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Kin  was the God of Time of the Maya.1

Avid Execution and Instruction Pruning in the
Asynchronous Processor Kin1

Abstract

Avid execution prefetches and speculatively executes not only the predicted branches of a
program but also a certain part of the non-predicted branches, in anticipation of misprediction.
Once a misprediction occurs, the processor may immediately turn to one of the secondary paths
and continue executing without interruption. The stale instructions are removed quietly without
flushing the processor, by means of a pruning process. Avid execution employs computing
resources which cannot be used for the mainline code, due to limited instruction level parallelism.
It is intended for very large high performance processors, and is best used in asynchronous
processors. The paper provides a full definition and mathematical analysis of Avid execution. A
behavioral model of the Kin asynchronous processor has been simulated executing SpecInt95, and
performance improvements of close to 100% are predicted thanks to Avid execution.

1. Introduction

As part of our research of whether asynchronous logic design is applicable to high performance
general purpose processors, we have developed a novel method of multi-path speculative
execution. The method, named Avid Execution, is applicable to synchronous processors as well.
Avid execution addresses the question of how we can exploit massive resources, which will be
made available by future technology, to enhance processor performance. The semiconductor
industry predict that by the year 2012 we can expect one billion transistors per chip, operating at
close to 10 Ghz [SIA97, Wei96]. We discuss the issue of how computer architecture may be
modified in order to make it scalable for such vast resources.

Performance of present processors is limited by a number of factors, including true and false
dependencies, limits to inherent instruction level parallelism in serial code, and pipeline stalls due
to misprediction of branches. To achieve high performance, processors must run faster but also
execute and successfully complete many instructions in parallel. Although many parallel execution
units may be made available, data and control dependencies limit instruction level parallelism. To
exploit such parallelism, the processor must search over a large window for instructions that can
be executed. That window typically extends beyond multiple branches, by means of branch
lookahead strategies. Those strategies are based on branch prediction algorithms, and on
speculative execution beyond the predicted branches. This paper is not concerned with the branch
prediction algorithm itself, but rather with the question of how it is used and which instructions
are speculatively executed.

Future technology will most likely lead to asynchronous processors, due to the difficulty of
maintaining very fast clocks and synchronized data transfer over very large chips. In fact, such
very large processors may resemble large distributed networks, rather than tightly synchronized
pipelines. Hence, we feel that aggressive architectures are better investigated in the context of
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asynchronous processors. A large number of asynchronous processors have been previously
designed [MBL+89, FDG+93, Pav94, Bru93, RB96, DGY93, NUK+94, SSM94, Dea92, Wol92,
End95, Mar97]. Most of them have rather simple and straightforward architectures. None of them
supports out-of-order execution, nor considers performance enhancement by branch prediction.
All are targeted at current technology, and are not scalable to take advantage of the growing
amount of resources promised by future technology.

Kin architecture comprises multiple fast self-timed units, interconnected over asynchronous
channels, using handshake communication protocols. The asynchronous microarchitecture is
described at a high level and allows flexible and robust implementation. Although Kin is designed
as an asynchronous machine at the its top level, its individual modules may be implemented
according to various timing disciplines (synchronous, asynchronous, or anything in between).

Avid execution prefetches and processes not only the predicted branches of the program but also
a certain amount of the non-predicted branches, in anticipation of misprediction. Once a
misprediction occurs, the processor may immediately turn to one of the secondary paths and
continue executing without interruption. The stale instructions are removed quietly without
flushing the processor, by means of a pruning process. Avid execution employs computing
resources which cannot be used for the mainline code, due to inherent limitations on parallel
execution. The paper provides a definition and mathematical analysis of Avid execution, and
describes the encouraging results of SpecInt95 performance simulation of the model.

The novel architecture of Kin is described in Sect. 2. Avid execution is presented and analyzed
in Sect. 3, and Sect. 4 explains instruction pruning. Modeling Kin and its performance simulation
(using the SpecInt95 benchmark) are described in Sect 5.

2. Kin Architecture

2.1 General Description

Kin is a general purpose high performance asynchronous microprocessor that supports out-of-
order and deep speculative (Avid) execution. It exploits massive parallelism and redundancy in
order to execute hundreds or thousands of instructions simultaneously.

Kin comprises a distributed network of asynchronously interconnected modules, without any
central control. The architecture is asynchronous at the top level, but modules can be implemented
according to various timing disciplines. Each module operates at its own speed, and
communicates with other modules over asynchronous FIFO channels. On average all modules are
balanced, but asynchronous interconnects permit flexible work loads.

