Adaptive Synchronization for Multi-Synchronous Systems

Rakefet Kol and Ran Gino$ar
VLSI Systems Research Center, Electrical Engineering Department
Technion - Israel Institute of Technology, Haifa 32000, Israel
rakefet@techunix.technion.ac.il

) On Sabbatical leave at Intel Corp., Hillsboro, OR

Abstract

Synchronizers and other methaday become ineffectivior high performance systems implemented at
future technologies, operating at clock frequencies above 1GHz . As a transition from fully synchronous to
fully asynchronous implementations, such a system can be implementetulissynchronousystem,

wherein a common clock is distributed over thin wires, avoiding the massive power investment needed for
phase matching arskew minimization in clocklistribution networksAdaptive synchronizatioreduces

the probability of synchronization failures. In contragth methods like clockstretching, adaptive
synchronization adjusts data delays. The stationarityicf and logic delays igxploited to contain
asynchrony. We show that adaptive synchronization is more widely applicable to high performance systems
than other synchronization methods. Training sessions are devised to minimize adaptation overhead.

1. Introduction

This paper appliesome asynchronous concepts to futuceletd high performancehips, in order to
overcome certain limitations of synchronous design.

With the advent of VLSI technology, chips grow larger and run faster. Over one half billion transistors on

a die and clock ratesell above 1GHare predicted for the ye@010[KG97, SIA94 / SIA97]. But this

dramatic progress also poses a new challenge: Signal propagation delays over clock and data lines increase
substantially, both in absolute terms and relative to the clock cycle, and relative delay variations increase as
well. Thus it will become increasingtiifficult to employ present synchronous design methodology in future

high performance chips, and a little asynchrony may help meet this challenge.

The issue of increased delays is manifestdabih clock anddata linesWhile the electromagnetic field
travels in vacuum at the speed of light (c = 30 nifdd pSec, in VLSI terms), the electric signals inside
chips progress abodD-100xslower, depending on drive strength and on the capacitive load lofishe
Assuming c/20 signdtlock anddata) propagation speeds and chip size of 25-35mm in 2010 technology
[SIA94], typical signalswill require 2.5-3.5nSec to cross the chip end-to-end. In a chip clocked at 2GHz,
about 5-7 clock cycles may be required for signal propagation alone. The electrically lumped circuit model
on which synchronous design is based does not holchars;, and the chip should be treated as a distributed
system.

At present, clocks are typically distributed over high power, balanced, skew-free distribution networks, which
mask the clock propagation delays. This is very costly, as a growing portion of total power is dissipated by
the clock distribution network, including the phdgek loops, buffers, and tuning circuits [Fri95]. For
instance, in 1995 it was reported that over 40% of the power budget of the Alpha chip were consumed by the
clock distribution network in order teeduce clock skeyproblems [Bow95]. However, if data transmitted

from one module cannot be instantly received at another module, then investing substantial area and power
resources in minimizing skew is questionable. In addition, increasing delay variations make it less feasible
to produce skew-free clocks.

2

Delay variations on data and clock lines can be sorted into three categories: Skew, jitter and drift. Skew refers
to spatial variation, while jitter and drift are temporal. Skew represents in-die delay variations which are due
to variations in physical attributes such as threshold voltage, oxide thickness, and geometric dimensions and
fabrication parameter§kew may easily reach one or more clogkle times in largefast chips. Jitter
represents cycle-to-cycle variations of the same delay path, mainly due to fast changes in supply voltage and
in temperature and to cross talk. Fortunately, jitter in CMOS circuits is typically limited to less than 10% of
the clock cyclagime, and this stability is expected to sustain for some time in the future. Drift is similar to
jitter, but it relates to changes in supply voltage and in temperature that accumulate very slowly, and can be
noticed only after millions of cycles or more. Similaskew, drift can grow into delay variations many times

larger than the clock cycle time. The 'asynchronooskisig methodology discussed in this paper is designed

to accommodate jitter and overcome skew and drift. Chips are designed such that skew does not matter, jitter
can be safely ignored, and drifts are compensated for by adaptive circuits. We éhst gedelays are
stationary, in the sense that they can be considered fixed over long periods of time, and when they do vary
(drift) the circuit adapts to the changes.

