Avid Execution and Instruction Pruningin the
Asynchronous Processor Kin

Rakefet Kol, Ran Ginosar* and Hisham Shafi®
VLSl Systems Research Center
Electrical Engineering Department
Technion—Israel Institute of Technology

Haifa 32000, Israel
rakefet@tx.technion.ac.il

1 On Sabbatical leave at Intel, Hillsboro, OR
2 Intel Corp., Haifa, Israel

Avid Execution and Instruction Pruning in the
Asynchronous ProcessoKin*

Abstract

Avid executionprefetches and speculativedxecutesnot only the predictedoranches of a
program but also a certgoart of thenon-predicted branches, in anticipation of misprediction.
Once a misprediction occurs, the processor may immediately turn to one of the secondary paths
and continue executing without interruption. The stale instructions are removed quietly without
flushing the processor, byeans of gruning process. Aid execution employs computing
resources which cannot be used for the mainline code, due to limited instruction level parallelism.
It is intended forvery largehigh performance processors, and is best usexsymchronous
processors. The paper provides a full definition and mathematical analysis of Avid execution. A
behavioral model of thi€in asynchronous processor has been simulated executing SpeciInt95, and
performance improvements of close to 100% are predicted thanks to Avid execution.

1. Introduction

As part of our research of whether asynchronous logic design is applicable to high performance
generalpurpose processors, weve developed a novel method of multi-path speculative
execution. The method, namagid Executionis applicable to synchronous processors as well.
Avid execution addresses the question of how weegploit massive resources, which will be
made available bfuture technology, to enhanpeocessor performance. The semiconductor
industry predict that by the year 2012 we can expect one billion transistors per chip, operating at
close to 10 GhfSIA97, Wei96]. We discusthe issue ofhow computer architecturaay be
modified in order to make it scalable for such vast resources.

Performance of present processorméted by a number ofactors,includingtrue andfalse
dependencies, limits to inherenstruction level parallelism in serial code, and pipeline stalls due

to misprediction of branches. To achieve high performance, processors must run faster but also
execute and successfully complete many instructions in parallel. Although many parallel execution
units may be made available, data and control dependencies limit instruction level parallelism. To
exploit such parallelism, the processor must search over a large window for instructions that can
be executed. That windotypically extends beyond nitiple branches, by means of branch
lookahead strategies. Those strategies are based on branch prediction algorithms, and on
speculative execution beyond the predicted branches. This paper is not concerned with the branch
prediction algorithm itself, but rather with the question of how it is used and which instructions
are speculatively executed.

Future technology il mostlikely lead to asynchronoysrocessors, due to tlafficulty of
maintaining very fastlocks and synchronizethta transfer overery large chips. Ifiact, such
very large processors may resemble large distributed networks, rather than tightly synchronized
pipelines. Hence, wieel that aggressivarchitectures are better investigated indbietext of

IKin was the God of Time of the Maya.

2

asynchronous processors. A lamganber of asynchronoysocessors dve been previously
designed [MBL+89, FDG+93, Pav94, Bru93, RB96, DGY9BKN94, SSM94, Dea92, Wol92,
End95, Mar97]. Most of them have rather simple and straightforavardtectures. None of them
supports outf-order execution, nor considers performance enhancement by branch prediction.
All are targeted at current technologynd arenot scalable tadake advantage of thgrowing
amount of resources promised by future technology.

Kin architecture comprises fttiple fast self-timedunits, interconnected over asynchronous
channels, using handshake communicapiostocols. Theasynchronous microarchitecture is
described at a high level and allows flexible and robust implementation. Altkaugghdesigned

as an asynchronousachine athe itstop level, itsindividual modulesmay be implemented
according to various timing disciplines (synchronous, asynchronous, or anything in between).

Avid execution prefetches and processes not only the predicted branches of the program but also
a certain amount of the non-predicted branchesniitipation of misprediction. Once a
mispredictionoccurs, the processanay immediatelturn to one of the secondary paths and
continue executing without interruption. The stale instructions are renguetly without

flushing the processor, byeans of gruning process. &id execution employs computing
resourcesvhich cannot be used for theainlinecode, due tanherent limitations on parallel
execution. The paper providegleafinition and mathematicanalysis of Avidexecution, and
describes the encouraging results of Specint95 performance simulation of the model.

The novel architecture fin is described in Sect. 2. Avid execution is presented and analyzed
in Sect. 3, and Sect. 4 explains instruction pruning. Mod&lingnd its performance simulation
(using the Specint95 benchmark) are described in Sect 5.

2.Kin Architecture

2.1 General Description

Kin is a genergburposehigh performance asynchronous microprocesisat supports out-of-
order and deep speculativ&vfd) execution. It exploitsnassive parallelisrand redundancy in
order to execute hundreds or thousands of instructions simultaneously.

Kin comprises a distributegetwork of asynclanously interconnected modulesithout any

central control. The architecture is asynchronous at the top level, but modules can be implemented
accoding to various timing disciplines. Each moduleoperates at its own speed, and
communicates with other modules over asynchronous FIFO channels. On average all modules are
balanced, but asynchronous interconnects permit flexible work loads.

Instructions flowthroughKin as self-identifiegppacketscarrying theirown identity tags and all
needed information, as indataflow computer.They mayleave soméraces around such as
instruction entries in the reorder buffer, but these eventually reunite with the instructions. Each
module receives instructigrackets, executeaeem at itsown local rate, and forwards them to
their next stops.

3

Kin (Fig. 1) combinegknown featuregmultiple execution unitsput-of-order execution, and
register renaming) with some novel on@si{l Execution, Dynami¢nstance TaggingJnified
Multi-Execution, and Pruning). Multiple instructions are executed concurrently and out-of-order
over multiple execution units. To preserve tiserial nature of the codenstructions are
committed (completed) in theariginal serial order, typically many of them at each time. Deep
speculative execution is employed to avoid processor stalls; branches are predicted and code is
prefetched from the more likely paths of the program.

