐾 8b pixels Core frequency 𝐹1 = 250 MHz

A C E

B D

Multi-Job Scheduling

• Let’s fix the low speed-up and low efficiency

• Run multiple serial sections in parallel

• Achieved automatically with this task map and

Plural scheduling

47

A

B B

C

D D

E

A

B B

C

D D

E

A

B B

C

D D

E

A

B B

C

D D

E

A

B B

C

D D

E

A

B B

C

D D

E

A

B B

C

D D

E

A

B B

C

D D

E

S

T

Multi-Job Scheduling

• Fixed number of cores p=64

• Job with fraction 𝑓 parallel, (1 − 𝑓) serial
• Time of parallel section 𝑓𝑇1/𝑝

• Variable number of Jobs J=1,2,…

• Schedule:
• J serial sections in parallel, time 𝑇𝑃𝑆 = (1 − 𝑓)𝑇1

• J parallel sections in series, time 𝑇𝑃𝑃 = 𝐽 × 𝑓𝑇1/𝑝

• Serial time 𝑇𝑆(𝐽) = 𝐽 × 𝑇1

• Parallel time 𝑇𝑃 𝐽 = 𝑇𝑃𝑆 + 𝑇𝑃𝑃

48

JPEG2000, J=1, 𝑓=95%

J=16

Multi-Job Scheduling

• Memory-limited

• 8MB (¼ max memory) enables:
• J=16 jobs

• Speed-up 50 (cf. 9)

• 0.8 efficiency (cf. 0.14)

49

JPEG2000, J=1

J=16

50

The Plural Architecture: Some benefits

• Shared, uniform (~equi-distant) memory

• no worry which core does what

• no advantage to any core because it already holds the data

• Many-bank memory + fast P-to-M NoC

• low latency

• no bottleneck accessing shared memory

• Fast scheduling of tasks to free cores (many at once)

• enables fine grain data parallelism

• harder in other architectures due to:

• task scheduling overhead

• data locality

• Any core can do any task equally well on short notice

• scales well

• Programming model:

• intuitive to programmers

• “easy” for automatic parallelizing compiler (?)

Structural Patterns
Choose your high level structure

Agent and repository Layered systems

Arbitrary static task graph Map reduce

Iterative refinement Model view controller

Process control Pipe-and-filter

Event based, implicit invocation Puppeteer

Computational Patterns
Identify the key computations

Dense linear
algebra

Backtrack branch
and bound

Monte carlo
methods

Sparse linear
algebra

Finite state machine Dynamic
programming

Unstructured grids Graphical models Graph algorithms

Structured grids N-body methods Circuits

Spectral methods

Parallel Algorithm Strategy Patterns
Refine the structure - what concurrent approach do I use? Guided re-organization

Task Parallelism Geometric Decomposition Data Parallelism Pipeline Discrete Event Recursive Splitting

Implementation Strategy Patterns
Utilize Supporting Structures – how do I implement my concurrency? Guided mapping

P
ro

gr
am

St

ru
ct

u
re

 Actors SPMD Master/Worker Shared queue Distributed array D
ata

Stru
ctu

re

Task queue Strict data parallel Loop parallelism Shared data Graph partitioning

Fork/Join BSP Shared hash table Memory parallelism

Concurrent Execution Patterns
Implementation methods – what are the building blocks of parallel programming? Guided implementation

Advancing Program Counters Coordination

MIMD Thread pool Message passing Mutual exclusion Digital circuits

Task graph Speculation Collective communication Transaction al memory

SIMD Data flow Collective synchronization P2P synchronization

P
ro

d
u

ct
iv

it
y

La
ye

r
Ef

fi
ci

e
n

cy
 L

ay
e

r

Patterns http://parlab.eecs.berkeley.edu/wiki/_media/patterns/20090923_patterns_workshop_architecture.pptx

Applications

On-going Research

• Mathematical model incl. memories

• Scaling: full chip, multiple chips

• Accelerator for super-computing

• Plural algorithms and Plural programming

• FPGA versions

• Better NoC to shared memory

• Better scheduler and NoC to scheduler

• Near/sub-threshold for extremely low energy/power
• Using asynchronous logic design

• 3D for larger ‘on-chip’ memory

• High-reliability version (rad-hard)

