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Outline 

• Plural architecture and programming 

• Mathematical model 

• Examples 
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many-cores 

• Many-core is: 
• a single chip 

• with many (?) cores and on-chip memory 

• running a single (parallel) program at a time, solving one 
problem 

• an accelerator 

• Many-core is NOT: 
• Not a “normal” multi-core 

• Not running an OS 

• Contending many-core architectures 
• Shared memory (the Plural architecture, XMT) 

• Tiled (Tilera, Godson-T) 

• Clustered (Rigel) 

• GPU (Nvidia) 

• Contending programming models 

3 



Rx Phy 

Tx Phy 

Several 

Applications 

MAC 
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Code Mapping 

Plural shared memory architecture 
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One Parallel Program 

Shared Memory 

Architecture 



Context 

• Plural: homogeneous  acceleration for  

               heterogeneous systems 
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One (parallel) program ? 

• Plural programming model: de-synchronized 

PRAM 

• Manages all   cores   as a single shared resource 

• Manages all memory as a single shared resource 

• Plural programming model is NOT CSP 

• CSP [Hoare 1978], a.k.a. message-passing,  

means long processes 

• Plural PM is fine grain tasks 

• CSP blocks on communications and synchronization 

• Plural PM has no communications (only shared memory) 

• Plural PM kills when synchronization is needed 
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PRAM matrix-vector multiply 
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× = 

The PRAM algorithm 
𝑖  is core index 
   AND slice index 

 

   Begin 

   yi=Aix  
   End 
 

 

 

A,x,y in shared memory 

(Concurrent Read of x) 

 

Temp are in private 
memories (e.g. computing 
actual addresses given 𝑖) 

Ax=y 

Ai x 
yi 

× = 

× = 

× = 

× = 

× = 
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Core 2 

Core 3 
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PRAM logarithmic sum 
The PRAM algorithm 

// Sum vector A(*) 

Begin 

B(i) := A(i) 

For h=1:log(n)  

     if 𝑖 ≤ 𝑛/2ℎ then 

    B(i) = B(2i-1) + B(2i) 

End 

// B(1) holds the sum 
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a1 a2 a3 a4 a5 a6 a7 a8 

h=3 

h=2 

h=1 

B(i)=A(i) B(i)=A(i) 

if (..) B(i)=B(2i-1)+B(2i) if (..) B(i)=B(2i-1)+B(2i) 

h 

h 



PRAM SoP: Concurrent Write 

• Boolean X=a1b1+a2b2+… 

• The PRAM algorithm 

     Begin 

           if (aibi)   X=1 

     End 

 

All cores which write into X, write the same value 
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if (aibi) X=1 if (aibi) X=1 
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The Plural Architecture: Part I 

“Anti-local” address interleaving 

Negligible conflicts 

Many small processor cores 

Small private memories 
P P P P P P P P 

external memory 

Shared L1 banks 

P-to-M resolving NoC 
Fast NOC to memory 

(Multistage Interconnection Network)  

NOC resolves conflicts 

SHARED memory (cache), many banks 

~Equi-distant from cores (2-3 cycles) 

 



P P P P P P P P 

external memory 

P-to-M resolving NoC 

Low (zero) latency parallel scheduling 

enables fine granularity 

scheduler 

P-to-S  

scheduling NoC 

The Plural Architecture: Part II 

Hardware scheduler / dispatcher / synchronizer 

Shared L1 banks 
“Anti-local” address interleaving 

Negligible conflicts 

Many small processor cores 

Small private memories 

Fast NOC to memory 

(Multistage Interconnection Network)  

NOC resolves conflicts 

SHARED memory (cache), many banks 

~Equi-distant from cores (2-3 cycles) 

 



Example floorplan + layout 
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1MByte Data Memory 

1MByte Data Memory 
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400 MHz 

 

1 Watt 

PLURALITY 



But does it scale? 