Asynchronouslesign is often proposed as a viable solution for high performance processors, removing the
clock altogether [DGY93, Hau95, Kol97, Pav94, SSM94, Mar97]. The other approach is to divide a large
clocked chipinto multiple smaller clock domains, each wits own skew-free clockThe modules
communicate over asynchronous channels, and each channel must benizedtat every input to a clocked
module [Keh93, Sei945re95, PN95]. In this paper we introduce thelti-syncclocking methodology and
theadaptive synchronizatiomogether they provide superior operation over other known methods, and for
substantially less power.

1.1. Previous work

Synchronizers have traditionally been emploj@dcommunications among modules with uncorrelated
clocks. Alternative methods that have been proposed include ditetclwacks and clock tuning. Self-clocked

data transmission is used for both high and low bandwidth communications, such as Manchester coding on
Ethernet [MB76], source synchronous transfer in cache-CPU buses [CM97], and start/stop bits on RS232
serial communications.

The synchronization problem has received a lot of attention [Cha87, CM73, CW75, Gre95, Keh93, Mar81,
Pec76, PN95, RMC+88, Sei80, Sei94, Sto82, Vee80, YD96]. Solutaresbeen developed fomade

range of applications, from intra-chip communications to wide area networks. As technology progresses the
integration levels and computational speeds increase, and systéamsused to requirenulti-board
implementations are expected to fit inside single chips. Likewise, the synchronization methods that were once
applicable to backplanes and multiple boards should now be considered for the inner circles of chips.

Synchronizers are principally suitable fow bandwidth communications, and a number of issues render
them less effective in high performance chips. First, synchronizers may occasionally fail due to metastability
[CM73, CW75, Mar81, Pec76, Sto82, Vee80]synchronizer might enter a metastabiate, or take
abnormally long time tgettle. While the probability of failure has been kept very low, this is exponentially
more difficult to achieve when the cycle time becomes aggressively shorter (as described below in Sect. 5).
Second, in high performansgstems, modules may receive many data inputs concurrently from many other
modules and at high rates; consequently, the probability of at least one input switching at the same time as
the clock may grow beyond negligible levels. Third, synchronizers incur at least one clock cycle delay; this
may lead to unacceptable long latencies accumulating over multi-muathigand be especially limiting

on cyclic paths such as between a reservation station and the execution units of a high performance processor.

Stretchable (or stoppablelpcks [Cha84, Cha87, Pec76, RMC+88, Sei80, YD96] have been proposed as

3

an alternative to synchronizers. A ring-oscillator badedk generator isittached to each synchronous
module. An arbiter detectdock/data conflicts and stretches the 'off' phase of the clock (thus trading failure
for a long delay). Stretchable clocks are subject to two drawbBoks. the multipleclock generators
typically develop frequency variations, due to temperature and supply voltage in-die variations. As a result,
relative inter-module phase shifts drift continuously, causing frequent recurrences of conflicts. Second, as
with synchronizers, high bandwidth communications received over many channels increase the probability
of clock/data conflicts. This fact leads tohagh rate ofclock stretching events, severely impeding
performance.

Many othervariations have also been proposed. [Keh93] suggksts (phase and frequency) tuning for
performance enhancemef8ei94] hides some synchronization latency by inter-module FIFO buffers; the
main drawback is the latency required. The STARI protocol also employs asynchronous FIFOs to achieve
synchronization at the cost of large latency [Gre95]. Synchronization is achieved on the first data transfer,
and is automatically maintained thereafter. The FIFO must be kept about half fldhamnihsertion and
removal operation must complete wittone cycle. Ifthese requirements are violated (e.g., on FIFO
underflow), synchronization is lost, and the system has to be restarted. [PN95] employs analog adjustable
clock generators, achieving local self-alignment of all clocks. Unlike clock adjusting methods ([Keh93, PN95,
and stretchable clocks), our proposed method adjusts data delays rather than the clocks.

1.2. Multi-Synchronous Systems

A multi-synchronous systemjsesented in Fig. 1. The common clock is distributed over thin wires (saving
area and power, compared to minimal skew clock distribution networks). While clock frequency is the same
for all modules, the actual phase shiftscamesidered unknown. As explained above, these phase differences
are considered stationary over large time windows. Bawule contains a localock generatorwhich
amplifies the clock and distributes it internally with minimal skew. Thus, each module operates internally as
a traditional synchronous circuit, but asynchronously to all other modules.