Instructions flow through Kin as self-identified packets carrying their own identity tags and all
needed information, as in a data flow computer. They may leave some traces around such as
instruction entries in the reorder buffer, but these eventually reunite with the instructions. Each
module receives instruction packets, executes them at its own local rate, and forwards them to
their next stops.
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Figure 1:  Kin asynchronous processor architecture.

Kin (Fig. 1) combines known features (multiple execution units, out-of-order execution, and
register renaming) with some novel ones (Avid Execution, Dynamic Instance Tagging, unified
Multi-Execution, and Pruning). Multiple instructions are executed concurrently and out-of-order
over multiple execution units. To preserve the serial nature of the code, instructions are
committed (completed) in their original serial order, typically many of them at each time. Deep
speculative execution is employed to avoid processor stalls; branches are predicted and code is
prefetched from the more likely paths of the program.

2.2 Kin Architecture and Operation

Once fetched, instructions are decoded and stored in the multi-ported Decoded Instruction Cache
(DIC, Fig. 1) where each cache line includes a single basic block (a sequence of instructions
ending with a branch). The Prefetch Unit (PU) fetches multiple basic blocks from the DIC
simultaneously, and tags each instruction with a unique Dynamic Instruction Tag (DIT, Fig. 2).
The registers are renamed in the Register Renaming Unit (RRU), and the instructions are recorded
in the ReOrder Unit (ROU), after which they are executed in the out-of-order zone. They enter
one of the Reservation Stations (RSs) to wait for their operands, are processed in one of the
Branch, Execute, or Load/Store Units (BU, EU, LSU), send results back to the RSs and return
to the ROU for in-order commitment. Most instructions, however, never complete this cycle.
Rather, they are pruned and discarded (Sect. 4).

Avid execution is fully explained in Sect. 3, but for clarity of the exposition it is described here
in brief. The commonly used single path speculative execution employs branch prediction to
decide which path to take following each branch; occasionally the prediction fails, the processor



4

Instruction Dynamic Instance Tag (DIT)

opcode operands root path context pc

pathmark

Figure 2:  Dynamic Instance Tag structure.

is halted and flushed, and execution resumes along the correct path. In contrast, Avid execution
also fetches and speculatively executes instructions along the non-predicted paths, so as to
minimize the adverse effect of misprediction. Instructions which are found useless are pruned and
discarded without preempting the processor.

The Prefetch Unit (PU) executes the branch prediction and Avid algorithms, and issues access
requests to the DIC. It also generates pathmarks, which fully identify the path for each instruction
(Sect. 4). The pathmark is attached to each instruction instance as it is fetched from the DIC, as
part of a unique Dynamic Instance Tag (DIT, Fig. 2). The same basic block of code may be
fetched simultaneously multiple times, e.g. as loops are unrolled. Each time, the loop is prefetched
(and tagged) as a new instance, and must be treated separately by the rest of the machine (e.g.,
proper register renaming), regardless of the fact that it is the same original code. The instruction
cache is multiported to provide simultaneous fetching of multiple cache lines, including multiple
separate fetches of the same line. Access optimization techniques are employed to replace brute
force multiple reads of the same line by a single access and intelligent duplication, but this is
transparent to the PU. The PU, like other units in Fig. 1, is drawn as a triangle since it handles
complex execution trees rather than just linear paths. Multiple triangles are drawn to symbolize
multiple contexts.

The Register Renaming Unit (RRU) maintains the renaming tables for the many possible
execution paths avidly prefetched, to enable speculative out of order execution. The ReOrder Unit
(ROU) maintains a binary tree of paths for each context, rather than just a linear sequence of
instructions. The multiple Reservation Stations (RSs) store instructions from different paths and
contexts together, and match operands to instructions based on physical register names. All
memory access and bypass is handled in the Load/Store Unit (LSU), which manages the data
cache and imposes ordering only when true dependencies are encountered: Store(X) instructions
can bypass Load instructions, but the LSU keeps a record of the previous value of X until
Store(X) commits, in case it is needed by an earlier Load(X). Load instructions can bypass Store
instructions, except for Store to the same address, in which case the argument is forwarded from
the Store instruction. The Branch Unit (BU) resolves branch instructions and returns the results
to the ROU, the Prune Management Unit (PMU) and the PU. Upon receiving branch results, the
PU updates the prediction algorithm and prefetches new instructions. The Pruning Management
Unit (PMU) generates and distributes prune and behead messages, to be described in Sect. 4
below.