...

DIC) Reservation
(IC) Fetch (.

Inst. | 3! & 3 Decoded Station
Cache Decode

(DC)
Data
Cache

Figure 1: Kin asynchronous processor architecture.

2.2Kin Architecture and Operation

Once fetched, instructions are decoded and stored in the multi-ported Decoded Instruction Cache
(DIC, Fig. 1) where each cache limeludes a single basic block (a sequence of instructions
ending with abranch). The Prefetch Unit (PU) fetchesltple basic blocks fronthe DIC
simultaneously, and tags each instruction with a unique Dynamic Instruction Tag (DIT, Fig. 2).
The registers are renamed in the Register Renaming Unit (RRU), and the instructions are recorded
in the ReOrder Unit (ROU), after which they are executed in the out-of-order zone. They enter
one of the Reservation Stations (RSs) to wait for their operands, are processed in one of the
Branch, Execute, or Load/Store Units (BU, EU, LSU), send results back to the RSs and return
to the ROU for in-order commitment. ddtinstructions, however, never complete ttysle.

Rather, they arprunedand discarded (Sect. 4).

Avid execution idully explained inSect. 3 but for clarity of the exposition it is described here
in brief. Thecommonlyusedsingle path speculative executiemploys branch prediction to
decide which path to take following each branch; occasionally the prediction fails, the processor

4

is halted and flushed, and execution resumes along the correct path. In cAwiglastecution

also fetches and speculativedyecutes instructions along the non-predicted paths, so as to
minimize the adverse effect of misprediction. Instructions which are found useless are pruned and
discarded without preempting the processor.

The Prefetch Unit (PU) executes tianch prediction andvid algorithms, and issues access
requests to the DIC. It also genergiathmarkswhich fully identify the path for each instruction

(Sect. 4). The pathmark is attached to each instruction instance as it is fetched from the DIC, as
part of a uniqué®ynamic Instance Ta{DIT, Fig. 2). The saméasic block ofcodemay be

fetched simultaneously multiple times, e.g. as loops are unrolled. Each time, the loop is prefetched
(and tagged) as a new instance, and must be treated separately by the rest of the machine (e.g.,
proper register renaming), regardless of the fact that it is the same original code. The instruction
cache is mulgorted to provide simultaneous fetching of multiple cache lines, including multiple
separate fetches of the same line. Access optimization techniques are employed to replace brute
force multiple reads of theame line by a single access and intelligent duplicatiotthis is
transparent to the PU. The PU, like otbaits in Fig. 1, is drawn as a triangle since it handles
complex execution trees rather than just linear paths. Multiple triangles are drawn to symbolize
multiple contexts.

Instruction Dynamic Instance Tag (DIT)
opcode operandsg rooll path context pc
pathmark

Figure 2: Dynamic Instance Tag structure.

The Register Renaming UnjRRU) maintainsthe renaming tablesor the many possible
execution paths avidly prefetched, to enable speculative out of order execution. The ReOrder Unit
(ROU) maintains a binary tree of paths &achcontext, rather than just anéar sequence of
instructions. The multiple Reservation Stations (RSs) store instructions from different paths and
contexts together, anlatch operands to instructions basedpbysicalregister names. All
memory access and bypass is handletien_oad/StoréJnit (LSU), which managethe data

cache and imposes ordering onligen true dependencies are encountered: Sfoiregtructions

can bypass Load instructions, but the LSU keeps a record of the prealoasof X until

StorelX) commits, in case it iseeded by an earlier Loag(Load instructions can bypass Store
instructions, except for Store to the same address, in which case the argument is forwarded from
the Store instruction. The Branch Unit (BU) resolves branch instructions and returns the results
to the ROU, the Prune Management Unit (PMU) and the PU. Upon receiving branch results, the
PU updates the palection algorithm and prefetches new instructions. The Pruning Management
Unit (PMU) generates and distributes prune and behead messages, to be desSebedin
below.

The massively parallé{in architecture assumes the availability of massive hardware resources,
e.g., one billion transistors. However, as explained below, existing execution techniques do not
scale well. Avid execution is designed to address this problem.

3. Avid Execution

3.1 Execution Modeling

In this section we model speculative execution with branch predictiongd@r toexplain the
advantages of Avid execution.

Branch prediction and speculative executaoe designed to reduce pipelirgalls due to
conditional branches. On a mispredictithe pigeline is flushedand new instructions are then
fetched.Misprediction Penaltyis defined ashetime requiredor the pipeline tdill up after a

flush, until instructions start committing again. This time depends linearly on the pipeline depth
(the number of stages between the fetch and branch resolution stages).

Out-of-order execution takes advantage of Instrudtievel Parallelism(ILP) and executes
independent instructions concurrently. But as instruction rate increases, so does the rate of branch
instructions (on averagevery fifth instruction is a branch [HP96]), amdispredictionrate
increases as well. This adverse effect is compounded by another setback: The deeper the pipeline
and the higher the parallelism, the higher the penalty paid for misprediction.

Instruction executiomate is thudimited by severafactors (mispredictiomate, misprediction
penalty, available ILP, and hardware resources--pipeline depth and width). Figure 3 defines the
following execution model. If there were no mispredictions, the execution rate (presented by the
dashed line) would be limited only by the available ILP and hardware resources. However, since
mispredictions do happen, the processor is able to execute instructions onlynduriaginits

before a misprediction is encountered. During that tEestructions (the shaded area in the
graph) are committed. Following a misprediction, no instructions are committed for tha next
time units (the misprediction penalty time). Aftehat, instructionsstart tocommit again. As
depicted in the grapimisprediction might happen even beftiie maximumexecutionrate is
achieved. This phenomenoepeatstself andthe average executioate R, presented by the
horizontal dotted line in Fig. 3, is:

(1) E

E, thenumber of instructions executed between mispredictions, is a functtbe pfediction
accuracy of the branch prediction algorithm (Big.For an average basic block lenBtrand for
a prediction accuraqy, misprediction occurs once evéty. =B/(1-p)instructions. Thus, faB=5
andp=0.95, misprediction is expected every 100 instructions.