• Research question: 

• Access to distant memory is slow and  

energy-inefficient 

• What if we use the full chip 

• Instead of 4x4 mm? 
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Possible Full-Chip Plan 
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But does it scale (more processors)? 
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Compare with “tiled” CMP using mesh NOC 
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20×20mm 

 

 

64 tiles 

 

 

32 kB L1 x64 

= 2 MB 

 

 

4 MB L2 x64 

= 256 MB 
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Modeling Many-core Architectures 
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Why model many-cores? 

• Wish to fine-tune the Plural architecture 

• Cores: 

• How many? What type(s)? 

• What are performance, power, area? 

– Let’s try Pollack’s rule to inter-connect these parameters 

• Memories: 

• What architecture? How accessed? 

• What are performance, power, area? 

• Wish to compare to other architectures 

• By performance, power, perf/power, area, … 

• And maybe ease of programming / parallelization 
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The many-core research question 

• Given fixed area, into how many processor 

cores should we divide it? 

 

 

 

• Analysis can be based on Pollack’s rule 

• Other good questions (not dealt here): 

• Given fixed power, how many cores? which cores? 

• Given fixed energy, how many cores? which cores? 

• Given target performance, how many? Which? 
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Process Technology 

1.5µ 1.0µ  0.8µ 0.6µ  0.35µ  0.25µ 0.18µ 130nm 90nm  65nm  45nm  32nm   
Processor 

Performance = Microarchitecture x Process 
M
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Intel386™ DX 
Processor 

Intel486™ DX 
Processor 

Pentium® 
Processor 

Pentium®  II Processor 

Pentium®  4 Processor 

Pentium®  III 
Processor 

Pentium M 

Intel Core ®  i7 

Pentium®  Duo 2 
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The history at the basis of Pollack’s analysis 
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Technology 

generations 

P1 

P2 

P3 

P4 

P5 

G1 G2 G3 G4 G5 

Shrink, scaling 

New architecture, 

same process 

Q: On red arrows, how 

much more performance 

for how much more 

area? 



Pollack’s rule for processors:  

Area or Power vs. Performance 
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• Pollack (& Borkar & Ronen, Micro 1999) 

observed many years of (intel) architecture 

• In each Intel technology node, they compared: 

• Old uArch (shrink from previous node) 

• New uArch (faster clock and/or higher IPC) 

• They noted: 

• New uArch used 2-3X larger area 

• New uArch achieved 1.5-1.7X higher performance 

• Resulting from both higher frequency and higher IPC 

• They did not consider power increase 

• Who thought about power in 1999? 

• Observation: Performance ~ 𝑎𝑟𝑒𝑎 



Performance = IPC × Frequency 

• Experience shows: for higher performance,  

both IPC and frequency must be increased 
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The many-core fixed-total-area model 

• Assume fixed chip area (typically 300-500 mm2) 

• Split chip area A = Acores + Amem  
• Split (memory size) affects on-chip hit rate 

• Amem may be further split into AL1+AL2 

• Divide Acores into m cores. How many ? 

• Area of each core:   𝑎 =
𝐴𝑐𝑜𝑟𝑒𝑠

𝑚
 .     Thus,  m ~1 𝑎  

• [Pollack’s]: core area determines core performance. Select 
IPC and frequency f   so that: 
• Performance (core) = IPC × 𝑓 ~ 𝑎.   Thus,  a ~ 𝐼𝑃𝐶2𝑓2 , m ~ 1 𝐼𝑃𝐶2𝑓2  

• Power (core) ~ a × 𝑓 ~ 𝐼𝑃𝐶2𝑓3 

• Assume perfect parallelism (at least as upper bound) 

• Performance (m cores) = IPC × 𝑓 ×𝑚  ~ 
𝐼𝑃𝐶∙𝑓

𝐼𝑃𝐶2𝑓2
=

1

𝐼𝑃𝐶∙𝑓
 ~ 

𝐼𝑃𝐶∙𝑚

𝐼𝑃𝐶 𝑚
= 𝑚 

• Power (m cores) = a × 𝑓 ×𝑚  ~ 
 𝐼𝑃𝐶2𝑓3

𝐼𝑃𝐶2𝑓2
= f ~  

1

𝐼𝑃𝐶 𝑚
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Summary: Performance~
1