Consider modules andB in Fig. 1, which are tightly coupled over an asynchronous channel without a FIFO,

for low latency high bandwidth communication. Similar to clock delays, the datadjglésyalso stationary

and is considered unknown. ModAlgenerates output transitions op D at a fixed phase difference relative

to its own clock ¢ . The data propagate to mo@jlehich sample®ataRdyon the rising edge of its own

clock G, . New data are sent over fréo B at a high rate, e.g., on almastery clock cycle. Since the

relative clockphase differenca ,-Ag of modulesA andB is presumed unknown, the data may arrive at
simultaneously with the risingdge of clock € , creatingdock/data conflict and possibly resulting in a
metastable state at the inpuBpfind in loss of data. If the relative clock phases and data delays remain fixed
(stationary), and since both modules operate at the same clock frequency, this unfortunate situation is most
likely to recur. Clearly, the incomindata must be synchronizedth C; at the input tdB. A regular
synchronizer is unsuitable, because the synchronizer may enter a metastable state on every repeated conflict.

Most synchronization methods assume that the arrival (switching) time of data at any module is uniformly
distributed over the clock cycle, as in Fig. 2(a). However, in multsysiems, the arrival time of certain data
channels incident upon a certain moduiay bedistributedunevenly, e.g., as in Fi@(b). When one
synchronous moduteutputs data to another, data output is synchronized with the local clock of the sender.
Since the phase difference between the receiver and sender clocks, as well as the data interconnect delay, are
stationary, data arrival time at the receiver is correlated with the receiver clock. However, in systems with a
high degree of connectivity the combined distribution of all channels incident upon a specific module looks
more like Fig. 2(c), and the danger of clock/data conflicts cannot be ignored.

Probability Probability Probability
D Oas A
A ‘ DataRdy
Module \{l% Module vr
T >
A B T t T t T t
Ack @®@ ® ©
B e

Figure 2: Arrival time distribution of inputs (over
Cs A Cs a clock cycle T): (a) uniform distribution
A AB

‘ ‘ (asynchronous input);(b) clustered distribution

whenthe sender and receiver clocks are correlated

clk (single synchronous input); (ccombined
. . distribution of many independently correlated inputs
Figure 1: A multi-synchronous system. is similar to wuniform distribution (multiple

synchronous inputs).

The novel method we propose adjusts data timing (rather than the clock), thus converting data arrival time
distributions into forms like Fig(b) and substantially reducing the synchronization problem. Section 2
further defines the method, and a sample adaptive synchiamigituit is described in Section 3. In Section

4 we propose that the adaptive synchronization be performed semi-statically, adapting various data delays
from time to time. The method is statistically analyzed in Section 5.

2. Data Adaptive Synchronization

Data adaptive synchronization adjusts the delays on the data lines instead of adjusting the local clock phase.
Since the communication channels are connected point to point, the delays on them can be changed so that
they do not conflict with the local clock, without affecting the other channels (this approach also applies to
bus taps). We add a data coordination circuit for each communication channel, as in Fig. 3(a). When a conflict
is detected, the data delay is adjusted to prevent conflicts in future communications.

Note thatthree different phases are assumed stationary imtiftésync model (Figl): Theclock phase
differenceA ,-A;, the sender data phasg D, -C , and the delay 5,5 . Consequently, the phase of the
arriving DataRdyat moduleB relative to G is also stationary. In other words, the arrival time distribution

is represented in thimodel by Fig2(b), and is highly non-uniform. We take advantagehis fact and

control data delays so as to assure that the center of this distribution is safely remote from the clock transition
for every data line in the system. This is achieved by tuning the dataddglay

The adaptive mechanism architecture for a specific module is shown in Fig. 3(a). Data input channels D are
subject each to given data deldygref. .5 in Fig. 1). Adaptive synchronization circuits A, clocked by the

local clock CK, , monitor th®ataRdy lines, and control adjustable dakelays,, whose value is in the

range O< A, < T (T is the clock cycle). The function of the A circuits isséparate thelock anddata
transitions. The multiple input delays can be adjusted independemthclofother, so the combinddta

arrival time distribution at the entry to theodule looks like Fig3(b). Adaptive synchronization applies
equally well to single sender, multiple receivers buses (Fig. 4).

