
Adaptive Synchronization for Multi-Synchronous Systems

Rakefet Kol and Ran Ginosar(*)

VLSI Systems Research Center, Electrical Engineering Department
Technion - Israel Institute of Technology, Haifa 32000, Israel

rakefet@techunix.technion.ac.il

On Sabbatical leave at Intel Corp., Hillsboro, OR(*)

Abstract

Synchronizers and other methods may become ineffective for high performance systems implemented at
future technologies, operating at clock frequencies above 1GHz . As a transition from fully synchronous to
fully asynchronous implementations, such a system can be implemented as a multi-synchronous system,
wherein a common clock is distributed over thin wires, avoiding the massive power investment needed for
phase matching and skew minimization in clock distribution networks. Adaptive synchronization reduces
the probability of synchronization failures. In contrast with methods like clock stretching, adaptive
synchronization adjusts data delays. The stationarity of wire and logic delays is exploited to contain
asynchrony. We show that adaptive synchronization is more widely applicable to high performance systems
than other synchronization methods. Training sessions are devised to minimize adaptation overhead.

1. Introduction

This paper applies some asynchronous concepts to future clocked high performance chips, in order to
overcome certain limitations of synchronous design.

With the advent of VLSI technology, chips grow larger and run faster. Over one half billion transistors on
a die and clock rates well above 1GHz are predicted for the year 2010 [KG97, SIA94 / SIA97]. But this
dramatic progress also poses a new challenge: Signal propagation delays over clock and data lines increase
substantially, both in absolute terms and relative to the clock cycle, and relative delay variations increase as
well. Thus it will become increasingly difficult to employ present synchronous design methodology in future
high performance chips, and a little asynchrony may help meet this challenge.

The issue of increased delays is manifested in both clock and data lines. While the electromagnetic field
travels in vacuum at the speed of light (c = 30 mm / 100 pSec, in VLSI terms), the electric signals inside
chips progress about 10-100× slower, depending on drive strength and on the capacitive load of the bus.
Assuming c/20 signal (clock and data) propagation speeds and chip size of 25-35mm in 2010 technology
[SIA94], typical signals will require 2.5-3.5 nSec to cross the chip end-to-end. In a chip clocked at 2GHz,
about 5-7 clock cycles may be required for signal propagation alone. The electrically lumped circuit model
on which synchronous design is based does not hold any more, and the chip should be treated as a distributed
system.

At present, clocks are typically distributed over high power, balanced, skew-free distribution networks, which
mask the clock propagation delays. This is very costly, as a growing portion of total power is dissipated by
the clock distribution network, including the phase lock loops, buffers, and tuning circuits [Fri95]. For
instance, in 1995 it was reported that over 40% of the power budget of the Alpha chip were consumed by the
clock distribution network in order to reduce clock skew problems [Bow95]. However, if data transmitted
from one module cannot be instantly received at another module, then investing substantial area and power
resources in minimizing skew is questionable. In addition, increasing delay variations make it less feasible
to produce skew-free clocks.

2

Delay variations on data and clock lines can be sorted into three categories: Skew, jitter and drift. Skew refers
to spatial variation, while jitter and drift are temporal. Skew represents in-die delay variations which are due
to variations in physical attributes such as threshold voltage, oxide thickness, and geometric dimensions and
fabrication parameters. Skew may easily reach one or more clock cycle times in large, fast chips. Jitter
represents cycle-to-cycle variations of the same delay path, mainly due to fast changes in supply voltage and
in temperature and to cross talk. Fortunately, jitter in CMOS circuits is typically limited to less than 10% of
the clock cycle time, and this stability is expected to sustain for some time in the future. Drift is similar to
jitter, but it relates to changes in supply voltage and in temperature that accumulate very slowly, and can be
noticed only after millions of cycles or more. Similar to skew, drift can grow into delay variations many times
larger than the clock cycle time. The 'asynchronous' clocking methodology discussed in this paper is designed
to accommodate jitter and overcome skew and drift. Chips are designed such that skew does not matter, jitter
can be safely ignored, and drifts are compensated for by adaptive circuits. We also say that the delays are
stationary, in the sense that they can be considered fixed over long periods of time, and when they do vary
(drift) the circuit adapts to the changes.