Theoretically, inthe absence of mispredictiond,P depends on the instruction windesize

[HP96], and the window size depends on hardware resources such as the RS. ILP is defined as
the number of independent instructions in the window that can be executed concurrently. Figure 5
presents the ILP of four benchmark programs [HP96], and their average ILP. Note, however, that
for high ILP the typical window size exceeds typicales ofg . (Fig. 4). Thus, in the presence

of mispredictions, we must carry a careful transient analysis, as follows.

350

3004 |78 B
Limited by —-B--B=4 . _
_/ min (ILP,H/W) 2 50l |...a..Bss Emiss= 71
— — - o —_—
Execution - 3 B P
Rate -7 S 200+ =7
@
£ 1504
o ey
X .&. "4
£ 100l oclaa «
IS — XL
IS 50 g———% "—'T'T-"“-;--;-- _.,:“‘ P 4
o T ol - s
(@] il R —--

0.85 0.875 0.9 0.925 0.95

Figure 3: Instruction execution rate.

Prediction accuracy p

Figure 4: Number of executed instructions till
misprediction.

Dynamically, the windowsize isthe difference betweethe number of instructions thdtave
entered and left the window, counting from the most recent flush. Let's assume that instruction
enter the window at a constant ratenahstructions every cycle, wheverepresents the width

of the fetch-rename-reorder pipeline. Each cycle, the number of instructions leaving the window
(to be executed and committed) is assumed to be the ILP of that window size, as derived from
Fig. 5. We apply curve fitting on the data to represent ILP functionally, and thus we need to solve
the following system of recurrence equations:

ILP [Window (n)] - a Ln[Window (n)] + b

(2)

E(n) - Y ILP[Window (k)]
k-0

Window (n) = w'n - E(n-1)

To simplify the analysis, we define the average time unit required to complete one instruction at
one processor stage agycle’. This needhot necessarilymply thatthe processadesign has

either a synchronous or an asynchronous implementation. ‘Cycles’ should be thought of as time
periods,which might be all equal, e.g., a clock cycle in a synchronous processor, or they might
have an average length awdriance in an asynchronopsocessor. Thanalyzed behavior,

however, remains the same for the synchronous and asynchronous cases, since both are designed
to be as balanced as possible. In Eqi8,the cycle index, counting from the last misprediction.

Equation 2 is implicitand cannot be solved directly. Thus, we comi(t® as an iterative
process, and the result is shown in Fig. 6 for various values of

18
fpppp w=20
espresso 200 1 w=15
o Avg.ILP @
K] li o w=10
= £ 150 -
= gee =
2 B
£ 81 =
= = 100 1 w=s
o 6 D
2 2
L2B E
, § 50 -
0 : : : : :
0 100 200 300 400 500 0 : : : :
Window size 0 5 10 15 20 Cycles
Figure 5: Studies of ILP as a function wafindow Figure 6: Cumulated executed instructions as
size. a function of time cycles (assuming no

misprediction), with hardware parallelisrw)(as
a parameter.

The horizontal dashed line in Fig. 6 marks, =100 instructions (expected between
mispredictions foB=5, p=95%). As can be observed from Fig. 6, the higher the width, the higher
the mispredictiomate. Thus, there aiminishingreturns to brute forcavestment in wider
processors. Thines in Fig. 6areclearly linear,and regressioanalysis yieldghe following
empirical trends foE(n,w}

E(n,w) - a(w)xn+ B(w)
3) a(w) - 4.1xlnw-1.5
B(w) = -4.7xInw + 5

Assigninge=E,,.=B/(1-p) and Eqg. (3) into Eq. (1) yields:

(4) R - E miss Emiss a(w)

n+m Emiss_B(w) e m 1+ 1_—p><[0L(W)><m—B(W)]
a(w) B

This expression is plotted in Fig. 7 85 andp=95%. Again, it can be seen in Fig. 7 that a high
width w does not contribute to increase performance, and performance is actually limited by ILP.
The effective window size (which affects ILP) cannot be increased, since misprediction occurs
long before the window fills up. As the misprediction penaltyicreases, the effect of a higher
width w becomes negligible, since more time is spent incurring the misprediction penalty rather
than doing computation. Thus, if the misprediction penalty is high, investing in higher parallelism
in the processor does not improve the average execution rate and processor performance.

In summary: In processors employing branch prediction and speculative out-of-order execution,
wider pipeline leads to a higher mispredictiate, and deeper pipeline leads tohagher
misprediction penalty. Avid execution is designed to overcome this obstacle.

Execution Rate

10

w=20

V4 w=15

4

w=5

O RPN WM OIUTON ©®O
M M ' T L
T L— T T—T

0 20 40 60 80 100
Misprediction penalty (‘cycles’)
Figure 7: Hardware parallelism and
misprediction penalty effect on execution rate.

Figure 8: Tree of possible execution
paths (vertices are branch instructions,
edges are basic blocks).

3.2 Previous Models of Speculative Execution

To putAvid Executionn context, we briefly survey the following previous models of speculative
execution: single path speculative execution, eager executidtiplenpath exploration, and
disjoint eager execution.

The tree of possible executigaths is shown in Fig. 8. The vertices of tree arebranch
instructions. Each edge is a basic block, i.e., a sequence of nonbranch instructions terminated by
a branch instruction.

