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High Rate Data Synchronization in GALS SoCs
Rostislav (Reuven) Dobkin, Ran Ginosar, and Christos P. Sotiriou

Abstract—Globally asynchronous, locally synchronous (GALS)
systems-on-chip (SoCs) may be prone to synchronization failures
if the delay of their locally-generated clock tree is not considered.
This paper presents an in-depth analysis of the problem and
proposes a novel solution. The problem is analyzed considering
the magnitude of clock tree delays, the cycle times of the GALS
module, and the complexity of the asynchronous interface con-
trollers using a timed signal transition graph (STG) approach.
In some cases, the problem can be solved by extracting all the
delays and verifying whether the system is susceptible to metasta-
bility. In other cases, when high data bandwidth is not required,
matched-delay asynchronous ports may be employed. A novel
architecture for synchronizing inter-modular communications in
GALS, based on locally delayed latching (LDL), is described. LDL
synchronization does not require pausable clocking, is insensitive
to clock tree delays, and supports high data rates. It replaces com-
plex global timing constraints with simpler localized ones. Three
different LDL ports are presented. The risk of metastability in the
synchronizer is analyzed in a technology-independent manner.

Index Terms—Asynchronous circuits, globally asynchronous,
locally synchronous (GALS), synchronization, system-on-chip
(SoC).

I. INTRODUCTION

AS SILICON technology continues to make rapid progress,
systems-on-chip (SoCs) incorporate an increasing number

of modules of growing sizes, operating at faster clock frequen-
cies. These developments make it even more difficult to
distribute a single synchronous clock to the entire chip [1]. As
an alternative, different methods for providing each module
with its own clock are being developed. Another motivation for
independently clocking different modules, is to reduce power
consumption by means of dynamic voltage and frequency
scaling (DVFS) [2]–[4]. When the clock frequencies of the
various modules are uncorrelated with each other, and when
they can change over time independent of the clocks of other
modules, the resulting SoC is termed a globally asynchronous,
locally synchronous (GALS) system [5], [6]. Each GALS
module (a “Locally Synchronous Island”) can be enclosed in
an asynchronous wrapper (Fig. 1), which facilitates inter-mod-
ular communications and generates the clock for the module
[7]–[14].

Data synchronization and communication across clock do-
mains in GALS architectures constitute a major challenge. The
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simple “two-flop” synchronizer typically incurs significant mul-
ticycle latency and limits the throughput. An alternative solution
is provided by elastic first-in, first-out (FIFO) buffers. The most
promising approach employs stoppable or stretchable clocks for
the GALS modules: Port controllers (Fig. 1) can pause the local
clock when sampling asynchronous input. By stopping the local
GALS clock during data transfers across clock domains, the
possibility of metastability is eliminated [7]–[14].

This paper offers two main contributions. First, we demon-
strate that GALS systems employing pausable clocks are sub-
ject to failures, resulting from delays in their clock distribution
networks. We propose modifications to the existing stoppable
clock method, which mitigate these problems and yield robust
GALS circuits. The modifications require post-layout verifica-
tion of certain constraints on the clock network delays, to assure
safe GALS clocking.

Second, we describe a novel synchronization technique for
GALS SoC, locally delayed latching (LDL). It does not require
pausable clocking, it is insensitive to clock tree delays, and it
provides high data rate synchronization. We also propose a per-
formance enhancement of LDL over its previous version [15].
Detailed reliability analysis for LDL is presented. In addition,
we present a number of possible GALS wrappers based on LDL.

The paper begins with a survey of related research, in
Section II. Standard GALS clocking and synchronization
are reviewed and analyzed in Section III. Their potential for
failure and exact failure conditions of the GALS approach are
demonstrated in Section IV. In Section V, modifications to
the conventional GALS approach are presented that mitigate
failures. In Section VI, we present LDL synchronization and
analyze its failure probability in a technology independent
manner. LDL simulation results are discussed in Section VII.