61 Dy Al
—C D
DataRdy1
Ai
o CKin
® [[
) | |
™ Dm A.m
DataRdym [[
. An | |
I ! ¥
Ack CKin
—C D
@ (b)

Figure 3: (a) Adaptive Synchronization; (b) Combined data arrival time distribution — data delays are
adjusted to avoid conflicts.

R1 Rk

Figure 4: Adaptive Synchronization for single sender,
multiple receiverbuseseach receiveadjusts its own
data input.

3. Data Adaptive Synchronization Circuit

The principles of adaptive synchronization resemble self-clocking communication mechanisms, such as in
UARTSs. The challenge is tobtain proper operatioaven at the presence mietastability. Consider the
adaptive synchronization circuit in Fig. 5, with an adjustalelay (Fig.6). A four-phase data signaling
discipline is assumed, wher@ataRdyrises to ‘1’ after the new data are available (the circuit may be readily
extended to two-phase operation as well). The receiving module latches the inputs upon the positive edge of
its local clock, and only iDataRdyis ‘1'. Thus, the purpose of the adaptive synchronization circuit is to
detect the phase BlataRdyrelative to the local clock, and to adapt thelelay if that phase is dangerously
closetoOor T (R).

Di A ‘
‘ —CD
Data < !
MUX >
 SE—
Max :
Finder]
—C b
Clock | Select
Figure 5: Adaptive Synchronization Circuit. Figure 6: Adjustable delay circuit, consisting

of multiple delay lines and a selector.

First, theDataRdyline is fed into a statistical phase detector. Let's assume thaata&dylines switch (up

or down) on every cycle. l[iKeh93], several delaygohases of thelock are used to detect data transition

time. In Fig. 5, several delayed versions of the data are employed insteadRId@tes generate a sequence

of pulses, as in Fig. 7. The delays marked ‘d’ assure a small pulse overlap. The outputerbétes are

the enable signals of counters which are triggered bgdhedlock edge. On the rising edge of the clock, one

or two of the counterimcrement their count. This is repeated for a large number of cycles, e.g., 1000 times.

At the end of that time, the counters are expected to show a distribimilar to either Fig. 8(a) or Fig. 8(b).

In either case, two or three counters show large counts, and the remaining ones are close to zero. The spread
is caused by pulse overlap, bpck and delayitter, and by pulse/clock conflictwhich mayresult in
metastable states, in longtéey times, and in indeterminate counting. In spite of such physical difficulties,

the statistical phase detector is robust thanks to many repeat counts, and it produces a very clear indication
of the relative phase of thgataRdyline. The circuit in Fig. 5 is similar to delay lock loop (DLL) circuits,

except that the proposed circuit is digital rather than analog, and its operation is algorithmically controlled.
Other types of phase detectors may also be employed.

Next, theMaxFindercircuit determines, according to which counter has won, ik tlielay of the data lines
should be changed, and by how much. For example, thedspinted in Fig. 8(a) indicates no change, while
that of Fig. 8(b)alls for adding alelay of aeast T/5.The adjustableelayconsists of multiple parallel
delay lines and a selector (Fig. 6). Notice that although the phase detector examinesatiyRidgline,

A; is applied to all data lines of tiféh channel.

Although the examples present circuitstfee case where the clock cycle is divided into five periods, at high
frequencies it might be simpler to implement using only three such periods (since the clock cycle time may
be only a fewgate delays long). The circuit complexity of a proper adaptive synchronization circuit, for a
32-bits data path, is approximateBy000 transistor§comprising the delaysxor gates, counters,
comparatorsand switches in th&laxFinder circuit, and the adjustablgelay circuits).Thus, the total
overhead per a 5Nftansistormodule with 10input channels is abo®0,000 / 5M = 1%recall that it
replaces a massive clock distribution network). The extra power consumption is similarly marginal.

Adaptive synchronization is suitable forvéde range of applications. Typical datelay range is

0.1T <9, < 1.5T for a 0.5B transistors, 1GHz chip, but the delay may be much larger than T for multi-chip
and MCM configurations. In such cases, new asynchronous data signaling methods could be used, such as
multiple message windows (wherein multiple messagesent before an acknowledge is expected). As long

as relative delays are stationary, adaptive synchronization remains applicable.