Asynchronous design is often proposed as a viable solution for high performance processors, removing the
clock altogether [DGY93, Hau95, Kol97, Pav94, SSM94, Mar97]. The other approach is to divide a large
clocked chip into multiple smaller clock domains, each with its own skew-free clock. The modules
communicate over asynchronous channels, and each channel must be synchronized at every input to a clocked
module [Keh93, Sei94, Gre95, PN95]. In this paper we introduce the multi-sync clocking methodology and
the adaptive synchronization. Together they provide superior operation over other known methods, and for
substantially less power.

1.1. Previous work

Synchronizers have traditionally been employed for communications among modules with uncorrelated
clocks. Alternative methods that have been proposed include stretchable clocks and clock tuning. Self-clocked
data transmission is used for both high and low bandwidth communications, such as Manchester coding on
Ethernet [MB76], source synchronous transfer in cache-CPU buses [CM97], and start/stop bits on RS232
serial communications.

The synchronization problem has received a lot of attention [Cha87, CM73, CW75, Gre95, Keh93, Mar81,
Pec76, PN95, RMC+88, Sei80, Sei94, Sto82, Vee80, YD96]. Solutions have been developed for a wide
range of applications, from intra-chip communications to wide area networks. As technology progresses the
integration levels and computational speeds increase, and systems which used to require multi-board
implementations are expected to fit inside single chips. Likewise, the synchronization methods that were once
applicable to backplanes and multiple boards should now be considered for the inner circles of chips.

Synchronizers are principally suitable for low bandwidth communications, and a number of issues render
them less effective in high performance chips. First, synchronizers may occasionally fail due to metastability
[CM73, CW75, Mar81, Pec76, Sto82, Vee80]: A synchronizer might enter a metastable state, or take
abnormally long time to settle. While the probability of failure has been kept very low, this is exponentially
more difficult to achieve when the cycle time becomes aggressively shorter (as described below in Sect. 5).
Second, in high performance systems, modules may receive many data inputs concurrently from many other
modules and at high rates; consequently, the probability of at least one input switching at the same time as
the clock may grow beyond negligible levels. Third, synchronizers incur at least one clock cycle delay; this
may lead to unacceptable long latencies accumulating over multi-module paths, and be especially limiting
on cyclic paths such as between a reservation station and the execution units of a high performance processor.

Stretchable (or stoppable) clocks [Cha84, Cha87, Pec76, RMC+88, Sei80, YD96] have been proposed as

3

an alternative to synchronizers. A ring-oscillator based clock generator is attached to each synchronous
module. An arbiter detects clock/data conflicts and stretches the 'off' phase of the clock (thus trading failure
for a long delay). Stretchable clocks are subject to two drawbacks. First, the multiple clock generators
typically develop frequency variations, due to temperature and supply voltage in-die variations. As a result,
relative inter-module phase shifts drift continuously, causing frequent recurrences of conflicts. Second, as
with synchronizers, high bandwidth communications received over many channels increase the probability
of clock/data conflicts. This fact leads to a high rate of clock stretching events, severely impeding
performance.

Many other variations have also been proposed. [Keh93] suggests clock (phase and frequency) tuning for
performance enhancement. [Sei94] hides some synchronization latency by inter-module FIFO buffers; the
main drawback is the latency required. The STARI protocol also employs asynchronous FIFOs to achieve
synchronization at the cost of large latency [Gre95]. Synchronization is achieved on the first data transfer,
and is automatically maintained thereafter. The FIFO must be kept about half full, and each insertion and
removal operation must complete within one cycle. If these requirements are violated (e.g., on FIFO
underflow), synchronization is lost, and the system has to be restarted. [PN95] employs analog adjustable
clock generators, achieving local self-alignment of all clocks. Unlike clock adjusting methods ([Keh93, PN95,
and stretchable clocks), our proposed method adjusts data delays rather than the clocks.