The massively parallel Kin architecture assumes the availability of massive hardware resources,
e.g., one billion transistors. However, as explained below, existing execution techniques do not
scale well. Avid execution is designed to address this problem.
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(1)

3. Avid Execution

3.1 Execution Modeling

In this section we model speculative execution with branch prediction, in order to explain the
advantages of Avid execution. 

Branch prediction and speculative execution are designed to reduce pipeline stalls due to
conditional branches. On a misprediction, the pipeline is flushed, and new instructions are then
fetched. Misprediction Penalty is defined as the time required for the pipeline to fill up after a
flush, until instructions start committing again. This time depends linearly on the pipeline depth
(the number of stages between the fetch and branch resolution stages).

Out-of-order execution takes advantage of Instruction Level Parallelism (ILP) and executes
independent instructions concurrently. But as instruction rate increases, so does the rate of branch
instructions (on average every fifth instruction is a branch [HP96]), and misprediction rate
increases as well. This adverse effect is compounded by another setback: The deeper the pipeline
and the higher the parallelism, the higher the penalty paid for misprediction.

Instruction execution rate is thus limited by several factors (misprediction rate, misprediction
penalty, available ILP, and hardware resources--pipeline depth and width). Figure 3 defines the
following execution model. If there were no mispredictions, the execution rate (presented by the
dashed line) would be limited only by the available ILP and hardware resources. However, since
mispredictions do happen, the processor is able to execute instructions only during n time units
before a misprediction is encountered. During that time, E instructions (the shaded area in the
graph) are committed. Following a misprediction, no instructions are committed for the next m
time units (the misprediction penalty time). After that, instructions start to commit again. As
depicted in the graph, misprediction might happen even before the maximum execution rate is
achieved. This phenomenon repeats itself and the average execution rate R, presented by the
horizontal dotted line in Fig. 3, is: 

E, the number of instructions executed between mispredictions, is a function of the prediction
accuracy of the branch prediction algorithm (Fig. 4). For an average basic block length B, and for
a prediction accuracy p, misprediction occurs once every E =B/(1-p) instructions. Thus, for B=5miss

and p=0.95, misprediction is expected every 100 instructions.

Theoretically, in the absence of mispredictions, ILP depends on the instruction window size
[HP96], and the window size depends on hardware resources such as the RS. ILP is defined as
the number of independent instructions in the window that can be executed concurrently. Figure 5
presents the ILP of four benchmark programs [HP96], and their average ILP. Note, however, that
for high ILP the typical window size exceeds typical values of E  (Fig. 4). Thus, in the presencemiss

of mispredictions, we must carry a careful transient analysis, as follows.
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Figure 4:  Number of executed instructions till
misprediction.

Figure 3:  Instruction execution rate.

(2)

Dynamically, the window size is the difference between the number of instructions that have
entered and left the window, counting from the most recent flush. Let’s assume that instruction
enter the window at a constant rate of w instructions every cycle, where w represents the width
of the fetch-rename-reorder pipeline.  Each cycle, the number of instructions leaving the window
(to be executed and committed) is assumed to be the ILP of that window size, as derived from
Fig. 5. We apply curve fitting on the data to represent ILP functionally, and thus we need to solve
the following system of recurrence equations:

To simplify the analysis, we define the average time unit required to complete one instruction at
one processor stage as a ‘cycle’. This need not necessarily imply that the processor design has
either a synchronous or an asynchronous implementation. ‘Cycles’ should be thought of as time
periods, which might be all equal, e.g., a clock cycle in a synchronous processor, or they might
have an average length and variance in an asynchronous processor. The analyzed behavior,
however, remains the same for the synchronous and asynchronous cases, since both are designed
to be as balanced as possible. In Eq. 2, n is the cycle index, counting from the last misprediction.

Equation 2 is implicit and cannot be solved directly. Thus, we compute E(n) as an iterative
process, and the result is shown in Fig. 6 for various values of w.
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Figure 5:  Studies of ILP as a function of window
size.

Figure 6:  Cumulated executed instructions as
a function of time cycles (assuming no
misprediction), with hardware parallelism (w) as
a parameter.

(3)

(4)

The horizontal dashed line in Fig. 6 marks E =100 instructions (expected betweenmiss

mispredictions for B=5, p=95%). As can be observed from Fig. 6, the higher the width, the higher
the misprediction rate. Thus, there are diminishing returns to brute force investment in wider
processors. The lines in Fig. 6 are clearly linear, and regression analysis yields the following
empirical trends for E(n,w):

Assigning E=E =B/(1-p)  and Eq. (3) into Eq. (1) yields:miss

This expression is plotted in Fig. 7 for B=5 and p=95%. Again, it can be seen in Fig. 7 that a high
width w does not contribute to increase performance, and performance is actually limited by ILP.
The effective window size (which affects ILP) cannot be increased,  since misprediction occurs
long before the window fills up. As the misprediction penalty m increases, the effect of a higher
width w becomes negligible, since more time is spent incurring the misprediction penalty rather
than doing computation. Thus, if the misprediction penalty is high, investing in higher parallelism
in  the processor does not improve the average execution rate and processor performance.