Single Path Speculative Execution

Single path speculative executid@RSE) wasissumed ithe analysis othe previous section.
Branch prediction tagsach branch as either taken or not-taken, based pastsistory, and
provides the branchtarget address [Cra92, HP96, LS84, YP92]. Instructionsfeiched
(speculatively) from the predicted branch target. On misprediction, the pipeline is flushed and the
correct path is fetched. Misprediction rate and penalty were treated above.

An execution tree of depthcontainsn edges for SPSE, so the cost is linear in the overall depth
of prediction. However, the probability of correct prediction oviavels falls off exponentially

as p". As explainedabove, misprediction ighe primary limitation to enhancing pcessor
performance.

Eager Execution and Multiple Path Exploration
In Eager Executiorall paths are prefetched aispeculatively)executed. Wen a branch is

encountered, execution proceeds down both paths of the branch. Once a branch is executed, its
‘losing’ sub-tree is aborted and disposed of. Pphacipal benefit ofeager execution that

9

misprediction stalls are eliminated. However, eager execution is exponentially wasteful: Of the
2"-1 edges of a-level execution tree, only edges are on the true path and eventually commit,
while the remaining2’-1-n edges are discarded. Due to the enormous amount of resources
required tomplementeager execution, and thelative highaccuracy of prediction algorithms
available, eager execution is impractical and has not been implemented in any real processor.

Multiple Path Exploration limits eager execution to a tree depthlefels [Mag80, MTM81].

Thus, only 2 paths are explored simultaneously. The system coritains 2 path processors and one
centralprocessomwhich generates the instructions of each branch path from the program and
issues them to the path processors. While the instructiondnch levels are being executed,

the controller generate$™ paths of the nektanch levels. Only2 dhese paths are used and

the rest are discarded once Wadid pathfrom the previousn levelsblock is determined. The

results from the data cachetb& selected processor are copied into the shared memory, and the
processors are then assigned the réxt 2 paths. Multiple Path Exploration requires approximately
exponential hardware resources.

Disjoint Eager Execution

Disjoint Eager Executiogalculates cumulative prediction probabilities, and fet¢thesmost

likely basic block§US95]. Onmispredictionthe processor is flushed. hWahthe prediction
accuracyapproaches 100%, disjoint eager execution practically converges into SPSE, since the
first alternative path will be selected only afj@ingn levels deep in the execution tree, such that
(1-p)>p". Note, forinstance, that fop=90% 22levelsare descended before thest non-
predicted branch is taken. However, misprediction is expected already after ten branches. Thus,
this model is inconsisteffbr typical levels ofp. In addition, the model (as analyzed in [US95])
ignores not only misprediction rates but also misprediction penalties.

Avid Executiondefined inthe following section, is designed to avdide pitfalls of all these
methods.

3.3 Concepts of Avid Execution

Avid Executiorcombines the benefits of both SPSE and eager execution, such that misprediction
penalty is keptvery low, while the exponentialcost of eageexecution is replaced by an
approximately linear cost. Avid execution is basically an eager execution with limited eagerness,
based on branch prediction. As$PSE, the predicted path psefetched and executed. In
addition, for each branch encountered and predicted, certain pakdevets deep subtree which

is predicted as not-taken are also fetched into the processor, and are speculatively executed.

The numbek of prefetched levels in the non-predicted subtree is adjustable. Figure 9 shows two
examples of Avid execution depths, far2 andk=5. The main predicted path is marked by solid
arrows, while the extra (avid) paths are drawn as dashed arrows. Note#@atAlid execution

is reduced to SPSE. Feorl, about 50% of all instructions fetched will be pruned, since for every
predicted basic block another basic block from the non-predicted path is also fetched. The price
of exponential demand faesources in eager execution is avoided and is replaced by an
approximately linear one: For Avid execution of delptthe number of edges in arlevels deep

10

execution tree i©(kn). Avid execution can produce instructions at a sufficient rate to reduce or
even elimnate all stalls on misprediction, as analyzed in [Kol97]. The unneeded instructions are
pruned asynchronously, without preempting continuous operation of the processor, as described
in Sect. 4 below.

Avid depth can be selected either statically (e.g., all conditional branches have the same alternative
path depth), odynamically. Dynami@djustment is preferred. It should be based on statistics
collected at run time. If confidence is applied to prediction [JRS96, Smi81], the Avid depth can
be adapted accordingly. When the pregittonfidence level is low, a deeper Avid depth should

be used, and fdrigh confidence predictionsmall Avid depth (or none at all) might be better.
Obviously,k=0 for unconditional branches.

Observe that thérst edge of each alternative path described in Figri§inating from each

branch instruction (a tree vertex), is ttranch direction predicted ast being followed. The
following edges of the alternative path are selectedragdh prediction. Anothewption for

selecting the alternative paths in Avid execution (instead of following ‘single path’ alternatives),

is to span a (limitedepth) sub-tree from the path predicted as not taken. Avid execution can be
recursively applied to the alternative paths as well. Obviously, if the alternative sub-tree is as deep
as the predicted one, and follows all possible paths, then Avid execution becomes eager execution.

As more alternative paths are fetched hydAexecution, more resources are required. Our
simulations verify thathe single path alternatives is quite adequate when prediction accuracies
are very high. Spanning more alternative paths results in diminishing returns.

Consider the following example of performance improvement achievable by Avid execution. The
pipeline depth (measured in the number of basic block stages that fit between instruction fetch and
the branch unit) is=5, p=95%, and sufficient hardware resources are available so that execution
is limited only by ILP and mispredictions. Analytical studies, described in the following section,
show that performance can be improved by as much as 50% under these conditions.

k=2 k=m (m=5)

EX

>

Code progress

PF

Figure 9: Examples of\vid Execution depthik). mis the number of processor pipeline stages
between prefetch (PF) and branch resolution (EX) stages.