𝑓
~ 𝑚,      Power~

1

𝑚
~𝑓,       m ~ 

1

𝑓2
 



Performance (core) = IPC × 𝑓 
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a ~ 𝐼𝑃𝐶2𝑓2 
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For each IPC curve, a ~ 𝑓2 



m ~ 
1

𝐼𝑃𝐶2𝑓2
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For each IPC curve,    m ~ 
1

𝑓2
 



Performance~
1

𝑓
~ 𝑚 
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Power~𝑓~
1

𝑚
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𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑃𝑜𝑤𝑒𝑟
~
1 𝑓 

𝑓
=

1

𝑓2
~

𝑚

1 𝑚 
= 𝑚 

Analysis of the results so far: 

• Slower frequency and lower IPC  higher performance, lower power 

• Thanks to Pollack’s square rule 

 

But this changes when we also consider memory power… 



Now add memory 

• So far, only computing power 

• Including power to access local cache/memory in each 

core 

• Only small private memory is local in the SM Plural architecture 

• But we also need to access not-so-local shared 

memory 

• Access rate to memory: once every rm instructions 

• About every 20 instructions in the SM Plural architecture 

• Ignore cache misses, assume using only on-chip memory 

• Need to add memory access power to the 

computing power 

• Relative energy: assume access is 10x higher than exec. 
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Comparing SM Plural to TILED architecture 

• Local memory is: 
• SM: private memory 

• TILED: local L1 & L2  (L2 access less frequent but higher energy) 

• Global memory is: 
• SM: Shared memory (L1), possibly LLC  

• Via fast cores-to-memories net 

• TILED: other cores’ local L2 caches (L3) 
• Via complex NoC incl. directory access 

• Access rate: global memory access every rm instructions 
• SM: every 20 instructions to L1, every 5000 instructions to LLC 

• TILED: Assume every 500 instructions 

• Energy to access global memory (higher than exec 
energy) 
• SM: 10x to L1, 100x to L2 

• TILED: 1x to L1, 5x to L2, 1000x to L3 
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Summary of the model 

• Considering only cores, fixed-total-area model 

implies: for highest performance and lowest 

power, use 

• smallest / weakest cores (lowest IPC) 

• lowest frequency 

• Adding on-chip access to memory leads to a 

different conclusion: for lowest power and 

highest performance/power ratio, use 

• Strongest cores (high IPC) 

• But stay with lowest frequency 

• Lower frequency  lower access rate to global memory 
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The Plural task-oriented programming model 

• Programmer generates TWO parts: 

• Task-dependency-graph = ‘task map’ 

• Sequential task codes 

• Task maps loaded into scheduler 

• Tasks loaded into memory 

 singular 

 duplicable    task xxx( dependencies )  

 control 

{ 

 … # ….  // # is instance number 

 …..  

} 

Task template: P P P P P P P P 

external memory 

P-to-M resolving NoC 

scheduler 

P-to-S  

scheduling NoC 

Shared L1 banks 



Fine Grain Parallelization 

Convert (independent) loop iterations 

 
for ( i=0; i<10000; i++ ) { a[i] = b[i]*c[i]; } 

 

 

 into parallel tasks 
Singular task init { set_quota (XX,10000); } 

 

 

duplicable task XX(init) 

{ a[#] = b[#]*c[#]; }  // # is instance number  
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Task map example (2D FFT) 

Duplicable task … 
… 
… 

… 
… 
… 

Condition task 

Join / fork task 

Singular task 
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Another task map (linear solver) 
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Linear Solver: Simulation snap-shots 



Task Rules 1 

• Tasks are sequential 

• All ready tasks, or any subset, can be executed in 

parallel on any number of cores 

• All computing organized in tasks. All code lines belong to 

tasks 

• Tasks use shared data in shared memory 

• May employ local private memory.  