II. RELATED WORK

Two principal clocking and synchronization methods
have been proposed for solution of the data synchronization
problem. Clock synchronization employs handshake clocks that
are stopped based on inputs from other domains [7]. Stoppable
local clocks have been proposed in [8]–[13]. According to that
methodology, a local ring-oscillator clock generator in each
synchronous “island” incorporates a set of mutual exclusion el-
ements (MUTEXes) [16] that stop the clock temporarily when
new input data arrives, so as to avoid the risk of metastability.
We analyze this methodology in detail in Section III.

Stoppable clocks have been introduced for GALS system
in [12] and [13]. Asynchronous inter-modular communica-
tion is decoupled from the stoppable clock interface of the
synchronous modules. A modified two-phase asynchronous
interface wrapper for communication between two locally
synchronous modules is presented in [8]. The authors also
propose FIFO buffering for performance enhancement. A
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Fig. 1. GALS system [9].

four-phase version of the asynchronous GALS wrapper, which
handles multiple ports and also facilitates testing, is presented
in [9]. A number of GALS interconnect structures and modified
wrappers are analyzed in [10], focusing on ring topology and
packet based communications. An architecture for combining
synchronous and asynchronous modules in a GALS system
is presented in [11], employing handshake based on matched
delays. Finite-state machine (FSM)-based demand and poll
port controllers are also presented.

A stoppable clock technique for GALS pipelines [14], which
does not employ MUTEX arbiters, accounts for clock tree de-
lays by means of delay matching, and relies on accurate timing
analysis of the clock tree. This solution is only suitable for
linear pipelines and does not generalize to arbitrary GALS SoC
communications.

In [17], a mixed-timing FIFO was proposed for commu-
nication between arbitrary combinations of synchronous and
asynchronous domains. Mixed timing relay stations were also
introduced for more efficient treatment of long interconnects.
Source-synchronous communication, based on a self-timed
single-stage FIFO with a single stage for mesochronous clock
domains was presented in [18] and expanded to multisyn-
chronous, plesiochronous, and asynchronous cases in [19].
The extensions are more complex relative to the mesochronous
case, requiring additional special treatment at the transmitter
and receiver sides.

In [20], abstract timing diagrams are used for analyzing syn-
chronization interfaces, instead of the signal transition graph
(STG) analysis [21] employed in [15]. In addition, [20] and [22]
propose a new interfacing scheme, with a pausable clock gen-
erator at the transmitter side and free-running clock and partial
handshake on the receiver side. Unfortunately, the authors report
in [20] that without a biased MUTEX (a MUTEX that prioritizes
one of the inputs, which is in practice physically unrealizable)
the scheme may lead to “erroneous communication and loss of
messages” when the communicating modules are not perfectly
synchronized (in terms of data throughput). Reference [20] pro-
poses a FIFO to partially solve that problem, whereby the clock
is paused on the transmitter side when the FIFO is full. A de-
tailed circuit at the transistor-level is presented in [22]. The cir-
cuit is reported to have an unknown nonzero failure probability.

III. SYNCHRONIZATION IN LOCALLY-CLOCKED GALS SOC

Clocking and input synchronization circuits for lo-
cally-clocked SoC proposed in the literature [8]–[13] are

Fig. 2. Stoppable clock generation [8]

mostly variations of the circuit in Fig. 2. A locally generated
pausable clock is employed in each Locally Synchronous
Island. Input and output to other islands are controlled through
asynchronous handshake on special ports. In this section, we
analyze the operation of the circuit in Fig. 2.

The wrapper circuit operates as follows. Data arrival is indi-
cated by input request REQ signal. In response, the port pro-
duces signal R, asking the local clock generator for a clock
pause. Once the clock is paused, AK is asserted, enabling data
latching by the port latch. After the data is latched, the port de-
asserts R, enabling the clock to the Locally Synchronous Island,
in general, and to register REG in particular. Since the data (D)
is stable by that time, it is assured that REG samples D correctly.
At this point, input acknowledge ACK signal can be asserted, re-
leasing the input handshake (REQ, ACK). Alternatively, ACK
can be asserted right after data latching.