11
3.4 Performance Analysis of Avid Execution

Assume there ama stages in the processor between the prefetch stage (marked PF in Fig. 9) and
the branch executiostage (marked EX). Each processor stage muableeto concurrently

handle instructions frork+1 basic blocks. Once the instructions of a basic block commit in-order,

the entire subtree is shifted and progresses in the processor stages, while new paths are predicted
and prefetched. Favery branch on the predicted path, alternative paths (emerging from it) of
lengthk are also predicted. Mén a branch is resolvedthe execution stagg@ossiblyout-of-

order), the redundant path is pruned. Execution continues along the resolved path uninterrupted,
regardless of whether it was predicted or not. The misprediction penalty of stalling all processor
stages while waiting for the correct instructions to be fetched and handled is avoided, or reduced,
as follows. Two cases of misprediction penalty for Avid execution are presented in Fig. 10.

(@) Case l: No penalty. (b) Case ll: Reduced penalty.
Figure 10: Misprediction penalties in Avid Execution.

In this example, the Avid depthksm. In Case | (Fig. 10(a)), execution follows the path marked

A. Assuming there is no misprediction of several previous branches, the Avid subtree (including
the alternative pathB throughH) has been fetched and is handlethm various stages of the
processor. The first two predictions are proven correct (checkmarKgakecution continues

along path, and path® andC are pruned. The next prediction is incorrect (marke€d and

the rest of patlA is pruned along with all the alternative paths emerging froknttifoughH).

After the misprediction, execution continues alopgth D. Sincepath D has already been
predicted, fetched, and partially handled for depthone of the processor stages is stalled.

Note that none of the alternative paths of the new main speculativ® pathbeen prefetched,

so they must now be predicted and fetched. These ‘holes’ in the Avid tree are presented by dotted
lines. If there is no subsequentispredictionfor at leastm branches, then thevil tree is
completed again. If a misprediction happens at a later time, e.g., &t thark leading to path

O, then again no misprediction penalty is incurred, since@atineady hasn basic blocks in the
processor.

Figure 10(b) shows Cask After switching topathD, a second mispredictiarccurs afte

correctly predicted branches. Execution should now follow klatiwhich has not yet reached the
execution stage. Some of the processor stages are stalled while waitingMgrdtieto proceed
through tlem.While pathM moves forwardowards the execution stagts, alternativeAvid

paths are predicted and prefetched to restore the proper Avid tree. Since part of the alternative

12

path M doesexist inthe processor at thene of the misprediction, only aeducedpenalty is
incurred. This is in contrast to what happens after misprediction on a SPSE processor, wherein
the whole processor is flushed and stalled.

Average execution rate (as defined in Sect. 3.1) is used to measure the performance improvement
thatcan be achieved bywd execution (this measure samilar tothe ‘instructions pecycle’
parameter used for synchronous processors performancajlewiy the possible cases of
mispredictions, and weigthe different misprediction penalties according ttee associated
probabilities. Wdocus on cases @#vo mispredictionseparated by some correctly predicted
branches; for reasonable prediction accura@e8(%), theprobability of three successive
mispredictions, ()3, is negligible.

If i is the number of consecutive basic blocks executéldout a misprediction, then-1
consecutive branches were correctly predicted. The misprediction penalty depends on the number
of stages between the prefetch and execution stagethé Avid depthK), and the number of

basic blocks executed without a mispredictignhe last two parameters affect the size of the
‘bubble’ in the processor. Thus, the misprediction penalty (in ‘cycles’) is given by

(5) M, - m- min(i, k)

1

and the average rate R is defined as

E.
(6) R . L
ni+Mi

1

where n, is the number of cyclesrequired to executds; instructions between the two
mispredictions.

Mispredictions whicloccur oncesverym branches or more (i.e@zm) havethe same reduced
penalty, whichdepends ok (if k=m, then there is no penalty, esplainedabove). The total
average execution rate is defined as the weighted sum of execution rates:

m-1

m-1
@ Ry = X (1-pY'p"" "R« [I-E (1-p>2pi'1)xzam
- i=1

i=1

wherep is the prediction accuracy.

As an example of performance improvement achievableviy @xecution, consider a case of
w=20, m=5, andsufficient hardware resources so that executiolmged only byILP and
mispredictions. As can be seen in Fid, more than 100%crease in performance can be
achieved by Avid execution, depending on Avid depth and prediction accuracy.

13

250

S
Q
= —e—p=0.85 /’
(]
£ 200 ——.——p=0.90
g ---a---p=0.95 .
(] ’/
& ,-",
(O] -
> 150
5 .
©
2
100 T
4 5

K - Avid Depth
Figure 11: Average performance improvement achieved by

various Avid depthskj and prediction accuracp), for m=5, and
w=20 (execution limited by ILP).

Obviously, Avid execution can contribute more to performance gain when misprediction penalty
(m) is higher, since reducing that penalty has a larger effect on overall performance. The lower
the prediction accuracy), thehighertheincrease in performance that is achievablé\tag
execution, because mispredictions happen more often and Avid reduces the penalty paid.

On the other hand, although Avid execution can optimally use any ‘spare’ processing bandwidth
which is not utilized due to limited parallelism in code, it might also hamper performance if there
are insufficientresources. The deeper the avid depth, the more resources are required. Most of
the instructions are pruned at early stages of the processor, but if the processar)vsdtiot(
sufficiently wide, the extra instructionsilvslow the executionStill, if the reduction of
misprediction penalty increases performance more ttheudecrease in execution, theerall
performance is increased. Someamplesare presented and furthexplained by simulation
results in Sect. 5.

4. Instruction Pruning

Avid execution employs pruning to remove unneeded instructions on the fly, without preempting
execution, without stalling the processor, and without flushing the pipes. Pathmarks, which are
part of the DIT (Fig. 2), distinguish alternative paths and identify the doomed instructions. Each
edge of the executiotmee isassigned a unique prefix pathmaftc an edge marken, the
sequentiallyfollowing edge and the brandhrget edge aremarkedmO andm1, respectively

(Fig. 12). Pathmarks are generated dynamically during program execution and are affixed to each
instruction at prefetch by the PU (Sect. 2).