1.2. Multi-Synchronous Systems

A multi-synchronous system is presented in Fig. 1. The common clock is distributed over thin wires (saving
area and power, compared to minimal skew clock distribution networks). While clock frequency is the same
for all modules, the actual phase shifts are considered unknown. As explained above, these phase differences
are considered stationary over large time windows. Each module contains a local clock generator, which
amplifies the clock and distributes it internally with minimal skew. Thus, each module operates internally as
a traditional synchronous circuit, but asynchronously to all other modules.

Consider modules A and B in Fig. 1, which are tightly coupled over an asynchronous channel without a FIFO,
for low latency high bandwidth communication. Similar to clock delays, the data delay * is also stationaryAB

and is considered unknown. Module A generates output transitions on D at a fixed phase difference relativeA

to its own clock C . The data propagate to module B, which samples DataRdy on the rising edge of its ownA

clock C . New data are sent over from A to B at a high rate, e.g., on almost every clock cycle. Since theB

relative clock phase difference) -) of modules A and B is presumed unknown, the data may arrive at BA B

simultaneously with the rising edge of clock C , creating a clock/data conflict and possibly resulting in aB

metastable state at the input of B, and in loss of data. If the relative clock phases and data delays remain fixed
(stationary), and since both modules operate at the same clock frequency, this unfortunate situation is most
likely to recur. Clearly, the incoming data must be synchronized with C at the input to B. A regularB

synchronizer is unsuitable, because the synchronizer may enter a metastable state on every repeated conflict.

Most synchronization methods assume that the arrival (switching) time of data at any module is uniformly
distributed over the clock cycle, as in Fig. 2(a). However, in multisync systems, the arrival time of certain data
channels incident upon a certain module may be distributed unevenly, e.g., as in Fig. 2(b). When one
synchronous module outputs data to another, data output is synchronized with the local clock of the sender.
Since the phase difference between the receiver and sender clocks, as well as the data interconnect delay, are
stationary, data arrival time at the receiver is correlated with the receiver clock. However, in systems with a
high degree of connectivity the combined distribution of all channels incident upon a specific module looks
more like Fig. 2(c), and the danger of clock/data conflicts cannot be ignored.

4

Figure 1: A multi-synchronous system.

Figure 2: Arrival time distribution of inputs (over
a clock cycle T): (a) uniform distribution
(asynchronous input); (b) clustered distribution
when the sender and receiver clocks are correlated
(single synchronous input); (c) combined
distribution of many independently correlated inputs
is similar to uniform distribution (multiple
synchronous inputs).

The novel method we propose adjusts data timing (rather than the clock), thus converting data arrival time
distributions into forms like Fig. 2(b) and substantially reducing the synchronization problem. Section 2
further defines the method, and a sample adaptive synchronization circuit is described in Section 3. In Section
4 we propose that the adaptive synchronization be performed semi-statically, adapting various data delays
from time to time. The method is statistically analyzed in Section 5.

2. Data Adaptive Synchronization

Data adaptive synchronization adjusts the delays on the data lines instead of adjusting the local clock phase.
Since the communication channels are connected point to point, the delays on them can be changed so that
they do not conflict with the local clock, without affecting the other channels (this approach also applies to
bus taps). We add a data coordination circuit for each communication channel, as in Fig. 3(a). When a conflict
is detected, the data delay is adjusted to prevent conflicts in future communications.

Note that three different phases are assumed stationary in the multisync model (Fig. 1): The clock phase
difference) -) , the sender data phase D -C , and the data delay * . Consequently, the phase of theA B A A AB

arriving DataRdy at module B relative to C is also stationary. In other words, the arrival time distributionB

is represented in this model by Fig. 2(b), and is highly non-uniform. We take advantage of this fact and
control data delays so as to assure that the center of this distribution is safely remote from the clock transition
for every data line in the system. This is achieved by tuning the data delay * .AB

The adaptive mechanism architecture for a specific module is shown in Fig. 3(a). Data input channels D arei

subject each to given data delays * (ref. * in Fig. 1). Adaptive synchronization circuits A , clocked by thei AB i

local clock CK , monitor the DataRdy lines, and control adjustable data delays 8 , whose value is in thein i i

range 0 # 8 < T (T is the clock cycle). The function of the A circuits is to separate the clock and datai i

transitions. The multiple input delays can be adjusted independently of each other, so the combined data
arrival time distribution at the entry to the module looks like Fig. 3(b). Adaptive synchronization applies
equally well to single sender, multiple receivers buses (Fig. 4).