• Converting large message-passing programs to
shared-memory plus message passing codes

52

Summary

• Simple many-core architecture

• Inspired by PRAM

• Hardware scheduling

• Task-based programming model

• Designed to achieve the goal of

‘more cores, less power’

• Developing model to illuminate / investigate

53

Backup

54

JPEG Benchmark
Plural vs. Xeon 3.5G & PowerPC 2G

Power Consumption

Performance (throughput)

541

170

35 12

0

100

200

300

400

500

600

HAL256 500M HAL64 500M Xeon 3.5G IPP PowerPC 2G

M
il
li
o

n
s
 P

ix
e
l
p

e
r

s
e
c
o

n
d

1.5 0.5

60

48

0

10

20

30

40

50

60

70

HAL256 500M HAL64 500M Xeon 3.5G IPP PowerPC 2G

W
a

tt
s

EEMBC Imaging/Graphics Benchmark

Frequency Power High-Pass

grayscale

filter

RGB to CMYK

Conversion

RGB to YIQ

Conversion

Plural 64 500 MHz 1 W 5,120 8,752 5,600

Plural 256 500 MHz 5 W 18,897 30,270 23,012

IBM 970FX

(PowerPC)

2 GHz 60 W 1,609 1,404 1,131

AMD Geode

LX800

500 MHz 1.8 W 104 205 82

ST231 300 MHz 313 237 207

Iterations/sec

Benchmark Example:

Data Compression for Storage Applications

Processor #Cores Frequency

Performance

(MB/sec)

Power

(Watt)

Performance

/Watt

Plural-128 (FPGA) 128 200 MHz 1,000 9 111

Xeon 4 3.3 GHz 1,100 130 8

Atom 1 1.6 GHz 77 3 31

Processor Comparison

System Type

Performance

(MB/sec)

Power

(Watt)

Performance

/Watt

HAL-256 Board 2,000 22 91

Xeon Server 1,100 280 4

8-Atom Box 616 170 4

System Comparison

0

50

100

150

200

250

300

0

500

1,000

1,500

2,000

2,500

HAL-256 Board Xeon Server 8-Atom Box

Performance (MB/sec) Power (Watt)

• Benchmark based on Calgary Corpus

 http://corpus.canterbury.ac.nz/index.html

• Algorithm used: QuickLZ level 1

http://corpus.canterbury.ac.nz/index.html

Benchmark Example:

Radix Sort for Database Applications

Processor #Cores Frequency

Performance

(Million Pairs/sec)

Power

(Watt)

Performance

/ Watt

Plural (FPGA) 128 200 MHz 60 9 6.7

Nvidia GTX 280 30 SM 1.3 GHz 70 237 0.3

Intel Core2 Xeon

E5345 (“Clovertown”) 4 2.16 GHz 42 120 0.4

Processor Comparison

Server Type

Performance

(Million Pairs/sec)

Power

(Watt)

Performance/

Watt

Plural-256 FPGA Board 120 12 10.3

Nvidia Graphix Card 70 237 0.3

Xeon Server 42 270 0.2

System Comparison

Benchmark based on

Satish,Harris & Garland ,“Designing Efficient Sorting

Algorithms for Manycore GPUs”, 23rd IEEE Int. Parallel &

Distributed Processing Symposium, May 2009

0

50

100

150

200

250

300

0

20

40

60

80

100

120

140

HAL-256 Board Nvidia GTX 280
Card

Xeon Server

Performance (Million Pairs/sec) Power (Watt)

MVM Covariance

• Compute covariance matrix for SAR imaging

• Each product repeated many times

• Naïve 32x32 block: 11.4M products

• Ideally, only need 208K products (x28)

• Basic algorithm is difficult to parallelize

• Main difficulties:

• Simultaneous writes into same cell require locks

• Large memory needed to hold Cov matrix

• Each matrix 125KB

59
May 12, 2010 59 Parallel Covariance-Method

New algorithm key features

• Optimal number of products (each product

executed only once)