• Its contents disappear once a task completes 

• Precedence relations among tasks: 

• Described in task map 

• Managed by scheduler: receive task completion messages, 

schedule dependent tasks 

• Nesting task spawning is easy and natural 
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Task Rules 2 
• 3 types of tasks: 

• Singular task (Executes once) 

• Duplicable task 
• Duplicated into quota=d independent concurrent instances 

• Identified by entry point (same for all d instances) and by unique instance 
number. 

• Task quota is actually a variable. The only reason for the synchronizer to 
access data memory 

• Control task 
• No executable code.  

• Controls branch, merge and conditional points in task map.  

• Executed by scheduler 

• Tasks are not functions 
• No arguments, no inputs, no outputs 

• Share data only in shared memory 

• No synchronization points other than task completion 
• No BSP, no barriers 

• No locks, no access control in tasks 
• Conflicts are designed into the algorithm (they are no surprise) 

• Resolved only by NoC 
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JPEG compression algorithm:  

Pipelined, limited parallelism per block 

RGB pixel 

stream 
Convert RGB  

to YCrCb 

Compress  

color 4:2:0 

 

DCT 8X8 

16X16 pl  

Y,Cr,Cb 

8X8 pl  

4Y 1Cr 1Cb 

Quantization 

8X8 Coeff  

4Y 1Cr 1Cb 

DPCM 

ZigZag Scan 

DC 

AC 

8X8 Coeff  

4Y 1Cr 1Cb 

DC Huffman 

AC Huffman 

8X8 Coeff  

4Y 1Cr 1Cb 

Combine 

Bit Stream 

DC 

AC 

DC 

AC 

Variable 

Length code  

4Y 1Cr 1Cb 

Compressed 

bit stream 



JPEG compression: pipelined / parallel 
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JPEG compression: Task Allocation 
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JPEG compression: Most cores active 



Memory pattern 

• For stream processing (e.g. JPEG), cache 
management is inefficient 
• Even with pre-fetching 

• Instead, manage memory as local store 
• Planned data I/O in parallel with processing 

• On DMA unit or by one core 

• But stream I/O is not a must 
• Any random access to data is allowed 
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time 

Process block K K + 1 K - 1 

Output 

block K-1 

Input 

block K+1 

Output 

block K 

Input 
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Output 

block K-2 

Input 

block K 

Process Process Out+In 



Example: JPEG2000 Encoder 
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Parallel fraction 𝑓=95% 

A 

B B 

C 

D D 

E 

Number of busy cores 

X10 msec 

Serial: 220 msec 

Parallel:  

1280/64=20 msec 

Serial: 60 msec 

Parallel:  

1920/64 = 30 msec 

Serial: 70 msec 

Serial time       𝑇1 = 3.55 sec 

Parallel time   𝑇64 = 400 msec 

Speed-up:    𝑆𝑈(64) = 𝑇1/𝑇64 ≈ 9 

Efficiency:     𝐸 64 =
𝑆𝑈 64

64
= 0.14 

Image: 1𝐾 × 1𝐾 8b pixels Core frequency    𝐹1 = 250 MHz 

A C E 

B D 



Multi-Job Scheduling 

• Let’s fix the low speed-up and low efficiency 

• Run multiple serial sections in parallel 

• Achieved automatically with this task map and 

Plural scheduling 
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Multi-Job Scheduling 

• Fixed number of cores p=64  

• Job with fraction 𝑓 parallel, (1 − 𝑓) serial 
• Time of parallel section 𝑓𝑇1/𝑝 

• Variable number of Jobs J=1,2,… 

• Schedule: 
• J serial sections in parallel, time 𝑇𝑃𝑆 = (1 − 𝑓)𝑇1 

• J parallel sections in series, time 𝑇𝑃𝑃 = 𝐽 × 𝑓𝑇1/𝑝 

• Serial time 𝑇𝑆(𝐽) = 𝐽 × 𝑇1 

• Parallel time 𝑇𝑃 𝐽 = 𝑇𝑃𝑆 + 𝑇𝑃𝑃 
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JPEG2000, J=1, 𝑓=95% 