5

Figure 3: (a) Adaptive Synchronization; (b) Combined data arrival time distribution — data delays are
adjusted to avoid conflicts.

Figure 4: Adaptive Synchronization for single sender,
multiple receivers buses; each receiver adjusts its own
data input.

3. Data Adaptive Synchronization Circuit

The principles of adaptive synchronization resemble self-clocking communication mechanisms, such as in
UARTs. The challenge is to obtain proper operation even at the presence of metastability. Consider the
adaptive synchronization circuit in Fig. 5, with an adjustable delay (Fig. 6). A four-phase data signaling
discipline is assumed, wherein DataRdy rises to ‘1’ after the new data are available (the circuit may be readily
extended to two-phase operation as well). The receiving module latches the inputs upon the positive edge of
its local clock, and only if DataRdy is ‘1'. Thus, the purpose of the adaptive synchronization circuit is to
detect the phase of DataRdy relative to the local clock, and to adapt the 8 delay if that phase is dangerouslyi

close to 0 or T (2B).

6

Figure 5: Adaptive Synchronization Circuit. Figure 6: Adjustable delay circuit, consisting
of multiple delay lines and a selector.

First, the DataRdy line is fed into a statistical phase detector. Let’s assume that the DataRdy lines switch (up
or down) on every cycle. In [Keh93], several delayed phases of the clock are used to detect data transition
time. In Fig. 5, several delayed versions of the data are employed instead. The XOR gates generate a sequence
of pulses, as in Fig. 7. The delays marked ‘d’ assure a small pulse overlap. The outputs of the XOR gates are
the enable signals of counters which are triggered by the local clock edge. On the rising edge of the clock, one
or two of the counters increment their count. This is repeated for a large number of cycles, e.g., 1000 times.
At the end of that time, the counters are expected to show a distribution similar to either Fig. 8(a) or Fig. 8(b).
In either case, two or three counters show large counts, and the remaining ones are close to zero. The spread
is caused by pulse overlap, by clock and delay jitter, and by pulse/clock conflicts which may result in
metastable states, in long settling times, and in indeterminate counting. In spite of such physical difficulties,
the statistical phase detector is robust thanks to many repeat counts, and it produces a very clear indication
of the relative phase of the DataRdy line. The circuit in Fig. 5 is similar to delay lock loop (DLL) circuits,
except that the proposed circuit is digital rather than analog, and its operation is algorithmically controlled.
Other types of phase detectors may also be employed.

Next, the MaxFinder circuit determines, according to which counter has won, if the 8 delay of the data linesi

should be changed, and by how much. For example, the count depicted in Fig. 8(a) indicates no change, while
that of Fig. 8(b) calls for adding a delay of at least T/5. The adjustable delay consists of multiple parallel
delay lines and a selector (Fig. 6). Notice that although the phase detector examines only the DataRdy line,
8 is applied to all data lines of the i ’th channel.i

Although the examples present circuits for the case where the clock cycle is divided into five periods, at high
frequencies it might be simpler to implement using only three such periods (since the clock cycle time may
be only a few gate delays long). The circuit complexity of a proper adaptive synchronization circuit, for a
32-bits data path, is approximately 5,000 transistors (comprising the delays, XOR gates, counters,
comparators and switches in the MaxFinder circuit, and the adjustable delay circuits). Thus, the total
overhead per a 5M transistor module with 10 input channels is about 50,000 / 5M = 1% (recall that it
replaces a massive clock distribution network). The extra power consumption is similarly marginal.

Adaptive synchronization is suitable for a wide range of applications. Typical data delay range is
0.1T < * < 1.5T for a 0.5B transistors, 1GHz chip, but the delay may be much larger than T for multi-chipi

and MCM configurations. In such cases, new asynchronous data signaling methods could be used, such as
multiple message windows (wherein multiple messages are sent before an acknowledge is expected). As long
as relative delays are stationary, adaptive synchronization remains applicable.