In summary: In processors employing branch prediction and speculative out-of-order execution,
wider pipeline leads to a higher misprediction rate, and deeper pipeline leads to a higher
misprediction penalty. Avid execution is designed to overcome this obstacle.
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Figure 7:  Hardware parallelism and
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3.2 Previous Models of Speculative Execution

To put Avid Execution in context, we briefly survey the following previous models of speculative
execution: single path speculative execution, eager execution, multiple path exploration, and
disjoint eager execution.

The tree of possible execution paths is shown in Fig. 8. The vertices of the tree are branch
instructions. Each edge is a basic block, i.e., a sequence of nonbranch instructions terminated by
a branch instruction. 

Single Path Speculative Execution

Single path speculative execution (SPSE) was assumed in the analysis of the previous section.
Branch prediction tags each branch as either taken or not-taken, based on its past history, and
provides the branch target address [Cra92, HP96, LS84, YP92]. Instructions are fetched
(speculatively) from the predicted branch target. On misprediction, the pipeline is flushed and the
correct path is fetched. Misprediction rate and penalty were treated above. 

An execution tree of depth n contains n edges for SPSE, so the cost is linear in the overall depth
of prediction. However, the probability of correct prediction over n levels falls off exponentially
as p . As explained above, misprediction is the primary limitation to enhancing processorn

performance.

Eager Execution and Multiple Path Exploration

In Eager Execution all paths are prefetched and (speculatively) executed. When a branch is
encountered, execution proceeds down both paths of the branch. Once a branch is executed, its
‘losing’ sub-tree is aborted and disposed of. The principal benefit of eager execution is that
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misprediction stalls are eliminated. However, eager execution is exponentially wasteful:  Of the
2 -1 edges of a n-level execution tree, only n edges are on the true path and eventually commit,n

while the remaining 2 -1-n edges are discarded. Due to the enormous amount of resourcesn

required to implement eager execution, and the relative high accuracy of prediction algorithms
available, eager execution is impractical and has not been implemented in any real processor.

Multiple Path Exploration limits eager execution to a tree depth of m levels [Mag80, MTM81].
Thus, only 2  paths are explored simultaneously. The system contains 2  path processors and onem m

central processor which generates the instructions of each branch path from the program and
issues them to the path processors. While the instructions of m branch levels are being executed,
the controller generates 2  paths of the next m branch levels. Only 2  of these paths are used and2m m

the rest are discarded once the valid path from the previous m levels block is determined. The
results from the data cache of the selected processor are copied into the shared memory, and the
processors are then assigned the next 2  paths. Multiple Path Exploration requires approximatelym

exponential hardware resources.

Disjoint Eager Execution

Disjoint Eager Execution calculates cumulative prediction probabilities, and fetches the most
likely basic blocks [US95]. On misprediction the processor is flushed. When the prediction
accuracy approaches 100%, disjoint eager execution practically converges into SPSE, since the
first alternative path will be selected only after going n levels deep in the execution tree, such that
(1-p)>p . Note, for instance, that for p=90% 22 levels are descended before the first non-n

predicted branch is taken. However, misprediction is expected already after ten branches. Thus,
this model is inconsistent for typical levels of p. In addition, the model (as analyzed in [US95])
ignores not only misprediction rates but also misprediction penalties. 

Avid Execution, defined in the following section, is designed to avoid the pitfalls of all these
methods.

3.3 Concepts of Avid Execution

Avid Execution combines the benefits of both SPSE and eager execution, such that misprediction
penalty is kept very low, while the exponential cost of eager execution is replaced by an
approximately linear cost. Avid execution is basically an eager execution with limited eagerness,
based on branch prediction. As in SPSE, the predicted path is prefetched and executed. In
addition, for each branch encountered and predicted, certain parts of a k levels deep subtree which
is predicted as not-taken are also fetched into the processor, and are speculatively executed.