J=16 



Multi-Job Scheduling 

• Memory-limited 

• 8MB (¼ max memory) enables: 
• J=16   jobs 

• Speed-up 50 (cf. 9)   

• 0.8 efficiency (cf. 0.14) 
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JPEG2000, J=1 

J=16 
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The Plural Architecture: Some benefits 

• Shared, uniform (~equi-distant) memory 

• no worry which core does what 

• no advantage to any core because it already holds the data 

• Many-bank memory + fast P-to-M NoC 

• low latency 

• no bottleneck accessing shared memory  

• Fast scheduling of tasks to free cores (many at once) 

• enables fine grain data parallelism 

• harder in other architectures due to: 

• task scheduling overhead 

• data locality 

• Any core can do any task equally well on short notice  

• scales well 

• Programming model:  

• intuitive to programmers  

• “easy” for automatic parallelizing compiler (?) 



Structural Patterns 
Choose your high level structure 

Agent and repository Layered systems 

Arbitrary static task graph Map reduce 

Iterative refinement Model view controller 

Process control Pipe-and-filter 

Event based, implicit invocation Puppeteer 

Computational Patterns 
Identify the key computations 

Dense linear 
algebra 

Backtrack branch 
and bound 

Monte carlo 
methods 

Sparse linear 
algebra 

Finite state machine Dynamic 
programming 

Unstructured grids Graphical models Graph algorithms 

Structured grids N-body methods Circuits 

Spectral methods 

Parallel Algorithm Strategy Patterns 
Refine the structure  - what concurrent approach do I use? Guided re-organization 

Task Parallelism Geometric Decomposition Data Parallelism Pipeline Discrete Event Recursive Splitting 

Implementation Strategy Patterns 
Utilize Supporting Structures – how do I implement my concurrency? Guided mapping 
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 Actors SPMD Master/Worker Shared queue Distributed array D
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Task queue Strict data parallel Loop parallelism Shared data Graph partitioning 

Fork/Join BSP Shared hash table Memory parallelism 

Concurrent Execution Patterns 
Implementation methods – what are the building blocks of parallel programming? Guided implementation 

Advancing Program Counters Coordination 

MIMD Thread pool Message passing Mutual exclusion Digital circuits 

Task graph Speculation Collective communication Transaction al memory 

SIMD Data flow Collective synchronization P2P synchronization 
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Patterns http://parlab.eecs.berkeley.edu/wiki/_media/patterns/20090923_patterns_workshop_architecture.pptx 

Applications 



On-going Research 

• Mathematical model incl. memories 

• Scaling: full chip, multiple chips 

• Accelerator for super-computing 

• Plural algorithms and Plural programming 

• FPGA versions 

• Better NoC to shared memory 

• Better scheduler and NoC to scheduler 

• Near/sub-threshold for extremely low energy/power 
• Using asynchronous logic design 

• 3D for larger ‘on-chip’ memory 

• High-reliability version (rad-hard) 

• Converting large message-passing programs to 
shared-memory plus message passing codes 
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Summary 

• Simple many-core architecture 

• Inspired by PRAM 

• Hardware scheduling  

• Task-based programming model 

• Designed to achieve the goal of  

‘more cores, less power’ 

• Developing model to illuminate / investigate 
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Backup 
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JPEG Benchmark  
Plural vs. Xeon 3.5G & PowerPC 2G 

Power Consumption 

Performance (throughput) 
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EEMBC Imaging/Graphics Benchmark 

Frequency Power High-Pass 

grayscale 

filter 

RGB to CMYK 

Conversion 

RGB to YIQ 

Conversion 

Plural 64 500 MHz 1 W 5,120 8,752 5,600 

Plural 256 500 MHz 5 W 18,897 30,270 23,012 

IBM 970FX 

(PowerPC) 