7

Figure 7: Phase detection waveforms. Figure 8: Typical phase detection counter outputs:
(a) data transition is safely within the cycle; (b) data
delay should be increased to avoid clock/data
conflicts.

4. Training Sessions

Adaptive synchronization may be performed continuously, in parallel with normal circuit operation. However,
modifying the data delays may cause timing problems at the time of change, so this is best carried out while
the system is not performing any real task. In addition, during normal operation it cannot be guaranteed that
all DataRdy lines switch frequently enough. And continuous adaptation may be unnecessary if all delays are
highly stationary and stable.

Consequently, special training sessions are proposed for adaptive synchronization. During a training session
the system stops performing all real computations. Instead, all DataRdy lines are toggled every cycle, and
all adaptive synchronization circuits operate and adjust the * delays. Any synchronization failures duringi

a training session can obviously be ignored. The training session requires a relatively small number of
counting cycles. Since all adaptive synchronization circuits operate in parallel, 100,000 clock cycles (0.1mS
at 1GHz) seems a safe bound on the required session duration.

A training session is always employed after reset, for initial adjustment of all delays. Thereafter, training
sessions can be invoked either periodically or as required. Periodical training frequency depends on process
parameters (especially delay stability) and operational parameters (such as clock frequency and dynamic
temperature and voltage variations), but it is estimated that at 2010 technology much less than one training
per second will be required. The expected performance overhead is thus much less than 10 cycles / 10 Hz5 9

= 0.01%.

Training sessions are also proposed in [SCI92], wherein a point-to-point communication ring architecture
is defined. Training sessions are utilized to send sync packets at ringlet initialization, and once every time
interval appropriate for normal operation of the particular implementation. Clock skew in [SCI92] is handled
(using Phase Lock Loop circuits) by observing incoming clock and local clock phases.

Significant temperature and voltage variations may be sensed on-chip by special sensors in order to invoke
a training session when a problem seems imminent. Alternatively, the adaptive synchronization circuits
themselves may be modified to act as the sensors. If any such circuit detects that any switching phase

0
100

200
300

400
500
600

700
800

900
1000

0 1000 2000 3000 4000
Clock Freqency [MHz]

Gate Delay [pSec]

p

µcµd

t

ACS

µc

ε

Failure

µc
σc

µd
σd

Clk

Module A Module B

(a) (b) (c)

8

Figure 10: Gate delay vs. clock frequency.

Figure 9: Model for analyzing synchronization
failure.

approaches 0 (or 2B) closer than some safety threshold, a hardware interrupt is invoked to start a training
session. In addition, a training session can also be triggered when a higher level logic (or software) detects
a synchronization or communication failure. A similar tuning idea is used in [Keh93].

5. Probability of Synchronization Failure

In this section we analyze the failure probability of the adaptive synchronization (A/S), and compare it to
synchronizers.

Synchronization failure might happen at a training session, failing the delay adaptation process and causing
the system to fail, or during regular operation, after a successful training. Failures during training sessions
do not affect system operation, and might only cause the training itself to fail. These synchronization failures
can happen in the phase detection circuit (Fig. 5), when one of the counters enters a metastable state while
incrementing its count, due to marginal triggering. Since a training session takes many cycles, the counters
are allowed sufficient time to resolve any metastability before their outputs are read. Thus, the probability
of failure of the training session is practically zero. After a successful training session, all delays are adapted
properly so that data are expected to arrive at a module around the middle of the local clock cycle, and avoid
synchronization failures. However, due to possible jitters in clock phase and line delays, the data arrival time
might randomally change from cycle to cycle, and become dangerously close to a clock edge.