The clock generator [23] comprises a ring oscillator (con-
sisting of the adjustable delay line, the NOR gate, and the C-el-
ement) and an arbitration circuit (Fig. 2). The arbitration cir-
cuit employs mutual exclusion elements (MUTEX, Fig. 3) [16].
The MUTEX grants in response to request , and guaran-
tees that even if both requests arrive simultaneously, only one of
them is granted. This is achieved by means of the metastability
filter appended to the latch in the MUTEX. Five different signals
related to the clock are shown in Fig. 2: and . Each
incoming request signal (REQ) is presented to the MUTEX ( ),
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Fig. 3. MUTEX.

Fig. 4. Waveforms of stoppable clock generation.

asking for a clock pause. The MUTEX decides whether to grant
the request (AK) or to allow the next clock pulse. The next clock
pulse will take place only if all MUTEXes allow it, i.e., node

goes high. Let’s denote the rising and falling transitions of
a node by and , respectively. The -element allows
for the local clock signal to be stretched ( transition is
blocked) whenever any of the incoming requests is granted
( is low) when is rising. will remain blocked until all
granted requests are released (and eventually goes high).

The timing diagram in Fig. 4 illustrates the stoppable clock
generation process. is enabled in the MUTEX only when
signal is low. The clock cycle is stretched when arrives
during a stretch window , towards the end of the low phase of
signal . If arrives outside the stretch window, port hand-
shake may complete on time ( precedes ), causing no
stretch.

The stretching process can also be described formally with
a timed signal transition graph (STG) (Fig. 5), where the arcs
are numbered for identification, and the labels on the arcs indi-
cate symbolic transition delays. The STG is a special type of a
Petri Net [21]. Tokens are marked by solid circles and their po-
sition (marking) determines the circuit state; the token marking
in Fig. 5, denotes the initial state. Change of state is denoted
by moving tokens along directed edges. A transition of node n
is enabled when every incoming arc holds a token. When the
transition takes place (node “fires”), all incoming tokens are
consumed and new tokens are produced on each outgoing arc.
Places (marked by open circles) hold tokens in transit. It is as-
sumed that every arc has a place for holding a passing token,
but places are eliminated from the figure when there is no am-
biguity. Place p1 is a choice place: The token can exit on either
arc (13 or 14) but not on both, representing the free (random)

choice made by the MUTEX in case of contention between
and . Place p2 is a merge: It merges tokens arriving on either
arc (19 or 20, depending on the previous choice) into arc (21).

The symbolic transition delays ( )
are defined in Fig. 4. The dashed arc labeled designates the
delay from to . The timing of may make the arc
part of the critical path in the circuit, stretching the clock.
denotes clock tree delay from to , and denotes the
delay from incoming until the data latching event .

The stretch-length (ST in Fig. 4) can assume either a deter-
ministic or nondeterministic value. ST is deterministic when
there is no contention between and signals at any MUTEX
input. In case of contention, the MUTEX incurs an additional
nondeterministic delay , causing the stretch-length ST
to become nondeterministic too. The contention happens when

and both rise within a danger window , typically three
to four gate-delays long.

Let be the time from to . Since is
ignored when , we define as the effective time from

to a port request, as follows:

(1)

Note that . From Fig. 5 it can be observed
that a stretch occurs if the path

takes longer than a clock cycle

(2)

Note that in case of contention at a MUTEX input, takes
longer than in a noncontending case (arc 15 timing is

extended by an additional delay, see Fig. 5).
Stated otherwise, we have two sets of stretch conditions

(3)

(4)

When inequality (3) holds, the stretch is deterministic. In the
other case [inequality (4)], it is nondeterministic. Subtracting
the lower bound of (3) from the upper bound of (4), we obtain

, the size of the stretch window

(5)

The stretch length , is the difference between the two sides
of inequality (2)

(6)

Note that in the case of contention at a MUTEX input the
stretch is extended by the delay of metastability resolution

(and the delay becomes nondeterministic).
Combining (5) and (6) and separating the contention case from
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Fig. 5. Timed STG of the local stoppable clock of Fig. 2.

the noncontending case, we get the following expression for
the stretch:

(7)

If the clock cycle is relatively long, inequality (3) becomes in-
feasible. However, contention is still possible if happens
within of .