‘ ‘ ‘ A A

(N A A

P2 imm I I

Ps e S T e EES N B

S S TS S o BN B H

Ps mml mml r] , »
12345 12345

Clk44 \ \ \ \ L
| | | @ ®)

Figure 8: Typical phase detection counter outputs:
(a) data transition is &y within the cycle; (b) data
delay should be increased to avoid clock/data
conflicts.

Figure 7: Phase detection waveforms.

4, Training Sessions

Adaptive synchronization may be performed continuoushaiiallel with normal circuit operation. However,
modifying the data delays may cause timing problems at the time of change, so this is best carried out while
the system is not performing any real task. In addition, during normal operation it cannot be guaranteed that
all DataRdylines switch frequently enough. And continuous adaptation may be unnecessary if all delays are
highly stationary and stable.

Consequently, special training sessions are proposed for adaptive synchronization. During a training session
the systenstopsperforming all real computations. Instead,éditaRdylines are toggled every cycle, and

all adaptive synchronization circuits operate and adjush tbelays. Any synchronization failures during

a training sesion can obviously be ignored. The training session requires a relatively small number of
counting cycles. Since all gotive synchronization circuits operate in parallel, 100,000 clock cycles (0.1mS

at 1GHz) seems a safe bound on the required session duration.

A training sssion is always employedter reset, for initial adjustment of all delays. Thereafter, training
sessions can be invoked either periodically or as required. Periodical training frequency depends on process
parameters (especially delatability) and operational parameters (suclelask frequency and dynamic
temperature and voltage variations), but it is estimated that at 2010 technology much less than one training
per second ilf be required. The expected performance overhead is thus much less*han 10 cycles / 10 Hz
= 0.01%.

Training sessions are also proposed in [SCI92], wherein a point-to-point communication ring architecture
is defined. Training sessions are utilized to sgmtpackets at ringlet initialization, and once every time
interval appropriate for normal operation of the particular implementation. Clock skew in [SCI92] is handled
(using Phase Lock Loop circuits) by observing incoming clock and local clock phases.

Significant temperature and voltage variations may be sensed on-chip by special sensors in order to invoke
a training sessiowhen aproblem seems imminent. Alternatively, the adaptive synchronization circuits
themselves may be modified &zt as the sensors. dfiy such circuit detecthat any switchingphase

8

approaches 0 (or closer than some safety threshold, a hardware interrupt is invoked to start a training
session. In addition, a training session can also be triggered when a higher level logic (or software) detects
a synchronization or communication failure. A similar tuning idea is used in [Keh93].

5. Probability of Synchronization Failure

In this section we analyze the failure probability of the adaptive synchronization (A/S), and compare it to
synchronizers.

Synchronization failure might happen at a training session, failing the delay adaptation process and causing
the system to fail, or during regular operation, after a successful training. Failures during training sessions
do not affect system operation, and might only cause the training itself to fail. These synchronization failures
can happen in the phase detection circuit (Fig. 5), when one of the counters enters a metastable state while
incrementing its count, due to marginal triggering. Since a training session takes many cycles, the counters
are allowed sufficient time to resolve any metastability before their outputs are read. Thus, the probability
of failure of the training session is practically zero. After a successful training session, all delays are adapted
properly so that data are expected to arrive at a module around the middle of the local clock cycle, and avoid
synchronization failures. However, due to possible jitters in clock phase and line delays, the data arrival time
might randomally change from cycle to cycle, and become dangerously close to a clock edge.

The system model for the failure analysis is described in Fig. 9. The phase of the clock aBiwdffected

by the delay along the clock tfisution network from the clock source to modBleData sent from module
Awill arrive at noduleB with a phase affected by the delay of the clock signal to médtite internal logic
delay from clock edge tdata output, and data propagataeiay tothe input ofB (Fig. 9(a)). We assume
normally distributed jitters, and define two random variables with normal (Gaussian) distridyaonX,,
representing the phases of the clock and data at nigddspectively. X, = N(l,,0) is normally distributed
with mean p (equal to the clock cycle time T) and standard devigti@aused by jitter effects). Without
loss ofgenerality, we take the phase of teck to be 0 (i.e., &T), since we arenly interested in the
relative phase of data to clock, and cyclically the phasekgRan integer)X; = N(py,04), wherein |4 is
the expected arrival timgithin a clock cycle. After a training sessiog, i is expected to be at the middle of
the clock cycle, i.e., 1 = T/2, assumiXgs centered on 0+ik (see Fig. 9(b)). Note thag, is actually a sum

of three normallydistributed variables, so itariance §?,) is calculated as the sum of three variances.
Assumee is the time window within a clockycle (Fig. 9(c)) inwhich data must be stablgenerally
considered to be the setup-and-hold period) to avoid metastability.