The system model for the failure analysis is described in Fig. 9. The phase of the clock at module B is affected
by the delay along the clock distribution network from the clock source to module B. Data sent from module
A will arrive at module B with a phase affected by the delay of the clock signal to module A, the internal logic
delay from clock edge to data output, and data propagation delay to the input of B (Fig. 9(a)). We assume
normally distributed jitters, and define two random variables with normal (Gaussian) distribution, X and X ,c d

representing the phases of the clock and data at module B, respectively. X = N(µ ,F) is normally distributedc c c

with mean µ (equal to the clock cycle time T) and standard deviation F (caused by jitter effects). Withoutc c

loss of generality, we take the phase of the clock to be 0 (i.e., µ=T), since we are only interested in thec

relative phase of data to clock, and cyclically the phase is 2Bk (k an integer). X = N(µ ,F), wherein µ isd d d d

the expected arrival time within a clock cycle. After a training session, µ is expected to be at the middle ofd

the clock cycle, i.e., µ = T/2, assuming X is centered on 0+2Bk (see Fig. 9(b)). Note that X is actually a sumd c d

of three normally distributed variables, so its variance (F) is calculated as the sum of three variances.2
d

Assume , is the time window within a clock cycle (Fig. 9(c)) in which data must be stable (generally
considered to be the setup-and-hold period) to avoid metastability.

9

(1)

(2)

(3)

(4)

When using a synchronizer, there is no knowledge of the data arrival time, so uniform arrival time distribution
is assumed. Once a synchronizer has entered the metastable state, the probability that it will still be
metastable some time later has been shown to be an exponentially decreasing function [Cha83, RC82]. The
probability of synchronization failure of a synchronizer is given by

It equals to the probability that a synchronizer which enters a metastable state (at time t=0), still remains in
the metastable state at the time its output should be stable for sampling in the next clock cycle. The parameter
J is the exponential time constant of the decay rate of the metastability (discussed below).

The failure probability of adaptive synchronization is the probability that the values of the two random
variables X and X are too close (within ,) to each other, i.e., the data switch too close to the clock edge. Thisc d

probability can be calculated as the probability that a random variable, equals to the difference of the two
random variables, has a value in the forbidden range:

Note that the normal distribution of the difference random variable spans beyond [0,T], and because of the
2B cycling, X should be considered at both 0 and T. Since we assume normal distributions, each of thec

probabilities in Eq. 2, can be calculated by the Gaussian function, with the proper parameters [Pap91], e.g.,

The value of the Gaussian function is determined by the error function, erf(x), whose value can be obtained
by the ERF(x) function with parameter transformation:

Technology is defined by the gate delay, which also limits the highest clock frequency that can be used.
However, the clock frequency increases faster than the gate delay decreases, as can be observed from Fig. 10
(based on data from [KG97, SIA94, Wei96]). Since gate delay does not scale linearly with frequency, less
gate delays are available in a clock cycle time, as frequency rises. The probability of failure goes up because
the clock cycle time T(=µ) shrinks faster than , (the settling window). To compare the failure probabilities,c

we assume the following model: The metastability window , width is assumed to be equal to a gate delay,
the parameter J is taken as 1/3 of a gate delay, and the jitter (which equals 6F) is half a gate delay (and no
more than 15% of the clock cycle). Figure 11 presents a logarithmic graph comparing the synchronization
failure probabilities of a synchronizer relative to the A/S scheme.

1.00E-66

1.00E-61

1.00E-56

1.00E-51

1.00E-46

1.00E-41

1.00E-36

1.00E-31

1.00E-26

1.00E-21

1.00E-16

1.00E-11

1.00E-06

1.00E-01

10MHz 100MHz 1GHz 10GHz

Technonolgy

P
ro

ba
bi

lit
y

o
f f

ai
lu

re

Synchronizer

A/S

MTBF=1/year

MTBF=1/minute

10

(5)

Figure 11: Probability of synchronization failure.

For high communication bandwidth (e.g., almost every cycle), the mean time between failures (MTBF) is
given by

The failure probabilities required to achieve an MTBF of once a year and once a minute at the various
technologies are also presented in the graph. As can be observed from the graph, using a synchronizer can
be practical for lower frequencies, but as clock frequency increases, the synchronizer has less time to resolve
and the probability of failure rises rapidly. Using a sequence of synchronizers decreases the failure
probability, but increases the latency and affects performance. Note also that the failure probability presented
is of a single synchronizer, and since many synchronizers are required (for every bit in every bus between
modules), the failure probability is worse than drawn on the graph. When synchronizers fail to deliver a
flawless operation at higher frequencies, A/S still applies. The zero values of A/S failure probability cannot
be plotted on the logarithmic graph. The inter-module clock jitter will be the limiting factor on maximum
clock frequency in A/S scheme. At even higher frequencies, when A/S fails, it can be used together with a
synchronizer, to decrease the probability of the synchronizer entering a metastable state. Beyond a certain
technology (e.g., when the jitter is more than 15% of the clock cycle), all synchronization methods fail, and
the only solution is to use a complete asynchronous design, with asynchronous communication.