Fortunately, can be bounded for any practical ap-
plication as explained in Section VI-B. Therefore, when a rel-
atively long clock cycle is employed, the stretched probability
becomes insignificant.

Arc 23 represents only the unknown delay between the
clock and the asynchronous request. It does not represent any
causal relationship between them, and it is not an essential arc
in the STG. Indeed, an infinite amount of tokens may accumu-
late on arc 23, as a result of a free running clock when no REQ
arrives. All other arcs can accommodate, at most, one token at
a time.

IV. SYNCHRONIZATION FAILURES IN A

LOCALLY-CLOCKED GALS SOC

The approach described in Section III disregards the delay
along the clock tree (from node to ), thus, potentially

causing metastability events in the sampling register REG, of
the Locally Synchronous Island (Fig. 2). A failure scenario is
detailed in Section IV-A and analyzed in Section IV-B.

A. Clock Delay Failure

A failure caused by the clock tree delay is depicted in Fig. 6.
Let’s assume that a request comes with delay after and

Fig. 6. Conflict example.

is granted by the MUTEX. Being uncorrelated with the input
handshake, the delayed Clock may rise simultaneously with
the asynchronous data latching in the Port. This conflict can
cause metastability in the input REG of the Synchronous Island.

in Fig. 6 denotes the circuit delay from to latching data
in the port (shown also in STG of Fig. 5). In addition to the in-
ternal asynchronous port delay, comprises the MUTEX delay,
which may become larger in case of concurrent and as
explained in the previous section. Note that, even though Fig. 6
presents the conflict during a stretched cycle, the conflict may
happen also when no stretch of the clock occurs, since the events

and are uncorrelated.
In addition to the metastability problem, this approach suffers

from two other drawbacks, i.e., pausing the local clock slows
down the entire Synchronous Island, and the slowdown may be
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Fig. 7. Conflict zones.

TABLE I
CLOCK TREE DELAYS-IMPLEMENTATION EXAMPLES, 0.18-�M TECHNOLOGY

exacerbated with multiport GALS modules, where the proba-
bility of pausing the clock is higher. Slowing down those syn-
chronous islands which are critical to system performance may
slow down the entire system.

B. Conflict Analysis

In this section, we analyze the conditions required for a con-
flict event. Starting from , the conflict occurs when

(8)

Namely, when the delay along arcs
on the STG matches the delay along arc 5 in Fig. 5. More pre-
cisely, the conflict occurs when happens inside a “danger
window” (setup hold time) around ,
where is an integer ( 0 accounts for clock delays longer
than ). The value is unknown, but the probability of conflict
grows with the number of GALS module ports. In addition, the
nondeterministic delay can be bounded for any practical im-
plementation as explained in Section VI-B. Fig. 7 emphasizes
graphically the combinations of and that lead to con-
flicts. The graph represents the timing relationships of (8). Note
that for some values of , independent of , the probability
of conflict is negligible (“safe” regions in Fig. 7). Alternative
solutions that avoid such conflicts are described in Section V.

Clock tree delay is a function of the clock tree depth and de-
pends on both technology and architecture. In traditional syn-
chronous circuit design the delay of the clock tree is immaterial,
as the clock is constantly running, and only the skew is impor-
tant. Clock tree delay is proportional to the number of sequential
elements driven by the clock and to the tolerable skew. Clock
skew balancing becomes increasingly difficult for high-perfor-
mance large SoC designs, incurring higher clock tree delays. For
instance, in a 0.18- m technology, a typical clock frequency
achievable with standard electronic design automation (EDA)

tools and standard libraries is 100–500 MHz ( 2–10 ns),
while typical clock delays are 1–2 ns, depending on module size
(some examples are presented in Table I). Large SoCs, with tens
of modules, may require much longer clock delays, approaching

. With faster technologies and larger chips, may
become common if a single global synchronous clock is at-
tempted for the entire SoC. Thus, while ,
the range of the clock tree delay is not limited by .