Gate Delay [pSec]

1000
Module A Module B 900 T
o TS 800 T
} Q | } : ACS Failure 700 ¥
PO Lo ps _
LR LA X 600
' AA . \ e 500 T
- Mo e TR 400 7
ik He ¢ 300
% 200 T
@ (b) © 100 . .
Figure 9: Model for analyzing synchronization 0 '
failure 0 1000 2000 3000 4000

Clock Fregency [MHz]

Figure 10: Gate delay vs. clock frequency.

When using a synchronizer, there is no knowledge of thedatal time, so uniform arrival time distribution

is assumed. Once a synchronizer has entered the metastdablethe probability that will still be
metastable some time later has been shown to be an exponentially decreasing function [Cha83, RC82]. The
probability of synchronization failure of a synchronizer is given by

o
T

(1) Pfailure(Synchronizer) - P[meta |t-0] x P[meta |t-(u -€)] - £ xe

He

It equals to the probability that a synchronizer which enters a metastable statete}jratdll remains in
the metastable state at the time its output should be statdeplirey in the next clock cycle. The parameter
1 is the exponential time constant of the decay rate of the metastability (discussed below).

The failure pobability of adaptive synchronization is the probability that the values dafvtheandom
variablesX, andX, are too close (withig) to each other, i.e., the data switch too close to the clock edge. This
probability can be calculated as the probabiligt arandom variable, equals to the difference of the two
random variables, has a value in the forbidden range:

(2) Pfailure(A/S) - Pl-es(X-Xp<e] + P[-es(X X)<¢€]

Note that the normal distribution of the difference random variable spans beyond [0,T], and because of the
27 cycling, X, should be considered ldth 0 and TSince we assume norniiktributions,each of the
probabilities in Eq. 2can be calculated by the Gaussian function, with the proper parameters [Pap91], e.g.,

< PLesr, xpedl - G[w] _ G[M]
2 2 2 >
m 00* Gd

The value of the Gaussian function is determined by the error furetf¢x), whose value can be obtained
by theERF(x)function with parameter transformation:

(4) G(x) - % erf(x); erf(x) - %ERF (x/y2)

Technology is defined by the gate delagich also limits the highestlock frequencythat can be used.

However, the clock frequency increases faster than the gate delay decreases, as can be observed from Fig. 10
(based on data from [KG97, SIA94, Wei96]). Since gate delay does not scale linearly with frequency, less
gate delays are available in a clock cycle time, as frequency rises. The probability of failure goes up because
the clock cycle time T(=u) shrinks faster thafihe settling window). To compare the failure probabilities,

we assume the following model: The metastability windowidth is assumed to be equal to a gate delay,

the parameter is taken as 1/3 of a gate delay, and the jitter (which equalis Balf a gate delay (and no
morethan 15% othe clock cycle). Figure 11 presents a logarithmic graph comparing the synchronization
failure probabilities of a synchronizer relative to the A/S scheme.

10

For high communication bandwidth (e.g., almegtry cycle), the mean time betwdaitures (MTBF) is
given by
1

(5) MTBF -

Pfailure * f c

The failure probabilities required txhieve arMTBF of once a year and once a minute atwhgous
technologies are also presented in the graph. As can be observed from the graph, using a synchronizer can
be practical for lower frequencies, but as clock frequency increases, the synchronizer has less time to resolve
and the probability of failure rises rapidly. Using a sequence of synchronizers decreases the failure
probability, but increases the latency affdcts performance. Note also that the failure probability presented

is of a single synchronizer, and since many synchronizers are re(airederybit in everybus between
modules), thdailure probability is worse than drawn on the grayMinen synchronizers fail to deliver a
flawless operation at higher frequencies, A/S still applies. The zero values of A/S failure probability cannot
be plotted on the logarithmic graph. The inter-moaloek jitter will be the limitingfactor on maximum

clock frequency irA/S scheme. At even higher frequenciebenA/S fails, it can be used together with a
synchronizer, to decrease the probability of the synchronizer entering a metastable state. Beyond a certain
technology €.g., when the jitter is more than 15% of the clock cycle), all synchronization methods fail, and
the only solution is to use a complete asynchronous design, with asynchronous communication.