The number k of prefetched levels in the non-predicted subtree is adjustable. Figure 9 shows two
examples of Avid execution depths, for k=2 and k=5. The main predicted path is marked by solid
arrows, while the extra (avid) paths are drawn as dashed arrows. Note that if k=0, Avid execution
is reduced to SPSE. For k=1, about 50% of all instructions fetched will be pruned, since for every
predicted basic block another basic block from the non-predicted path is also fetched. The price
of exponential demand for resources in eager execution is avoided and is replaced by an
approximately linear one: For Avid execution of depth k, the number of edges in an n levels deep
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Figure 9:  Examples of Avid Execution depth (k).  m is the number of processor pipeline stages
between prefetch (PF) and branch resolution (EX) stages.

execution tree is O(k@n). Avid execution can produce instructions at a sufficient rate to reduce or
even eliminate all stalls on misprediction, as analyzed in [Kol97]. The unneeded instructions are
pruned asynchronously, without preempting continuous operation of the processor, as described
in Sect. 4 below.

Avid depth can be selected either statically (e.g., all conditional branches have the same alternative
path depth), or dynamically. Dynamic adjustment is preferred. It should be based on statistics
collected at run time. If confidence is applied to prediction [JRS96, Smi81], the Avid depth can
be adapted accordingly. When the prediction confidence level is low, a deeper Avid depth should
be used, and for high confidence prediction a small Avid depth (or none at all) might be better.
Obviously, k=0 for unconditional branches.

Observe that the first edge of each alternative path described in Fig. 9, originating from each
branch instruction (a tree vertex), is the branch direction predicted as not being followed. The
following edges of the alternative path are selected by branch prediction. Another option for
selecting the alternative paths in Avid execution (instead of following ‘single path’ alternatives),
is to span a (limited depth) sub-tree from the path predicted as not taken. Avid execution can be
recursively applied to the alternative paths as well. Obviously, if the alternative sub-tree is as deep
as the predicted one, and follows all possible paths, then Avid execution becomes eager execution.

As more alternative paths are fetched by Avid execution, more resources are required. Our
simulations verify that the single path alternatives is quite adequate when prediction accuracies
are very high. Spanning more alternative paths results in diminishing returns.

Consider the following example of performance improvement achievable by Avid execution. The
pipeline depth (measured in the number of basic block stages that fit between instruction fetch and
the branch unit) is m=5, p=95%, and sufficient hardware resources are available so that execution
is limited only by ILP and mispredictions. Analytical studies, described in the following section,
show that performance can be improved by as much as 50% under these conditions.
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(a)  Case I:   No penalty. (b)  Case II:   Reduced penalty.
Figure 10:  Misprediction penalties in Avid Execution.

3.4 Performance Analysis of Avid Execution

Assume there are m stages in the processor between the prefetch stage (marked PF in Fig. 9) and
the branch execution stage (marked EX). Each processor stage must be able to concurrently
handle instructions from k+1 basic blocks. Once the instructions of a basic block commit in-order,
the entire subtree is shifted and progresses in the processor stages, while new paths are predicted
and prefetched. For every branch on the predicted path, alternative paths (emerging from it) of
length k are also predicted. When a branch is resolved at the execution stage (possibly out-of-
order), the redundant path is pruned. Execution continues along the resolved path uninterrupted,
regardless of whether it was predicted or not. The misprediction penalty of stalling all processor
stages while waiting for the correct instructions to be fetched and handled is avoided, or reduced,
as follows. Two cases of misprediction penalty for Avid execution are presented in Fig. 10.

In this example, the Avid depth is k=m. In Case I (Fig. 10(a)), execution follows the path marked
A. Assuming there is no misprediction of several previous branches, the Avid subtree (including
the alternative paths B through H) has been fetched and is handled in the various stages of the
processor. The first two predictions are proven correct (checkmarked ‘T’), execution continues
along path A, and paths B and C are pruned. The next prediction is incorrect (marked ‘X’), and
the rest of path A is pruned along with all the alternative paths emerging from it (E through H).
After the misprediction, execution continues along path D. Since path D has already been
predicted, fetched, and partially handled for depth m, none of the processor stages is stalled.

Note that none of the alternative paths of the new main speculative path D has been prefetched,
so they must now be predicted and fetched. These ‘holes’ in the Avid tree are presented by dotted
lines. If there is no subsequent misprediction for at least m branches, then the Avid tree is
completed again. If a misprediction happens at a later time, e.g., at the ‘X’ mark leading to path
O, then again no misprediction penalty is incurred, since path O already has m basic blocks in the
processor.