2 GHz 60 W 1,609 1,404 1,131 

AMD Geode 

LX800 

500 MHz 1.8 W 104 205 82 

ST231 300 MHz 313 237 207 

Iterations/sec 



Benchmark Example:  

Data Compression for Storage Applications 

Processor #Cores Frequency

Performance 

(MB/sec)

Power 

(Watt)

Performance

/Watt

Plural-128 (FPGA) 128 200 MHz 1,000 9 111

Xeon 4 3.3 GHz 1,100 130 8

Atom 1 1.6 GHz 77 3 31

Processor Comparison 

System Type

Performance 

(MB/sec)

Power 

(Watt)

Performance 

/Watt

HAL-256 Board 2,000 22 91

Xeon Server 1,100 280 4

8-Atom Box 616 170 4

System Comparison 
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• Benchmark based on Calgary Corpus 

  http://corpus.canterbury.ac.nz/index.html  

• Algorithm used: QuickLZ level 1 

http://corpus.canterbury.ac.nz/index.html


Benchmark Example:  

Radix Sort for Database Applications 

Processor #Cores Frequency

Performance 

(Million Pairs/sec)

Power 

(Watt)

Performance

/ Watt

Plural  (FPGA) 128 200 MHz 60 9 6.7

Nvidia GTX 280 30 SM 1.3 GHz 70 237 0.3

Intel Core2 Xeon 

E5345 (“Clovertown”) 4 2.16 GHz 42 120 0.4

Processor Comparison 

Server Type

Performance 

(Million Pairs/sec)

Power 

(Watt)

Performance/ 

Watt

Plural-256 FPGA Board 120 12 10.3

Nvidia Graphix Card 70 237 0.3

Xeon Server 42 270 0.2

System Comparison 

Benchmark based on  

Satish,Harris & Garland ,“Designing Efficient Sorting  

Algorithms for Manycore GPUs”, 23rd IEEE Int. Parallel & 

Distributed Processing Symposium, May 2009 
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MVM Covariance 

• Compute covariance matrix for SAR imaging 

• Each product repeated many times 

• Naïve 32x32 block: 11.4M products 

• Ideally, only need 208K products (x28) 

• Basic algorithm is difficult to parallelize 

• Main difficulties: 

• Simultaneous writes into same cell require locks 

• Large memory needed to hold Cov matrix 

• Each matrix 125KB 

59 
May 12, 2010  59 Parallel Covariance-Method 



New algorithm key features 

• Optimal number of products (each product 

executed only once) 

• Memory efficient—data reuse 

• Highly parallel 
 

 