Technonolgy

10MHz 100MHz 1GHz 10GHz
1.00E-01 " }
1.00E-06 1
LOOEAL b
© 10E16F = " = mrmm e e ..
= 100E-21 {
B 1.00E-26 T
%5 L100E-31
=, 100E-36 +
2
= 100E-41 1 — Synchronizer
8 100461 |- - ws
g 1.00E-51 1 — . = MTBF=1/year
E 1.00E-56 T - - - - MTBF=lminute
1.00E-61 1
1.00E-66
Figure 11: Probability of synchronization failure.
6. Conclusions

The technological constraints applicable to future large and complex iomihg at least partially
asynchronous operation. A single clock is either impractical or impossible for such very high performance
chips, e.g., as predicted by the SIA technology roadmap for the year 2010 (over 0.5B transistors operating
at overlGHzclock) [SIA94 / SIA97]. We have presented an adaptive synchronization solution for multi-
synchronousystems. Multi-synchronous architectures (locally synchronous, globally asynchronous) could
be a viable alternative to fully asynchronous designfddies on common clock multi-synchronous systems,
wherein a singlerystal clock isdistributed over minimal area and minimal power networkghaball

modules operate on the same clock frequency but at unknown phase differences.

We have presented a novel adaptive synchronization method, addressing multisync systems. While most
previously proposed methods manipulate the clock, adaptivesgizdtion adjusts data delays. The method

11

exploits the high stability of delays and the stationarity of most relative phases. Data timing is dynamically
adjusted to avoid clock/data conflicts. The probability of synchronization failuedusedsubstantially.

Timing adaptation can be limited to special training sessions (as commonly practiced in data communication
networks). Thus, the synchronization monitoring circuits are kept off the cpathts.The adaptation

circuits incur only marginal overhead in area, power and performance. A study of alternative methods (such
as synchronizers and stretchable clocks) shows that they may not be as usable as adaptive synchronization.
In contrast with fully asynchronous architecture, multisync design with adaptive synchronization allows the
continueduse of existinknow-how in synchronous design. Asynchronaspects arémited to system
architecture and some circuit design, while the majority of the chip can be designed in synchronous
subsystems.

References

[Bow95] W. J. Bowhill, et. al., “Circuit Implementation of30-MHz 64-bitSecond-generation
CMOS Alpha CPU, Digital Technical Journal7(1), pp.100-115, 1995.

[Cha83] T. JChaney, “Measured Flip-Flop Responses to Marginal TriggerlBgE Trans. on
Computers32(12), pp. 1207-1209, Dec. 1983.

[Cha84] D. M. ChapiroGlobally-Asynchronous Locally-Synchronous Systdthg) thesis, Dept.
of Computer Science, Stanford Univ., 1984.

[Cha87] D. M. Chapiro, “Reliable High-Speed Arbitration and Synchronizati&tE Trans. on
Computers36(10), pp. 1251-1255, Oct. 1987.

[CM73] T. J. Chaney and C. E. Molnar, “Anomalous Behavior of Synchronizer and Arbiter
Circuits,”IEEE Trans. on Computerg2(4), pp. 421-422, Apr. 1973.

[CM97] M. Choudhury and J. Miller, “A300MHz CMOS Microprocessowith Multi-Media
Extensions,’Proc. ISSCC'97

[CWT5] G. R. Couranz and D. F. Wann, “Theoretical and Experimental Behavior of Synchronizers
Operating in the Metastable RegiotEEE Trans. on Computer24(6), pp. 604-616,
Jun. 1975.

[DGY93] l. David, R. Ginosar, and M. Yoeli, “Self-Timed Architecture of a Reduced Instruction Set
Computer,” inAsynchronous Design Methodologi&s,Furber and M. Edwards editors,
IFIP Transactions Vol. A-28, Elsevier Science Publishers, pp. 29-43, 1993.

[Fri95] E. G. Friedman, edito€lock Distribution Networks in VLSI Circuits and SystelfBEE
Press, 1995.

[Gre95] M. R. Greenstreet, “Implementing a STARI chipC'CD’95, pp. 38-43, 1995.