V. METASTABILITY-FREE GALS CLOCKING

In this section, we present metastability-free circuits for
robust data synchronization of GALS modules with stoppable
clocking. In Section V-A, we propose an approach for verifying
the correctness of the original circuit of Fig. 2. The approach
is based on delays extracted from the layout of the original cir-
cuit. Section V-B proposes a modification of Fig. 2 that avoids
metastability at the expense of performance. In Section VI, we
introduce novel LDL approach for data synchronization.

A. Timed Clock Trees

In this section, we show how to verify whether the circuit of
Fig. 2 performs correctly in a given chip. As we show in Fig. 7,
negligible failure probability is expected for the values of
that fall inside safe regions . The size and position of the safe
regions depend on a variety of parameters, such as the clock
cycle length, design library cell delays (e.g., NOR-gate delay)
and asynchronous port delay. It may be possible to verify that a
conflict probability is negligible by performing timing analysis
of the physical design and verifying that falls only inside
the safe regions.

For example, let’s consider the case of a limited delay clock
tree, when . We verify that either

(9)
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Fig. 8. Conflict and safe zones (example).

or

(10)

and are the setup and hold times of the DFF, respec-
tively. When either rule holds, will occur only inside safe
region (Figs. 7 and 8). The first bound results from the 0
case and the second bound from the case. Both
cases relate to the path in Fig. 5.

Similarly, when , the port access is allowed only
during the intervals (Figs. 7 and 8). In this case, either

(11)

Or the following two equalities must hold:

(12)

where 0, 1, 2, .
This solution has several drawbacks. The correctness con-

straints must be verified after each layout iteration of the cir-
cuit. The solution is not scalable and it may be sensitive to
thermal and power supply voltage variations (different changes
in , and ).

B. Matched Delay Port Control

An alternative solution to fulfilling the clock tree depth con-
straints presented above is to insert a delay line into the circuit
of Fig. 2, thus, matching the clock-tree delay , as shown
in Fig. 9. By delaying the handshake, it can be guaranteed that
it will always happen after the clock has been stopped.

However, the use of this matched delay may cause longer
clock stretching, as demonstrated in Fig. 10, where in the worst
case the stretch is additionally expanded by . Note that
the stretch window is also expanded to (up to )

(13)

During the design process, it must be verified that the matched
delay always exceeds , over all possible process, voltage,
and temperature (PVT) variations (namely, all corners and all
in-die process variations). In addition, this type of solution is not

Fig. 9. Stoppable clock generation with matched clock-tree delays.

Fig. 10. Matched delay port control-wave diagram.

viable for designs with high clock rates, which often imply long
clock tree delays. In such designs, clock stretch may happen on
each handshake, since in this case it is very likely that

. In addition, this approach presents similar drawbacks as
the “constrained delay clock tree.”

VI. LDL SYNCHRONIZATION

In this section we introduce the LDL approach, which allows
for GALS inter-modular communication and synchronization
without the need for an arbitrated clock. It is shown that the
LDL approach replaces the constraints on the clock delay
(which were discussed in Section V) by simpler and more
localized timing constraints, which are easier to achieve and
verify. The LDL concept is described in Section VI-A, and the
LDL tradeoff between reliability and data rate is analyzed in
Section VI-B. LDL constraints are detailed in Section VI-C. A
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Fig. 11. LDL circuit.

further enhancement of LDL is described in Section VI-D, and
expected performance is discussed in Section VI-E. Finally, in
Section VI-F–VI-H, we provide three implementation exam-
ples of input and output ports. Section VII presents simulations
of these implementations.

A. LDL Principles

In an LDL input port synchronizer, the asynchronous con-
troller (Fig. 11) controls both the input latch and Y1, the clock
input to the first sampling register. Signal , the local clock
of the module, is uninterrupted. In addition, the port issues a
valid indication for each newly received data word and prevents
WRITE after READ (WAR) hazards. Various modes of the LDL
operation are demonstrated in Fig. 12.