Pruning removes entire subtrees per eadiwed branch. Since the pathmarks of all instructions
of the subtree share the same prefix, a sipglae()message suffices. If a branchwas taken
(not taken), th@rune(mO)messagepfune(m1l) respectively) is broadcast to the entire processor.
Out-of-order pruning is possible and permitted. For instance, a branch with path@ariay
execute before branch; the prune(mOk1l)messagenay precede th@rune(mO)message; the

14

latter will override the formerPruning messageare generated and distributed by the
PMU (Fig. 1).

m00 mi0, "

£ L
m000 m100, 'mi0l | pmip]
roLor
YYYY vy

Figure 12: Pathmarks based on prefix notation.

The pathmark length grows very fast, as one more bit is appended on every branch. A mechanism
for periodically beheadingthis length is described in [Kol97]. Hffectively replaceslinear
pathmark growth by logarithmic growth of th@ot mark, which is added to the DIT.

5. Performance Simulations of Avid Execution

We have developed a softwaredel ofKin and Asid execution, and simulated thatodel
executing the Specint95 benchmark.

A standard branch prediction algorithm [YP92] was implemented. Various prediction accuracies
were obtained by changing the size of the branch target buffer.

Kin was specified at the high level using statecharts and the iLogix Magnum tool [Har87, iLo96].
The internals of each moduleere specified as functions in C. This formal and operational
specification oKin has been used directly for event driven simulations, as well as for debugging,
animation, and validation. Module delays are tunable in the simulations [KGS97]. We simulated
SpeclInt95 traces, and gatherefbrmation on average amnlorstcase FIFO and table sizes,
committing and pruning rates, and program execution times. Full data is given in [Kol97, Sha97].

Avid execution was simulated for three possible (fixed) Avid dept3;: 1, and 2. The processor
pipeline width (the number of instructions that can be handled concurrently in each processor unit)
was simulated at 20, 40 and 80 instructions. Avid execution spanning an ‘eager’ suli2e for

was also simulated, and demonstrated diminishing returns, as expected. The results were at best
the same athoseobtained by Avid execution spanning a ‘single pathkfe2, and some times

even worse, due to high prediction accuracies and contention for resources.

First, the simulation of a synthetic program is are summarized in Fig. 13. The tables contain the

15

average executiorateR and relative performance oVl execution (forkk=1,2) compared to

SPSE k=0). When there are no dependencies (Fig. 13(a)) and no mispredipt@068%o), Avid
execution reduces the executi@te (from 19.69,which is almost equal tthe pipeline wdth

w=20), to 50% and 33%, fé=1 and 2, respectively, as expected, since it uses resources that can
be used for the ‘true’ path. Since there are no dependencies, the execution along the ‘true’ path
can proceed with no stall, except when a branafispredicted. Ap=80%, Avid execution does

not decrease the performareey more. Wth evenlower prediction accuracies, tlowerall
performance is increased with Avid execution.

80% 85% 90% 95% 100%
p

k=0|3.56| 100 4.97 100 6.42 140 9.p5 1p0 19({69 100

k=1|3.56| 100| 4.3% 88 552 89 6.99 70 9.90 50

k=213.56| 100[4.3% 88 4.97 80 5%4 56 6.61 B3

80 85 90 95 100 p

80% 85% 90% 95% 100%
p

15
1.4
1.3
k=01]1.04| 100| 1.1¢ 100 1.22 1Q0 1.B0 1p0 1.43 100 12
1.4
k=11]1.26| 121] 1.32 114 1.35 111 1.B8 1p6 1.43 100 1
0.9
08 | | | | ‘
80 85 90 95 100 P

k=211.42| 137 1.42 122 142 116 1.43 110 1.43 100

(b) Trace with Full Dependencies.
Figure 13 : Synthetic traces simulation results (¥ar20).

Wheneach instruction depends on the previous one (Fig. 13(b)yéiableresources in the
processor are ndully utilized, and execution is stalledlie to datadependenciesWhen
p<=100%, Avidexecution can exploit the ‘spare’ idle resourcesvtark concurrently on
instructions from alternative pathsoté how Avid execution becomes moedfective asp
decreases aridincreases.

Next, we have simulated all Specint95 programs with several Avid execution dejith$,(2)
and various processor widthe=20, 40, 80) [Sha97]. Theimulation resultdor w=40 are
presented in Fig. 14nd analyzed below. Varyindegrees of prediction accuracies dnagic
block lengths were found (Tab. 1).

16

Program Average Basic BlogkPrediction Accuracy
Length (%)

go 5.3 85
m88ksim 3.6 88
gcc 4.6 83
Compress 5.8 93
Li 3.8 93
lipeg 4.2 97
Perl 4.7 93
Vortex 4.2 95
Average 4.525 90.875

Table 1 : Properties of the SpecInt95 benchmark programs, as found in the simuld€ion of

A first glance at Fig. 14 reveals that, over all benchmarks, the incremental improveiseht of
overk=0 is more significant than the additional incremental improvement providee2by he
simulation of Compress95 (Fig. 14(a)) shows thatkkf®z, performance is best up to about
p=86%. Abovep=88%,k=0 is best. For Gcc (Fig. 14(bRs2 is better thak=1, up top=83%,
where they become equal. At that point, they both give 11% higher performan&e@h&or
Go program (Fig. 14(c)k=2 shows better performance than eitket, ork=0, up top=85%.
Simulation of ljpeg (Fig. 14(d)) resulted in highest performanc&#@rup top=77%, therk=1
gives better performance up pg97%. Theyare alvays bettethank=0. Although we could
expect Avid execution to be moreeneficialfor programshavinglower prediction accuracy, it
did prove useful even for ljpeg, which shows the highest prediction accuracy in that benchmark.
A similar behavior was seen for the Li program (Ei(e)), wher&k=2 performs better tha=1,

up to p=92%. Atp=93% they switch,but arestill both better thak=0. M88ksim program
(Fig. 14(f)) also behavake samebut theswitch in performance gain betwekn2 andk=1
occurs ap=76%. For Perl (Fig. 14(g)k=2 is best up tp=86%, and thek=1 is better buk=0
becomes the best. Vortex (Fig. 14(h)) always resulted in best performakee faip top=95%),
while evenk=1 was better thak=0.