• Memory efficient—data reuse

• Highly parallel

60
May 12, 2010 60 Parallel Covariance-Method

New MVM algorithm

• A product is
computed once,
and added to all
cells that need it

• Always on same
diagonal

• Only to same-color
cells

• No overlap
between cells of
different colors

• Each color is one
task

61
May 12, 2010 61 Parallel Covariance-Method

R1,1 R1,2 R1,3 R1,4 R1,5 R1,6 R1,7 … R1,PQ

R2,1 R2,2 R2,3 R2,4 R2,5 R2,6 R2,7 … R2, PQ

R3,1 R3,2 R3,3 R3,4 R3,5 R3,6 R3,7 … R3, PQ

R4,1 R4,2 R4,3 R4,4 R4,5 R4,6 R4,7 … R4, PQ

R5,1 R5,2 R5,3 R5,4 R5,5 R5,6 R5,7 … R5, PQ

R6,1 R6,2 R6,3 R6,4 R6,5 R6,6 R6,7 … R6, PQ

R7,1 R7,2 R7,3 R7,4 R7,5 R7,6 R7,7 … R7, PQ

… … … … … … … … …

RPQ,1 RPQ,2 RPQ,3 RPQ,4 RPQ,5 RPQ,6 RPQ,7
…

RPQ, PQ

Speedup is linear

62
May 12, 2010 62 Parallel Covariance-Method

Chip size: 20x20
Sub-Aparture size: 8x8

Chip size: 32x32
Sub-Aparture size: 13x13

Speedup for 313 color blocks Speedup for 113 color blocks

Compare RC64 to Intel dual-core

63

• RC64: 3 watt, 200MHz, IPC=1x64

• Intel Core 2 Duo: 65 Watt, 2.4 GHz, IPC=1.3

63 May 12, 2010 Parallel Covariance-Method

Performance ratio: RC64 4× faster

Power ratio: RC64 22× lower power

𝑃𝑒𝑟𝑓

𝑃𝑜𝑤𝑒𝑟
𝑟𝑎𝑡𝑖𝑜

𝑅𝐶64

𝐼𝑛𝑡𝑒𝑙 𝐶𝑜𝑟𝑒2𝑑𝑢𝑜
=

𝑓𝑟𝑒𝑞 ∙ 𝐼𝑃𝐶
𝑝𝑜𝑤𝑒𝑟

𝑓𝑟𝑒𝑞 ∙ 𝐼𝑃𝐶
𝑝𝑜𝑤𝑒𝑟

=
0.2 ∙ 64

2.5 ∙ 1.3
×
65

3
= 85

ESA NGDSP Benchmark B5

• Benchmark #5 on ESA/ESTEC Next generation space
digital signal processor software benchmark 2008

• Demodulator followed by LPF-based 4/5 decimator

64

FIR-I

DEC-I

FIR-Q

DEC-Q

B5 task map

65

start

FIR-I FIR-I FIR-Q FIR-Q

DEC-I DEC-I DEC-Q DEC-Q

end

OUT

previous

IN

next

B5 results

66

Clock frequency 200MHz

Cores 64

FPU N/A

Multipliers 16

GIPS 10 GIPS

GFLOPS 2.5 GFLOPS

Memory on-chip 512 KByte

I/O data rate 1.6 GByte/sec

Benchmark 5: Radar

Remote Sensing data

processing

Maximum data

throughput

[samples/sec]

Processing latency

[clock cycles / ns]

Consumed

processing

power [%]

I/Q demodulation only 124M sps
10M samples:

16.1Mcycles, 80ms
67%

Decimation filter only

(I and Q in parallel

using synthetic input)

249M sps
10M samples:

8Mcycles, 40ms
33%

Overall (I/Q

demodulation and

decimation of I and Q)

82.8M sps

Per one sample:

2.4 cycles, 12.1 ns

For 10M samples:

24.1Mcycles, 121 msec

100%

I/O data rate required for B5: 331 Mbytes/sec

Shared Memory System

Shared memory system

Many SRAM blocks

Per cycle arbitration

2-3 cycle latency

Cores retry if fail

Concurrent Read

Variations
• Shared accelerators, e.g. FPU, mult/div,

collectives

• Instructions for specific applications, e.g.
encrypt, compress, search, vectors

• Ext. memory interfaces for higher BW

• Prefetch, DMA

• Separate data / instructions memories
• Multicast instruction fetch

• Duplicate instruction caches

• Separate data and instruction access NoCs

• Separate read/write NoCs

• Read conflict resolution: multicast

• Write conflict resolution:
• Serialize, or

• combine (fetch-&-op, prefix-sum)

• Support CRCW PRAM
– Common / priority / arbitrary

• Modified scheduling / dispatch /
synchronization

• Pre-dispatch and queue tasks to busy cores

68

P P P P P P P P

P-to-M resolving NoC

scheduler

P-to-S

scheduling NoC

FPU FPU

OTHER SHARED

ACCELERATORS

Shared L1 banks

69

Many-cores: Supercomputer-on-chip

How many? And how?
(how not to?)