In LDL, the clock of the Locally Synchronous Island is never
stopped. The only measure available is to delay when a
conflict is imminent. is unaffected, and only the high-
phase is shortened. A port request is accepted only during the
low-phase of , latching the incoming data and delaying

when needed. The conflicts between and are
resolved by a MUTEX inside the control. A number of such
asynchronous controllers for generating and are pre-
sented in Section VI-F–VI-H.

LDL is unaffected by clock cycle changes that can be caused
for instance due to dynamic frequency or voltage scaling
[2]–[4]. There is also no restriction on stopping the clock
during periods of inactivity.

B. LDL Synchronization Reliability and Performance

The worst case operation occurs when at the conflict between
and wins. In this case the high-phase of

is maximally shortened, shown in Fig. 12, in the “Port
Wins” case. The shorter cycle leaves less time for computing in
the combinational logic immediately following the first register.
The implementation must assure that the remaining high phase
is long enough, according to the restrictions on the minimal high
phase width for FFs or registers of the target library. The high

phase of the clock is shortened by an amount equal to the latency
of the asynchronous control and the MUTEX resolu-
tion latency. To analyze this further, we define the following.

1) Resolution: A metastable MUTEX resolves when the
value stored in its internal latch is set nondeterministically to
either 1 or 0, and all combinational functions of that value
(MUTEX outputs) have been evaluated. The resolution latency
is indeterminate and unbounded.

2) Failure: A circuit is said to fail if a combinational function
of the output of a metastable MUTEX of that circuit does not
resolve within a predefined maximal time .

3) Safety: A circuit is M-safe if the expected time between
two successive failures exceeds M [M is also known as mean
time between failures (MTBF)] [24].

4) Min High Clock Phase: is a minimally allowed
clock high-phase time for a FF (typically about three FO4 in-
verter gate delays).

We require that the SoC be at least -safe, where a selected
value for could be 100 years (other values may also be used).
To achieve that, the safety of each synchronizer in a SoC with
about 100 synchronizers must be at least times larger,
namely 10 000 years [25]. We note that, in a standard
SoC (a digital IC based on standard cells and designed using
standard EDA tools) the shortest clock cycle is typically about
100–160 FO4 inverter delays [26]. The nominal FO4 inverter
delay depends mostly on the process technology (as detailed in
Section VI-E). Thus, the fastest high phase (50% of the clock
cycle) is about 50 inverter delays long. In order to assess the
worst-case MTBF in the following equation, we assume that
and are one and two FO4 inverter delays, respectively, [24],

(worst-case analysis), the clock cycle 100
and, thus, 1/100 . We can determine the required
metastability resolution time in terms of a number of
gate delays , by solving

year.

(14)
For 10 10 s (the range of FO4 gate delays in

present and foreseeable technologies, cf. Section VI-E)

(15)

For 100 , this implies that at least one half of a sym-
metric clock cycle should be allowed for resolution. For slower
SoCs, e.g., where the fastest clock cycle is 160 [26], a quarter
clock cycle suffices to achieve this MTBF. For most aggres-
sive designs [such as high-speed processors or high-speed ap-
plication-specified integrated circuit (ASIC) modules], where
10 50 , a different approach based on multicycle res-
olution time or on multisynchronous clocking [27] is required.

C. LDL Constraints

As explained in Section VI-B, to guarantee minimal high
clock phase , we require that

(16)
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Fig. 12. LDL operating modes.

Fig. 13. Locally delayed latching circuit with MPG for an extended high phase.

Leading to a constraint on the asynchronous control delay

(17)

Another constraint applies to , the delay of the combina-
tional logic that follows REG1. When the rising edge of Y1 is
delayed (by up to ), the effective compu-
tation time in that logic stage becomes shorter than the clock
cycle. Therefore, the following should be satisfied:

(18)

Fig. 14. Extended high phase for high frequency operation. After REQ �
Y conflict, REQ wins.

contains additional buffering delays when a wide data
path is required. These constraints are verified in Section VII for
the implementations in Sections VI-F–VI-H.