As explained in Sect. 3.1, the average execution rate is affected by several parameters, namely the
instruction level parallelism, the prediction accuracy, the processor width and the misprediction
penalty (pipelinalepth). Theeffects of varying predictioaccuracies, %id depthand different
programs were shown in Fig4. To demonstrate theffects ofthe other parameters on the
execution rate and performance gain of Avid execution, one program (M88ksim) was simulated
with varyingw, p,andk, as explained below.

17

1

10 |
9 |
8 |
R
T L
6
5
4
50
7
6
5 |
R
4 |
87 K=2
AR e A--- K22
2 ‘ 3 ; | | |
50 60 70 80 80 100 p 50 60 70 80 90 100 p
(c) Go
7
6 |
5 |
R
4 1
3 |
2 ;
50 60 70 80 20 100 p 50 60 70 80 20 100 p
(e) Li (f) M88ksim
8 6
71 —o— K=0
6 | 5 | |~ WKt
R 5. R - Ao K=2
—e&—K=0
4L 4
— = — K=t
3 1
---A---K=2
2 1 1 1 : 3 1 1 1 1
50 60 70 80 20 100 p 50 60 70 80 20 100 p
(9) Perl (h) Vortex

Figure 14: SpecInt9Simulation results (fon=40). The graphs describe the average executionRases (
a function of prediction accuracp)(with Avid execution depthk] as the parameter.

Figure 15 shows relative performance compardda@ Both graph show that doubling pipeline

width fromw=40 tow=80 results in much less gain than when going fner0 tow=40. As the

width increases, more instructions are executed concurrently. This leads to higher branching rate,
and consequently to higher frequency of mispredictionsthadesulting penalty. Careful
observation reveals thigt2 provides better performance tharl only up tap=76% forw=20
andw=40, but in the case @=80, k=2 remaingreferred up t@=88%.Similar behavior was
observed for thether tracesimulated, wher¢he ‘switch’ betweerthe performancegains of

18

k=0,1,2 occurs at different prediction accuracies, depending on the processor width.

Figure 15(a) : M88ksim simulations with

Avid depthk=1 and varying width w.

180

160

140

120

100

2N

\‘L;

=N

——w=20 k=2
- w=40 k=2

SRt

-a--w=80 k=2

\Q}

T T T T
50% 60% 70% 80% 90% 100%

Figure 15(b) : M88ksim simulation with
Avid depthk=2, and varying width w.

Kin does not have a pure pipeline structure, but the units in it may be viewed abstractly as pipeline
stages. By changing relative timing of the units we could changegpdiee effective ‘depth’, and
affect the misprediction penalty. Figure 16(a) shows the simulation of such a short pipeline (lower

misprediction penalty). Although the execution rates increase because of the lesser stall on each

misprediction, the performanaecrease gained by Avielxecution remaineelatively the same
(comparing relative performance).

Due to some technical limitations of the simulator, we havdaieaithe effect of very deep Avid
execution (highk) by using a venshort pigline (2stages deep). Fig. 16(b) shows growing
execution rates, thanks to reducmtsprediction penalty, and vd execution results in a
substantial performance improvement of 25%-88%, and up to 80% improvement for lower

prediction accuracies.

200

190

180

170

160

150
140

130

120

110

100

50%

60%

70%

80%

—a—w=20k=1]
— o w20 k=2

200
190

180 S
N

170
160
150
140
130
120
110
100

50%

60%

70%

80%

90% 100%

Figure 16(a) : M88ksim simulations with
a short pipeline

Figure 16(b): M88ksim simulations
imitating high Avid depthK) by means of
very short misprediction penalty

Another interesting effect of Avid execution found in the simulations relates to the total number
of instructions fetched frobtmemory. In several casks1 actually resulted in less instructions
being fetched, sinde=0 had to flush many instructions. Thus, Avid execution not always results
in an increased memory bandwidth.

We have only implementeshd simulated &éxed Avid depth. Itindicates however thatetter

19

performance can be achieved when an adaptivd depth is used, based on the prediction
accuracy and confidence of each branch, as discussed in Sect. 3.3.

6. Conclusion

We have introduced, analyzed, and simulated Avid execution, which improves older methods of
speculative execution. Ménmore resources am@vailablethan can beeffectively utilized to

execute serial code, Avid execution prefetches and executes non-predicted paths, in preparation
for any imminentmisprediction. Thedepth of Avid executionmay beadjusteddynamically
according to prediction confidence. We have introdubedynamicInstance TadDIT) to

uniquely define gpath, anddefined aset of operations on the DIT tasure that useful
computation is executed and useless computation is discarded. Avid execution applies pathmarks
and pruning to execute instructions from many paths as soon as their operands are ready, but stop
executing the remaining instructions on a path as soon as it is known that it will not be taken. We
have simulated a fixed Avid schenagd have discussedheralternatives for future research.
Simulations show that\Ad execution can achieve performance improvement clod€@éo,
depending on manfactors such as the accuracy of branch prediction and the instriesgbn
parallelism inherent in the program. The simulations further validate the mathematical analysis.

Furtherdiscussion of Avidexecution, its effect on computer architecture, and features such as
extending it to multi-execution, are included in [Kol97].