Figure 10(b) shows Case II. After switching to path D, a second misprediction occurs after *
correctly predicted branches. Execution should now follow path M, which has not yet reached the
execution stage. Some of the processor stages are stalled while waiting for the M path to proceed
through them. While path M moves forward towards the execution stage, its alternative Avid
paths are predicted and prefetched to restore the proper Avid tree. Since part of the alternative
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(5)

(6)

(7)

path M does exist in the processor at the time of the misprediction, only a reduced penalty is
incurred. This is in contrast to what happens after misprediction on a SPSE processor, wherein
the whole processor is flushed and stalled.

Average execution rate (as defined in Sect. 3.1) is used to measure the performance improvement
that can be achieved by Avid execution (this measure is similar to the ‘instructions per cycle’
parameter used for synchronous processors performance). We identify the possible cases of
mispredictions, and weigh the different misprediction penalties according to the associated
probabilities. We focus on cases of two mispredictions separated by some correctly predicted
branches; for reasonable prediction accuracies (p>80%), the probability of three successive
mispredictions, (1-p) , is negligible. 3

If i is the number of consecutive basic blocks executed without a misprediction, then i-1
consecutive branches were correctly predicted. The misprediction penalty depends on the number
of stages between the prefetch and execution stages (m), the Avid depth (k), and the number of
basic blocks executed without a misprediction (i). The last two parameters affect the size of the
‘bubble’ in the processor. Thus, the misprediction penalty (in ‘cycles’) is given by

and the average rate R  is defined asi

where n  is the number of cycles required to execute E  instructions between the twoi i

mispredictions.

Mispredictions which occur once every m branches or more (i.e., i$m) have the same reduced
penalty, which depends on k  (if k=m, then there is no penalty, as explained above). The total
average execution rate is defined as the weighted sum of execution rates:

where p is the prediction accuracy.

As an example of performance improvement achievable by Avid execution, consider a case of
w=20, m=5, and sufficient hardware resources so that execution is limited only by ILP and
mispredictions. As can be seen in Fig. 11, more than 100% increase in performance can be
achieved by Avid execution, depending on Avid depth and prediction accuracy.
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Figure 11:  Average performance improvement achieved by
various Avid depths (k) and prediction accuracy (p), for m=5, and
w=20 (execution limited by ILP).

Obviously, Avid execution can contribute more to performance gain when misprediction penalty
(m) is higher, since reducing that penalty has a larger effect on overall performance. The lower
the prediction accuracy (p), the higher the increase in performance that is achievable by Avid
execution, because mispredictions happen more often and Avid reduces the penalty paid.

On the other hand, although Avid execution can optimally use any ‘spare’ processing bandwidth
which is not utilized due to limited parallelism in code, it might also hamper performance if there
are insufficient resources. The deeper the avid depth, the more resources are required. Most of
the instructions are pruned at early stages of the processor, but if the processor width (w) is not
sufficiently wide, the extra instructions will slow the execution. Still, if the reduction of
misprediction penalty increases performance more than the decrease in execution, the overall
performance is increased. Some examples are presented and further explained by simulation
results in Sect. 5.

4. Instruction Pruning

Avid execution employs pruning to remove unneeded instructions on the fly, without preempting
execution, without stalling the processor, and without flushing the pipes. Pathmarks, which are
part of the DIT (Fig. 2), distinguish alternative paths and identify the doomed instructions. Each
edge of the execution tree is assigned a unique prefix pathmark: for an edge marked m, the
sequentially following edge and the branch target edge are marked m0 and m1, respectively
(Fig. 12). Pathmarks are generated dynamically during program execution and are affixed to each
instruction at prefetch by the PU (Sect. 2).

Pruning removes entire subtrees per each resolved branch. Since the pathmarks of all instructions
of the subtree share the same prefix, a single prune() message suffices. If a branch m was taken
(not taken), the prune(m0) message (prune(m1), respectively) is broadcast to the entire processor.
Out-of-order pruning is possible and permitted. For instance, a branch with  pathmark m0k may
execute before branch m; the prune(m0k1) message may precede the prune(m0) message; the
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Figure 12:  Pathmarks based on prefix notation.

latter will override the former. Pruning messages are generated and distributed by the
PMU (Fig. 1).

The pathmark length grows very fast, as one more bit is appended on every branch. A mechanism
for periodically beheading this length is described in [Kol97]. It effectively replaces linear
pathmark growth by logarithmic growth of the root mark, which is added to the DIT.

5. Performance Simulations of Avid Execution

We have developed a software model of Kin and Avid execution, and simulated that model
executing the SpecInt95 benchmark.

A standard branch prediction algorithm [YP92] was implemented. Various prediction accuracies
were obtained by changing the size of the branch target buffer. 