D. LDL Performance Enhancement

When a clock faster than 160 is employed, MTBF
requirements prohibit shortening the high phase of Y1. To cir-
cumvent that obstacle, a minimum phase generator (MPG) is
employed as in Fig. 13 to guarantee that the high clock phase
is no shorter than [see (16)]. For
fast clocks, this minimum is longer than half a clock cycle. An
example of a 75% duty cycle clock is shown in Fig. 14. In
this case, is also 75% duty cycle when there is no conflict.
In time of conflict, there is sufficient margin in the high phase
of [at least 43 FO4 gate delays as in (15)], and is guar-
anteed to be no shorter than . The request is treated during
the low-phase period of .

E. LDL Performance Versus Technology

Considering minimal low-phase and high-phase width of
about three gate-delays each, asynchronous controller latency
of about 20 gate-delays, and preserving 43 gate delays for
metastability resolution [(15)], the minimal clock cycle is 69
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TABLE II
MAXIMAL CLOCK FREQUENCIES ACHIEVABLE WITH LOCALLY

DELAYED LATCHING

Fig. 15. GALS module decoupled input port.

gate-delays. Without the MPG enhancement of Section VI-D,
when a 50% duty cycle clock is employed, the minimal clock
half phase requires 3 20 43 66 FO4 gate delays, namely
the minimal clock cycle is 132 gate delays. The two alternative
circuits enable clock frequencies up to the bounds shown in
Table II. The table is based on scaled FO4 inverter delays, de-
rived from the FO3 NAND delay model of the ITRS [26]. Similar
results were reported also in [28] and [29]. This table applies
to ASIC, and is inapplicable to high-speed microprocessors,
where the cycle time is typically around 20 gate delays.

F. Decoupled Input Port

Fig. 15 shows a possible implementation of Fig. 11. Without
a conflict, is either not delayed or delayed by less than

. is granted only during the low-phase of . The
MUTEX arbitrates any conflict between and . When

wins over , the asynchronous controller is granted
. The controller employs an asymmetric matched delay

to open the latch and then close it again .
The asymmetric delay applies a longer delay to one of the two
edges. In our case, the delay is minimal for the falling edge and
is longer for the rising one. The long delay matches the latch
propagation delay for all corners and delay variations. After

triggers REG1, leading to a shortened cycle in the
combinational logic following REG1 (the cycle is shortened by

Fig. 16. GALS decoupled input port asynchronous control STG.

). If the clock wins over happens only half
a cycle later, after .

The STG of the decoupled input port control is shown in
Fig. 16. The controller delay is measured along the dashed path.
The path is contained entirely inside the input port, ensuring that
any reduction of the clock cycle depends solely on the input
port control logic (and not on the logic and clock of the trans-
mitter module). The MUTEX output should be buffered with
a low-skew net when wide data path is required. In this case, the
additional latency must be taken into account. The latency of the
controller is verified in Section VII.

Generation of the valid signal is performed as follows. For
each granted data transfer the control issues signal that latches
the data and concurrently sets valid to logic high, indicating a
new ready data word inside the data latch. Once latching is ac-
complished, the controller deasserts ( ) and along with
valid + releases the MUTEX. The next incoming data transfer
request ( ) is blocked (by means of the c-element) until the
data is sampled by REG1. Valid is released with the next rising
edge of , also enabling arbitration of the next incoming data
transfer request. The SR latch of the valid signal is free of con-
flicts: and are guaranteed to be mutually exclusive thanks
to the MUTEX.

G. Decoupled Output Port

Output ports of GALS modules are subject to the same issues
as the input ports which were discussed in the previous sections.
The difference is that with an output port it is the incoming ACK
signal which must be synchronized. An output port circuit is
shown in Fig. 17 and the STG of its control is shown in Fig. 18.
The internal acknowledge ( ) is decoupled from the external
asynchronous handshake.