60 
May 12, 2010  60 Parallel Covariance-Method 



New MVM algorithm 

• A product is 
computed once, 
and added to all 
cells that need it 

• Always on same 
diagonal 

• Only to same-color 
cells 

• No overlap 
between cells of 
different colors 

• Each color is one 
task 

61 
May 12, 2010  61 Parallel Covariance-Method 

R1,1  R1,2 R1,3 R1,4 R1,5 R1,6 R1,7 … R1,PQ 

R2,1 R2,2 R2,3 R2,4 R2,5 R2,6 R2,7 … R2, PQ 

R3,1 R3,2 R3,3 R3,4 R3,5  R3,6 R3,7 … R3, PQ 

R4,1 R4,2 R4,3 R4,4 R4,5 R4,6 R4,7 … R4, PQ 

R5,1 R5,2 R5,3 R5,4 R5,5 R5,6 R5,7 … R5, PQ 

R6,1 R6,2 R6,3 R6,4 R6,5 R6,6 R6,7 … R6, PQ 

R7,1 R7,2 R7,3 R7,4 R7,5 R7,6 R7,7 … R7, PQ 

… … … … … … … … … 

RPQ,1 RPQ,2 RPQ,3 RPQ,4 RPQ,5 RPQ,6 RPQ,7 
… 

RPQ, PQ 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  



Speedup is linear 

62 
May 12, 2010  62 Parallel Covariance-Method 

Chip size: 20x20 
Sub-Aparture size: 8x8 

Chip size: 32x32 
Sub-Aparture size: 13x13 

Speedup for 313 color blocks Speedup for 113 color blocks 



Compare RC64 to Intel dual-core 

63 

• RC64:    3 watt, 200MHz, IPC=1x64 

• Intel Core 2 Duo:  65 Watt, 2.4 GHz, IPC=1.3 

63 May 12, 2010  Parallel Covariance-Method 

Performance ratio: RC64 4×   faster  

Power ratio:  RC64 22× lower power 

𝑃𝑒𝑟𝑓

𝑃𝑜𝑤𝑒𝑟
𝑟𝑎𝑡𝑖𝑜

𝑅𝐶64

𝐼𝑛𝑡𝑒𝑙 𝐶𝑜𝑟𝑒2𝑑𝑢𝑜
=

𝑓𝑟𝑒𝑞 ∙ 𝐼𝑃𝐶
𝑝𝑜𝑤𝑒𝑟

𝑓𝑟𝑒𝑞 ∙ 𝐼𝑃𝐶
𝑝𝑜𝑤𝑒𝑟

=
0.2 ∙ 64

2.5 ∙ 1.3
×
65

3
= 85 



ESA NGDSP Benchmark B5 

• Benchmark #5 on ESA/ESTEC Next generation space 
digital signal processor software benchmark 2008  

• Demodulator followed by LPF-based 4/5 decimator 

64 

FIR-I 

DEC-I 

FIR-Q 

DEC-Q 



B5 task map 

65 

start 

FIR-I FIR-I FIR-Q FIR-Q 

DEC-I DEC-I DEC-Q DEC-Q 

end 

OUT 

previous 

IN 

next 



B5 results 

66 

Clock frequency 200MHz 

Cores 64 

FPU N/A 

Multipliers 16 

GIPS 10 GIPS 

GFLOPS 2.5 GFLOPS 

Memory on-chip 512 KByte 

I/O data rate 1.6 GByte/sec 

Benchmark 5: Radar 

Remote Sensing data 

processing  

Maximum data 

throughput 

[samples/sec]  

Processing latency  

[clock cycles / ns]  

Consumed 

processing 

power [%] 

I/Q demodulation only  124M sps 
10M samples:  

16.1Mcycles, 80ms 
67% 

Decimation filter only 

(I and Q in parallel 

using synthetic input)  

249M sps 
10M samples: 

8Mcycles, 40ms 
33% 

Overall (I/Q 

demodulation and 

decimation of I and Q)  

82.8M sps 

Per one sample: 

2.4 cycles, 12.1 ns 

For 10M samples: 

24.1Mcycles, 121 msec 

100% 

I/O data rate required for B5:  331 Mbytes/sec 



Shared Memory System 

Shared memory system 

Many SRAM blocks 

Per cycle arbitration 

2-3 cycle latency 

Cores retry if fail 

Concurrent Read 

 

 

 

 

 



Variations 
• Shared accelerators, e.g. FPU, mult/div, 

collectives 

• Instructions for specific applications, e.g. 
encrypt, compress, search, vectors 

• Ext. memory interfaces for higher BW 

• Prefetch, DMA 

• Separate data / instructions memories 
• Multicast instruction fetch 

• Duplicate instruction caches 

• Separate data and instruction access NoCs 

• Separate read/write NoCs 

• Read conflict resolution: multicast 

• Write conflict resolution:  
• Serialize, or  

• combine (fetch-&-op, prefix-sum) 

• Support CRCW PRAM 
– Common / priority / arbitrary 

• Modified scheduling / dispatch / 
synchronization 

• Pre-dispatch and queue tasks to busy cores 

68 

P P P P P P P P 

P-to-M resolving NoC 

scheduler 

P-to-S  

scheduling NoC 

FPU FPU 

OTHER SHARED 

ACCELERATORS 

Shared L1 banks 
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Many-cores: Supercomputer-on-chip 

How many? And how? 
(how not to?) 