Asynchronous architectures (suchkas) are best suited for\Ad execution, because of the
complex design anthe greawariance of computation loads. Avid execution is designed in the
context of very large processors, such as predicted for another 15 years.

References

[Bru9g] E. Bunvand, “The NSR ProcessoPRfoc. of the 26th Annual Hawaii Int. Conf. on System
SciencesVol. 1, pp. 428-435, 1993.

[Cra92] H. G. CragonBranch Strategy Taxonomy and Performance ModEIEE Computer
Society Press, 1992

[Dea9?] M. E. DeanSTRIP: A Self-Timed RISC ProcesgemnD thesis, Stanford Univ., 1992.

[DGY93] l. David, R. Ginosar, and M. Yoeli, “Self-Timed Architecture of a Reduced Instruction Set

Computer,” inAsynchronous Design Methodologi€sirber S. and Edwards M. editors,
IFIP Transactions Vol. A-28, Elsevier Science Publishers, pp. 29-43, 1993.

[End95] P. BEndecottSCALP: A Superscalar Asynchronous Low-Power ProceB$m, thesis,
Dept. of Computer Science, Univ. of Manchester, 1995.

[FDG+93] S. B. Furber, PDay, J. D. Garside, N. C. Paver, and J. V. Woods, “A micropipelined
ARM,” VLSI'93 1993.

[Har87] D. Harel, “Statecharts: A Visual Formalism for Complex SysteBwignce of Computer
Programming8(3), pp. 231-274, 1987.
[HP96] J. L. Hennessy and D. A. Pattersoomputer Architecture: Quantitative Approach2nd

edition, Morgan Kaufmann, 1996.

20

[iLo96] i-Logix, Inc., Statemate MAGNUM documentatidi®96
(See alsohttp://www.ilogix.com
[JRS96] E. Jacobsen, E.tRnberg, and J. E. Smith, “Assigning Confidence to Conditional Branch

Prediction,” Proceedings of the 29th International Symposium on Microarchitecture
(Micro-29), pp. 142-152, Dec. 1996.

[KGS97] R. Kol, R. Ginosar, and G. Samuel, “Statecharts Methodology for the Design, Validation,
and Synthesis of Large Scale Asynchronous SystdEISE Trans. on Information and
SystemdE=80-D(3), pp. 308-314, Mar. 1997.

[Kol97] R. Kol, Self-Timed Asynchronous Architecture of an Advanced General Purpose
Microprocessoy PhD thesis, Dept. of Electrical Engineering, Technion, Israel, 1997.

[LS84] J. K. F.Leeand A. J. Smith, “Branch Prediction Strategies and Branch Target Buffer
Design,”|IEEE Computerl7(1), pp. 6-22, Jan. 1984.

[Mag80] N. F. MagidHigh Speed Computer Systems as a Result of Concurrent Execution of

Sequential Instruction$2hD thesis, Dept. of Electrical Engineering, lllinois Institute of
Technology, Chicago, Illinois, 1980.

[Mar97] A. Martin, et al, “The Design of an Asynchronous MIPS R3000 Microproces8wnt.
Advanced Research in VI, Sept. 1997.

[MBL+89] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus, “The Design of
an Asynchronous Microprocessor,” Technical Report, Caltech-CS-TR-89-02, 1989.

[MTM81] N. Magid, G. Tjaden, and H. Messinger, “Exploitation @dncurrency by Virtual
Elimination of Branch Instructions/hternational Conference on Parallel Processing
(ICPP), pp. 164-165, Aug. 1981.

[NUK+94] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, andPakamura, “TITAC: Design of a
Quasi-Delay-Insensitive MicroprocessolZEE Design & Test of Computersl1(2),
pp. 50-63, Summer 1994,

[Pav94] N. C. PaveiThe Design and Implementation of an Asynchronous Microprocd®sDr,
thesis, Dept. of Computer Science, Univ. of Manchester, 1994.
[RB96] W. F.Richardson and E. Brunvand, “Fred: An Architecture for a Self-Timed Decoupled

Computer,”2nd Int. Symp. on Advanced Researchsgnchronous Circuits and Systems
(Async’96) pp. 60-68, Mar. 1996.

[Sha97] H. ShafiAvid Execution and Instruction Pruning in the Asynchronous Processor KIN,
MSc thesis, Dept. of Electrical Engineering, Technion, Israel, 1997, in preparation.
[SIA97] Semionductor Industry Assxiation, Semiconductor Technology Roadma@97 edition.

Note to the referees: We use the numbers of the yet-unpubliSB&&IA Technology
Roadmap. That edition will become public by Dec. 97.

[Smi81] J. E. Smith, “A Study of Branch Prediction Strategi®gc. Eighth Symposium on
Computer Architecturepp. 135-148, May 1981.

[SSM94] R. F. Sprall I. E. Sutherland, and C. E. Molnar, “The Counterflow Pipeline Processor
Architecture,”IEEE Design & Test of Computer$1(3), pp. 48-59, Fall 1994.

[US95] A. K. Uhtand V. Sindagi, “Disjoint Eager Execution: An Optimal Form of Speculative

Execution,” Proceedings of the 28th International Symposium on Microarchitecture
(Micro-28), pp. 313-325, Nov. 1995.

[Wei96] U. Weiser, “Future Directions in Microprocessor Design,” Invited lecture, presertad at
Int. Symp. on Advanced Research in Asynchronous Circuits and Systems (Async’96)
Mar. 1996.

[Wol92] T. L. Wolf, The A3000: An Asynchronous Version of the R3DRY; thesis, Dept. of
Computer Science, Univ. of Utah, 1992.

[YP92] T.-Y. Yeh and Y. NPatt, “Alternativelmplementations of Two-Level Adaptive Branch

Prediction,"The 19th International Symposium on Computer Architecture (ISCA), ACM
SIGARCH Computer Architecture Ne@§(2), pp. 124-134, May 1992.