6. Conclusions

The technological constraints applicable to future large and complex chips imply at least partially
asynchronous operation. A single clock is either impractical or impossible for such very high performance
chips, e.g., as predicted by the SIA technology roadmap for the year 2010 (over 0.5B transistors operating
at over 1GHz clock) [SIA94 / SIA97]. We have presented an adaptive synchronization solution for multi-
synchronous systems. Multi-synchronous architectures (locally synchronous, globally asynchronous) could
be a viable alternative to fully asynchronous design. We focus on common clock multi-synchronous systems,
wherein a single crystal clock is distributed over minimal area and minimal power networks, so that all
modules operate on the same clock frequency but at unknown phase differences.

We have presented a novel adaptive synchronization method, addressing multisync systems. While most
previously proposed methods manipulate the clock, adaptive synchronization adjusts data delays. The method

11

exploits the high stability of delays and the stationarity of most relative phases. Data timing is dynamically
adjusted to avoid clock/data conflicts. The probability of synchronization failure is reduced substantially.
Timing adaptation can be limited to special training sessions (as commonly practiced in data communication
networks). Thus, the synchronization monitoring circuits are kept off the critical paths. The adaptation
circuits incur only marginal overhead in area, power and performance. A study of alternative methods (such
as synchronizers and stretchable clocks) shows that they may not be as usable as adaptive synchronization.
In contrast with fully asynchronous architecture, multisync design with adaptive synchronization allows the
continued use of existing know-how in synchronous design. Asynchronous aspects are limited to system
architecture and some circuit design, while the majority of the chip can be designed in synchronous
subsystems.

References

[Bow95] W. J. Bowhill, et. al., “Circuit Implementation of a 300-MHz 64-bit Second-generation
CMOS Alpha CPU,” Digital Technical Journal, 7(1), pp.100-115, 1995.

[Cha83] T. J. Chaney, “Measured Flip-Flop Responses to Marginal Triggering,” IEEE Trans. on
Computers, 32(12), pp. 1207-1209, Dec. 1983.

[Cha84] D. M. Chapiro, Globally-Asynchronous Locally-Synchronous Systems, PhD thesis, Dept.
of Computer Science, Stanford Univ., 1984.

[Cha87] D. M. Chapiro, “Reliable High-Speed Arbitration and Synchronization,” IEEE Trans. on
Computers, 36(10), pp. 1251-1255, Oct. 1987.

[CM73] T. J. Chaney and C. E. Molnar, “Anomalous Behavior of Synchronizer and Arbiter
Circuits,” IEEE Trans. on Computers, 22(4), pp. 421-422, Apr. 1973.

[CM97] M. Choudhury and J. Miller, “A 300MHz CMOS Microprocessor with Multi-Media
Extensions,” Proc. ISSCC'97.

[CW75] G. R. Couranz and D. F. Wann, “Theoretical and Experimental Behavior of Synchronizers
Operating in the Metastable Region,” IEEE Trans. on Computers, 24(6), pp. 604-616,
Jun. 1975.

[DGY93] I. David, R. Ginosar, and M. Yoeli, “Self-Timed Architecture of a Reduced Instruction Set
Computer,” in Asynchronous Design Methodologies, S. Furber and M. Edwards editors,
IFIP Transactions Vol. A-28, Elsevier Science Publishers, pp. 29-43, 1993.

[Fri95] E. G. Friedman, editor, Clock Distribution Networks in VLSI Circuits and Systems, IEEE
Press, 1995.