[Hau9s] S. Hack, “Asynchronous Design Methodologies: An OvervieRrdc. IEEE 83(1),
pp. 69-93, Jan. 1995.

[Keh93] T. Kehl, “Hardware Self-Tuning and Circuit Performance Monitoring;CD’'93,
pp. 188-192, 1993.

[KG9I7] R. Kol and R. Ginosar, “Future Processatit be Asynchronous (sub-titléin: A High
Performance Asynchronous Processor Architecture),” Technical RepoRUBZ202
(EE PUB#1099), Department of Electrical Engineering, Technion, Israel, Jul. 1997.

[Kol97] R. Kol, Self-Timed Asynchronous Architecture of an Advanced General Purpose
Microprocessoy PhD thesis, Dept. of Electrical Engineering, Technion, Israel, 1997.

[Mar81] L. R. Marino, “Generalheory of Metastable OperationEEE Trans. on Computers,
30(2), pp. 107-115, Feb. 1981.

[Mar97] A. Martin, et al, “The Design of an Asynchronous MIPS R3000 Microprocessuot.
Advanced Research in VL.Sept. 1997.

[MB76] R. M. Metcalfe and D. R. &3gs, “Ethernet: Distributed paclstitching for local computer

networks,"Comm. ACM.19, pp. 395-404, Jul. 1976.
[Pap91] A. Papadlis, Probability, Random Variables, and Stochastic Proces3es edition,

[Pavo4]
[Pec76]
[PN95]
[RC82]
[RMC+88]
[SCI92]
[Seig0]
[Sei94]
[SIA94]
[SIA97]
[SSM94]
[Sto82]

[VeeB0]

[Wei96]

[YD96]

12

McGraw-Hill, 1991.

N. C. PaveiThe Design and Implementation of an Asynchronous Microprocd3sor,
thesis, Dept. of Computer Science, Univ. of Manchester, 1994.

M. Pechacek, “Anomalous Response Times of Input Synchroniz€&E Trans. on
Computers25(2), pp. 133-139, Feb. 1976.

G. A. Pratt and J. Nguyen, “Distributed Synchronous ClockIBd;E Trans. on Parallel
and Distributed System&(3), pp. 314-328, Mar. 1995.

F. U. Rosenberger and T. J. Chaney, “Flip-Flop Resolving Time Test CitE&E"J. of
Solid-State CircuitsSC-1714), pp. 731-738, Aug. 1982.

F. U. Rosnberger, C. E. Molnar, T. J. Chaney, dndP. Fang, “Q-modulesnternally
clocked delay-insensitive module$EEE Trans. on Computer87(9), pp. 1005-1018,
Sep. 1988.

IEEE std 1596-1992EEE standard for Scalable Coherent Interface (SC992.

C. L. Seitz, System timing, in C. A. Mead and L.Qanway, Introduction to VLSI
SystemsCh. 7, Addison-Wesley, 1980.

J. N. Seizovic, “Pipeline SynchronizatioRfoc. Int. Symp. on Advanced Research in
Asynchronous Circuits and Systemp. 87-96, 1994.

SIA, The National Technology Roadmap for Semiconduct&894 (See also:
http://www.sematech.orh/public/roadmap/indexntm

The 1997 SIA Temnology Roadmagill be published in Dec. 1997, and will predict up to
10GHz clock by 2012. We will cite it in the final paper instead of the 1994 edition.

R. F. Sproly I. E. Sutherland, and C. E. Molnar, “The Counterflow Pipeline Processor
Architecture,”|EEE Design & Test of Computer&1(3), pp. 48-59, Fall 1994.

P. A. St, “How to Avoid Synchronization ProblemsYLSI Design pp. 56-59,
Nov./Dec. 1982.

H. J. M. Veendrick, “The Behavior of Flip-Flops Used as Synchronizers and Prediction of
Their Failure Rate,JEEE J. of Solid-State Circuitd5(2), pp. 169-176, Apr. 1980.

U. Weiser, “Future Directions in Microprocessor Design,” Invited lecture, presertad at
Int. Symp. on Advanced Research in Asynchronous Circuits and Systems (Async’96)
Mar. 1996.

K. Y. Yun and R. PDonohue, “Pausible Clocking: Rirst Step TowardHeterogeneous
Systems, ICCD’96, pp. 118-123, 1996.