Ran Ginosar 

Technion 
Mar 2010 
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Many-cores 

• CMP / Multi-core is “more of the same” 

• Several high-end complex powerful processors 

• Each processor manages itself 

• Each processor can execute the OS 

• Good for many unrelated tasks (e.g. Windows) 

• Reasonable on 2–8 processors, then it breaks 

• Many-cores 

• 100 – 1,000 – 10,000 

• Useful for heavy compute-bound tasks 

• So far (50 years) many disasters 

• But there is light at the end of the tunnel  
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Agenda 

• Review 4 cases 

• Analyze 

• How NOT to make a many-core 
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Many many-core contenders 

• Ambric 

• Aspex Semiconductor  

• ATI   GPGPU 

• BrightScale  

• ClearSpeed Technologies  

• Coherent Logix, Inc.  

• CPU Technology, Inc.  

• Element CXI  

• Elixent/Panasonic 

• IBM Cell 

• IMEC 

• Intel Larrabee 

• Intellasys  

• IP Flex 

• MathStar 

• Motorola Labs  

• NEC 

• Nvidia GPGPU 

• PACT XPP 

• Picochip  

• Plurality 

• Rapport Inc.  

• Recore 

• Silicon Hive  

• Stream Processors Inc.  

• Tabula  

• Tilera 

(many are dead / dying / will die / should die) 
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PACT XPP 

• German company, since 1999 

• Martin Vorbach,  

an ex-user of Transputers 

42x 

Transputers 

mesh 

1980s 
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PACT XPP (96 elements) 



75 

PACT XPP die photo 
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PACT: Static mapping, circuit-switch reconfigured NoC 



77 

PACT ALU-PAE 
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PACT 

• Static task mapping  

• And a debug tool for that 
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PACT analysis 

• Fine granularity computing  

• Heterogeneous processors  

• Static mapping 

 complex programming  

• Circuit-switched NoC  static reconfigurations 

 complex programming  

• Limited parallelism 

• Doesn’t scale easily 
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• UK company 

• Inspired by Transputers (1980s), David May 

 

42x 

Transputers 

mesh 

1980s 
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322x 

16-bit LIW RISC 
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        : Static Task Mapping  

Compile 
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• MIMD, fine granularity, homogeneous cores  

• Static mapping 

 complex programming  

• Circuit-switched NoC   static reconfigurations 

 complex programming  

• Doesn’t scale easily 

• Can we create / debug / understand static mapping 

on 10K? 

analysis 
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• USA company 

• Based on RAW research @ MIT (A. Agarwal) 

 

 

 

 

• Heavy DARPA funding, university IP 

• Classic homogeneous MIMD on mesh NoC 

• “Upgraded” Transputers with “powerful” uniprocessor features 

• Caches  

• Complex communications  

• “tiles era” 
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        Tiles 

• Powerful processor 

• High freq: ~1 GHz  

• High power (0.5W)  

• 5-mesh NoC 

• P-M  /  P-P  /  P-IO 

• 2.5 levels cache  

• L1+ L2 

• Can fetch from L2 of others  

• Variable access time 

• 1  –  7  –  70 cycles  
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Caches Kill Performance 

• Cache is great for a single processor 

• Exploits locality (in time and space) 

• Locality only happens locally on many-cores 

• Other (shared) data are buried elsewhere 

• Caches help speed up parallel (local) phases 

• Amdahl [1967]: the challenge is NOT the parallel 

phases 

• Need to program many looong tasks on same 

data 

• Hard ! That’s the software gap in parallel 

programming 
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         Array 

• 36-64 processors 

• MIMD / SIMD  

• Total 5+ MB memory 

• In distributed caches 

• High power 

• ~27W  

Die photo 
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               allows statics 

• Pre-programmed streams 

span multi-processors 

• Static mapping 
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            co-mapping: code, memory, routing  



99 

           static mapping debugger  
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                analysis 

• Achieves good performance 

• Bad on power 

• Hard to scale 

• Hard to program 