Kin was specified at the high level using statecharts and the iLogix Magnum tool [Har87, iLo96].
The internals of each module were specified as functions in C. This formal and operational
specification of Kin has been used directly for event driven simulations, as well as for debugging,
animation, and validation. Module delays are tunable in the simulations [KGS97]. We simulated
SpecInt95 traces, and gathered information on average and worst case FIFO and table sizes,
committing and pruning rates, and program execution times. Full data is given in [Kol97, Sha97].

Avid execution was simulated for three possible (fixed) Avid depths: k=0, 1, and 2. The processor
pipeline width (the number of instructions that can be handled concurrently in each processor unit)
was simulated at 20, 40 and 80 instructions. Avid execution spanning an ‘eager’ subtree for k=2
was also simulated, and demonstrated diminishing returns, as expected. The results were at best
the same as those obtained by Avid execution spanning a ‘single path’ for k=2, and some times
even worse, due to high prediction accuracies and contention for resources.

First, the simulation of a synthetic program is are summarized in Fig. 13. The tables contain the
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p 80% 85% 90% 95% 100%

R % R % R % R % R %

k=0 3.56 100 4.97 100 6.22 100 9.95 100 19.69 100

k=1 3.56 100 4.35 88 5.52 89 6.99 70 9.90 50

k=2 3.56 100 4.35 88 4.97 80 5.54 56 6.61 33

(a) Trace with No Dependencies.

p 80% 85% 90% 95% 100%

R % R % R % R % R %

k=0 1.04 100 1.16 100 1.22 100 1.30 100 1.43 100

k=1 1.26 121 1.32 114 1.35 111 1.38 106 1.43 100

k=2 1.42 137 1.42 122 1.42 116 1.43 110 1.43 100

(b) Trace with Full Dependencies.

Figure 13 : Synthetic traces simulation results (for w=20).

average execution rate R and relative performance of Avid execution (for k=1,2) compared to
SPSE (k=0). When there are no dependencies (Fig. 13(a)) and no mispredictions (p=100%), Avid
execution reduces the execution rate (from 19.69, which is almost equal to the pipeline width
w=20), to 50% and 33%, for k=1 and 2, respectively, as expected, since it uses resources that can
be used for the ‘true’ path. Since there are no dependencies, the execution along the ‘true’ path
can proceed with no stall, except when a branch is mispredicted. At p=80%, Avid execution does
not decrease the performance any more. With even lower prediction accuracies, the overall
performance is increased with Avid execution.

When each instruction depends on the previous one (Fig. 13(b)), the available resources in the
processor are not fully utilized, and execution is stalled due to data dependencies. When
p<=100%, Avid execution can exploit the ‘spare’ idle resources to work concurrently on
instructions from alternative paths. Note how Avid execution becomes more effective as p
decreases and k increases.

Next, we have simulated all SpecInt95 programs with several Avid execution depths (k=0, 1, 2)
and various processor widths (w=20, 40, 80) [Sha97]. The simulation results for w=40 are
presented in Fig. 14, and analyzed below. Varying degrees of prediction accuracies and basic
block lengths were found (Tab. 1).
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Program Average Basic Block
Length

Prediction Accuracy
(%)

go 5.3 85

m88ksim 3.6 88

gcc 4.6 83

Compress 5.8 93

Li 3.8 93

Ijpeg 4.2 97

Perl 4.7 93

Vortex 4.2 95

Average 4.525 90.875

Table 1 : Properties of the SpecInt95 benchmark programs, as found in the simulation of Kin.

A first glance at Fig. 14 reveals that, over all benchmarks, the incremental improvement of k=1
over k=0 is more significant than the additional incremental improvement provided by k=2. The
simulation of Compress95 (Fig. 14(a)) shows that for k=2, performance is best up to about
p=86%. Above p=88%, k=0 is best. For Gcc (Fig. 14(b)), k=2 is better than k=1, up to p=83%,
where they become equal. At that point, they both give 11% higher performance than k=0. For
Go program (Fig. 14(c)), k=2 shows better performance than either k=1, or k=0, up to p=85%.
Simulation of Ijpeg (Fig. 14(d)) resulted in highest performance for k=2 up to p=77%, then k=1
gives better performance up to p=97%. They are always better than k=0. Although we could
expect Avid execution to be more beneficial for programs having lower prediction accuracy, it
did prove useful even for Ijpeg, which shows the highest prediction accuracy in that benchmark.
A similar behavior was seen for the Li program (Fig. 14(e)), where k=2 performs better than k=1,
up to p=92%. At p=93% they switch, but are still both better than k=0. M88ksim program
(Fig. 14(f)) also behaves the same, but the switch in performance gain between k=2 and k=1
occurs at p=76%. For Perl (Fig. 14(g)), k=2 is best up to p=86%, and then k=1 is better but k=0
becomes the best. Vortex (Fig. 14(h)) always resulted in best performance for k=2 (up to p=95%),
while even k=1 was better than k=0.