The controller latency of the decoupled output port control,
, should be verified according to (17) and (18). In this

case

(19)

The latency of the controller is verified in Section VII.

H. Simpler Input Port

The architecture in Fig. 19 simplifies the input port of
Section VI-F, eliminating the asynchronous controller from the
input port.
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Fig. 17. GALS module decoupled output port.

Fig. 18. GALS module decoupled output port asynchronous control STG.

Fig. 19. Simple input port.

The input port delay now depends on the external
delays of the output port

(20)

The matched delay in Fig. 19 could have been reduced from
to , but when

is unknown a priori, it is better to leave the matched delay at
. This simple input port is compatible with the output

port of Section IV-G. The latency of this constellation (simple
input port with the decoupled output port) is also verified in
Section VII.

VII. SIMULATION

The circuits of Sections VI-F–VI-H were synthesized using
Petrify [30], converted to VHDL, synthesized by the synopsys
design compiler using 0.35- and 0.25- m CMOS libraries [31],
[32], and verified by gate level simulations with wire-load model
delays (SDF). Table III lists the results for the three controllers.
We employed 16-bit wide data buses and clock cycles of 160
FO4 gate delays in a standard ASIC [26].

According to (17), while one-quarter cycle is preserved
for metastability resolution, we are left with another quarter
cycle (40 inverter delays) for the delay of the asynchronous
controller and for the clock high-phase. Our 0.35- m library
specifies 0.361 ns, namely about 3 inverter delays,
leaving 37 gate delays for the asynchronous controller delay

. Thus, we should verify that the delay of the circuits
described in Sections VI-F–VI-H is less than 37 gate delays.
The circuit delays are listed in Table III. All of them fulfill the
delay requirement.

According to Table III, the delays of all three asynchronous
controllers are lower than the bound of 37 FO4 gate delays,
requiring roughly 10% 160 FO4 gate delays clock cycle.
This margin allows operating at a slightly higher frequency,
if needed. Evidently, this approach is limited by the time we
reserve for the MUTEX to resolve. However, it provides a
useful operational frequency range for most ASICs.

To preserve timing correctness, careful layout should be per-
formed. The sampling latch, the first register REG1, the asyn-
chronous control, and the MUTEX must be placed closely to-
gether in order to avoid the impact of wire propagation delay
on the critical path. These requirements are expected to be met
easily, since the wrapper contains only a single port and is not
connected to any other parts of the module.

The overhead of the LDL controller is expected to be less
than 100 gates (including the MPG). For example, the decoupled
input port controller logic complexity is equivalent to 36 2-input
NAND gates, and the MPG requires about 25 gates. For a typical
SoC module of 100 K gates, the LDL controller overhead is only
0.1%. Another 0.1% overhead may be incurred by the latches of
the input port.

VIII. CONCLUSION

We have addressed the problem of synchronization failures
due to clock delays in locally generated, arbitrated clocks of
GALS SoCs. The problem has been analyzed based on clock de-
lays, cycle time, and complexity of the asynchronous port con-
trollers. The analysis employs a timed STG approach in order
to identify potential conflicts spanning asynchronous and syn-
chronous circuits.

Several solutions have been discussed. First, we have shown
that timing analysis can be used to verify known solutions (using
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TABLE III
CONTROLLER DELAYS

arbitrated clocks) in the presence of clock delays. Second, a so-
lution employing matched delays is described, where a control
signal is delayed so as to match the clock delay and avoid syn-
chronization failures.

A novel architecture for synchronizing inter-modular com-
munications in GALS, based on LDL, has been presented. LDL
synchronization does not require pausable clocking, is insen-
sitive to clock tree delays, and supports high data rates. It re-
places the complex global timing constraints on clock delays by
simpler, more localized ones. Three different LDL ports have
been described, two for input and one for output. Their oper-
ation has been demonstrated and analyzed by simulations. We
also present a technology-independent analysis of the metasta-
bility risk in the synchronizer, and its effect on the synchronizer
architecture.
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