Ran Ginosar

Technion
Mar 2010

70

Many-cores

• CMP / Multi-core is “more of the same”

• Several high-end complex powerful processors

• Each processor manages itself

• Each processor can execute the OS

• Good for many unrelated tasks (e.g. Windows)

• Reasonable on 2–8 processors, then it breaks

• Many-cores

• 100 – 1,000 – 10,000

• Useful for heavy compute-bound tasks

• So far (50 years) many disasters

• But there is light at the end of the tunnel

71

Agenda

• Review 4 cases

• Analyze

• How NOT to make a many-core

72

Many many-core contenders

• Ambric

• Aspex Semiconductor

• ATI GPGPU

• BrightScale

• ClearSpeed Technologies

• Coherent Logix, Inc.

• CPU Technology, Inc.

• Element CXI

• Elixent/Panasonic

• IBM Cell

• IMEC

• Intel Larrabee

• Intellasys

• IP Flex

• MathStar

• Motorola Labs

• NEC

• Nvidia GPGPU

• PACT XPP

• Picochip

• Plurality

• Rapport Inc.

• Recore

• Silicon Hive

• Stream Processors Inc.

• Tabula

• Tilera

(many are dead / dying / will die / should die)

73

PACT XPP

• German company, since 1999

• Martin Vorbach,

an ex-user of Transputers

42x

Transputers

mesh

1980s

74

PACT XPP (96 elements)

75

PACT XPP die photo

76

PACT: Static mapping, circuit-switch reconfigured NoC

77

PACT ALU-PAE

78

PACT

• Static task mapping

• And a debug tool for that

79

PACT analysis

• Fine granularity computing

• Heterogeneous processors

• Static mapping

 complex programming

• Circuit-switched NoC static reconfigurations

 complex programming

• Limited parallelism

• Doesn’t scale easily

80

• UK company

• Inspired by Transputers (1980s), David May

42x

Transputers

mesh

1980s

81

322x

16-bit LIW RISC

82

83

84

85

86

87

88

89

90

91

 : Static Task Mapping

Compile

92

• MIMD, fine granularity, homogeneous cores

• Static mapping

 complex programming

• Circuit-switched NoC static reconfigurations

 complex programming

• Doesn’t scale easily

• Can we create / debug / understand static mapping

on 10K?

analysis

93

• USA company

• Based on RAW research @ MIT (A. Agarwal)

• Heavy DARPA funding, university IP

• Classic homogeneous MIMD on mesh NoC

• “Upgraded” Transputers with “powerful” uniprocessor features

• Caches

• Complex communications

• “tiles era”

94

 Tiles

• Powerful processor

• High freq: ~1 GHz

• High power (0.5W)

• 5-mesh NoC

• P-M / P-P / P-IO

• 2.5 levels cache

• L1+ L2

• Can fetch from L2 of others

• Variable access time

• 1 – 7 – 70 cycles

95

Caches Kill Performance

• Cache is great for a single processor

• Exploits locality (in time and space)

• Locality only happens locally on many-cores

• Other (shared) data are buried elsewhere

• Caches help speed up parallel (local) phases

• Amdahl [1967]: the challenge is NOT the parallel

phases

• Need to program many looong tasks on same

data

• Hard ! That’s the software gap in parallel

programming

96

 Array

• 36-64 processors

• MIMD / SIMD

• Total 5+ MB memory

• In distributed caches

• High power

• ~27W

Die photo

97

 allows statics

• Pre-programmed streams

span multi-processors

• Static mapping

98

 co-mapping: code, memory, routing

99

 static mapping debugger

100

 analysis

• Achieves good performance

• Bad on power

• Hard to scale

• Hard to program