As explained in Sect. 3.1, the average execution rate is affected by several parameters, namely the
instruction level parallelism, the prediction accuracy, the processor width and the misprediction
penalty (pipeline depth). The effects of varying prediction accuracies, Avid depth and different
programs were shown in Fig. 14. To demonstrate the effects of the other parameters on the
execution rate and performance gain of Avid execution, one program (M88ksim) was simulated
with varying w, p, and k, as explained below.
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(a)  Compress95 (b)  Gcc

(c)  Go (d)  Ijpeg

(e)  Li (f)  M88ksim

(g)  Perl (h)  Vortex
Figure 14:  SpecInt95 simulation results (for w=40). The graphs describe the average execution rate (R) as
a function of prediction accuracy (p), with Avid execution depth (k) as the parameter.

Figure 15 shows relative performance compared to k=0. Both graph show that doubling pipeline
width from w=40 to w=80 results in much less gain than when going from w=20 to w=40. As the
width increases, more instructions are executed concurrently. This  leads to higher branching rate,
and consequently to higher frequency of mispredictions and the resulting penalty. Careful
observation reveals that k=2 provides better performance than k=1 only up to p=76% for w=20
and w=40, but in the case of w=80, k=2 remains preferred up to p=88%. Similar behavior was
observed for the other traces simulated, where the ‘switch’ between the performance gains of
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Figure 15(a) : M88ksim simulations with
Avid depth k=1 and varying width w.

Figure 15(b) : M88ksim simulation with
Avid depth k=2, and varying width w.

Figure 16(a) : M88ksim simulations with
a short pipeline

Figure 16(b): M88ksim simulations
imitating high Avid depth (k) by means of
very short misprediction penalty

k=0,1,2 occurs at different prediction accuracies, depending on the processor width.

Kin does not have a pure pipeline structure, but the units in it may be viewed abstractly as pipeline
stages. By changing relative timing of the units we could change the pipeline effective ‘depth’, and
affect the misprediction penalty. Figure 16(a) shows the simulation of such a short pipeline (lower
misprediction penalty). Although the execution rates increase because of the lesser stall on each
misprediction, the performance increase gained by Avid execution remains relatively the same
(comparing relative performance).

Due to some technical limitations of the simulator, we have simulated the effect of very deep Avid
execution (high k) by using a very short pipeline (2 stages deep). Fig. 16(b) shows growing
execution rates, thanks to reduced misprediction penalty, and Avid execution results in a
substantial performance improvement of 25% at p=88%, and up to 80% improvement for lower
prediction accuracies.

Another interesting effect of Avid execution found in the simulations relates to the total number
of instructions fetched from memory. In several cases k=1 actually resulted in less instructions
being fetched, since k=0 had to flush many instructions. Thus, Avid execution not always results
in an increased memory bandwidth.

We have only implemented and simulated a fixed Avid depth. It indicates however that better
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performance can be achieved when an adaptive Avid depth is used, based on the prediction
accuracy and confidence of each branch, as discussed in Sect. 3.3.

6. Conclusion

We have introduced, analyzed, and simulated Avid execution, which improves older methods of
speculative execution. When more resources are available than can be effectively utilized to
execute serial code, Avid execution prefetches and executes non-predicted paths, in preparation
for any imminent misprediction. The depth of Avid execution may be adjusted dynamically
according to prediction confidence. We have introduced the Dynamic Instance Tag (DIT) to
uniquely define a path, and defined a set of operations on the DIT to insure that useful
computation is executed and useless computation is discarded. Avid execution applies pathmarks
and pruning to execute instructions from many paths as soon as their operands are ready, but stop
executing the remaining instructions on a path as soon as it is known that it will not be taken. We
have simulated a fixed Avid scheme, and have discussed other alternatives for future research.
Simulations show that Avid execution can achieve performance improvement close to 100%,
depending on many factors such as the accuracy of branch prediction and the instruction level
parallelism inherent in the program. The simulations further validate the mathematical analysis.

Further discussion of Avid execution, its effect on computer architecture, and features such as
extending it to multi-execution, are included in [Kol97].

Asynchronous architectures (such as Kin) are best suited for Avid execution, because of the
complex design and the great variance of computation loads. Avid execution is designed in the
context of very large processors, such as predicted for another 15 years. 
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