[Gre95] M. R. Greenstreet, “Implementing a STARI chip,”, ICCD’95, pp. 38-43, 1995.
[Hau95] S. Hauck, “Asynchronous Design Methodologies: An Overview,” Proc. IEEE, 83(1),

pp. 69-93, Jan. 1995.
[Keh93] T. Kehl, “Hardware Self-Tuning and Circuit Performance Monitoring,” ICCD’93,

pp. 188-192, 1993.
[KG97] R. Kol and R. Ginosar, “Future Processors will be Asynchronous (sub-title: Kin: A High

Performance Asynchronous Processor Architecture),” Technical Report CC PUB#202
(EE PUB#1099), Department of Electrical Engineering, Technion, Israel, Jul. 1997.

[Kol97] R. Kol, Self-Timed Asynchronous Architecture of an Advanced General Purpose
Microprocessor, PhD thesis, Dept. of Electrical Engineering, Technion, Israel, 1997.

[Mar81] L. R. Marino, “General Theory of Metastable Operation,” IEEE Trans. on Computers,
30(2), pp. 107-115, Feb. 1981.

[Mar97] A. Martin, et al., “The Design of an Asynchronous MIPS R3000 Microprocessor,” Proc.
Advanced Research in VLSI, Sept. 1997.

[MB76] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed packet switching for local computer
networks,” Comm. ACM., 19, pp. 395-404, Jul. 1976.

[Pap91] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edition,

12

McGraw-Hill, 1991.
[Pav94] N. C. Paver, The Design and Implementation of an Asynchronous Microprocessor, PhD

thesis, Dept. of Computer Science, Univ. of Manchester, 1994.
[Pec76] M. Pechoucek, “Anomalous Response Times of Input Synchronizers,” IEEE Trans. on

Computers, 25(2), pp. 133-139, Feb. 1976.
[PN95] G. A. Pratt and J. Nguyen, “Distributed Synchronous Clocking,” IEEE Trans. on Parallel

and Distributed Systems, 6(3), pp. 314-328, Mar. 1995.
[RC82] F. U. Rosenberger and T. J. Chaney, “Flip-Flop Resolving Time Test Circuit,” IEEE J. of

Solid-State Circuits, SC-17(4), pp. 731-738, Aug. 1982.
[RMC+88] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T.-P. Fang, “Q-modules: Internally

clocked delay-insensitive modules,” IEEE Trans. on Computers, 37(9), pp. 1005-1018,
Sep. 1988.

[SCI92] IEEE std 1596-1992, IEEE standard for Scalable Coherent Interface (SCI), 1992.
[Sei80] C. L. Seitz, System timing, in C. A. Mead and L. A. Conway, Introduction to VLSI

Systems, Ch. 7, Addison-Wesley, 1980.
[Sei94] J. N. Seizovic, “Pipeline Synchronization,” Proc. Int. Symp. on Advanced Research in

Asynchronous Circuits and Systems, pp. 87-96, 1994.
[SIA94] SIA, The National Technology Roadmap for Semiconductors, 1994 (See also:

http://www.sematech.orh/public/roadmap/index.htm).
[SIA97] The 1997 SIA Technology Roadmap will be published in Dec. 1997, and will predict up to

10GHz clock by 2012. We will cite it in the final paper instead of the 1994 edition.
[SSM94] R. F. Sproull, I. E. Sutherland, and C. E. Molnar, “The Counterflow Pipeline Processor

Architecture,” IEEE Design & Test of Computers, 11(3), pp. 48-59, Fall 1994.
[Sto82] P. A. Stoll, “How to Avoid Synchronization Problems,” VLSI Design, pp. 56-59,

Nov./Dec. 1982.
[Vee80] H. J. M. Veendrick, “The Behavior of Flip-Flops Used as Synchronizers and Prediction of

Their Failure Rate,” IEEE J. of Solid-State Circuits, 15(2), pp. 169-176, Apr. 1980.
[Wei96] U. Weiser, “Future Directions in Microprocessor Design,” Invited lecture, presented at 2nd

Int. Symp. on Advanced Research in Asynchronous Circuits and Systems (Async’96),
Mar. 1996.

[YD96] K. Y. Yun and R. P. Donohue, “Pausible Clocking: A First Step Toward Heterogeneous
Systems,” ICCD’96, pp. 118-123, 1996.

