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Maximizing the Throughput of Cuckoo Hashing
in Network Devices

Yossi Kanizo, David Hay, and Isaac Keslassy

Abstract—Hash tables form a core component of network
devices. Because of their large size, they are implemented using
both fast on-chip SRAM and slow off-chip DRAM. However, this
makes their implementation particularly delicate, as a suboptimal
choice of the hashing scheme parameters may result in a higher
average query time, and therefore in a lower throughput. Since
hash tables are often on the critical packet path, this can therefore
affect the throughput of the whole device.

In this paper, we analyze the performance of network hash
tables when using cuckoo hashing. First, we provide a complete
tradeoff between the load of a hash-table and its average lookup
time. The problem is solved by analyzing an equivalent problem:
the expected maximum matching size of a random bipartite
graph with a fixed left-side vertex degree. We provide exact
results for any finite system, and also deduce asymptotic results
as the SRAM memory size increases. In addition, we further
consider other variants of this problem and model the impact of
several parameters. Finally, we evaluate the performance of our
models on Internet backbone traces, and illustrate the impact
of the SRAM/DRAM access time ratio on the parameter choice.
In particular, we show that the common intuition of avoiding
DRAM accesses by using highly efficient schemes is not always
correct. Sometimes, it is better to use a less efficient hashing
method because it needs less SRAM accesses.

I. INTRODUCTION

A. Background

Network devices increasingly rely on hash tables to ef-
ficiently implement their algorithms, in fields as diverse as
load-balancing, peer-to-peer, state management, monitoring,
caching, routing, URL filtering, and security [1]–[5].

As a result, the device designers often implement a standard
hash table structure that is re-used in several of those applica-
tions. Unfortunately, due to stringent memory size constraints
in network devices, it is often impossible to fit the whole hash
table within on-chip SRAM. Remaining elements are stored
in off-chip DRAM, which is slower, but can also hold more
elements [6]–[10]. This is illustrated in Figure 1.

In this paper, we are interested in designing high-throughput
schemes for network hash tables. Unlike typical hash tables,
network hash tables have two specificities. First, they are
rebuilt infrequently. For all practical purposes, we can assume
that they are built offline. Second, they require elements with
query/modify requests to be processed extremely fast, using a
small and bounded number of memory accesses. For example,

Y. Kanizo is with the Dept. of Computer Science, Technion, Haifa, Israel.
Email: ykanizo@cs.technion.ac.il.

D. Hay is with the School of Computer Science and Engineering, Hebrew
University, Jerusalem, Israel. Email: dhay@cs.huji.ac.il

I. Keslassy is with the Dept. of Electrical Engineering, Technion, Haifa,
Israel. Email: isaac@ee.technion.ac.il.

  

chip 

DRAM memory 

traffic in traffic out

networking device 

SRAM memory 

Fig. 1. Typical memory layout of a network device. The dashed rectangle
delimits the chip’s area. Most of the hash table is generally stored in the on-
chip memory, while the remaining elements are stored in the slower off-chip
memory.

a network hash table may store the states of a given number
of flows, or the bills of a given number of customers. The
set of flows or customers in the hash table is assumed to be
predetermined. However, at each new packet arrival, the hash
table needs to be accessed immediately.

Designing high-throughput schemes for network hash tables
is non-trivial. For instance, assume that a network hash table
needs to support n elements using an SRAM size of m bins.
Further assume that it relies on multiple-choice hashing, such
that each of the n elements can hash into d arbitrary bins
using independent hash functions. Then the network hash table
designer faces several fundamental tradeoffs. For example, if
d is too small, i.e. each element can only hash into a few
bins, the hashing scheme may not be efficient. Therefore, more
elements may need to be placed in the slow DRAM. On the
other hand, if d is too large, each element may take too long
to check in which bin it actually resides out of the d potential
SRAM bins.

As a result, incorrect hash-table settings can significantly
increase the average delay needed to deal with each packet.
Therefore, when incoming packets are processed sequentially,
incorrect settings can also also significantly decrease the
throughput of the network hash table. The goal of this paper
is to help designers better understand the tradeoffs involved in
the choice of the hashing parameters.

In this paper, we rely on cuckoo hashing to implement
the network hash table. Cuckoo hashing guarantees that the
element query/modify times are bounded and achieves an
efficient space utilization (e.g., [6]–[9], [11]–[19] and refer-
ences therein). When building the hash table offline in cuckoo
hashing, each new element is placed in one of its d bins. If all
bins are full, it displaces another element, which is then moved
to one of its other d − 1 bins. If all its d − 1 other bins are
full, it displaces yet another element, and so on. This process
continues until either all elements are placed, or the process is
stopped and the new element is placed in the DRAM (which
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is assumed infinite for simplicity).
Cuckoo hashing with d = 2 is especially interesting because

of its high memory utilization. In fact, consider the bipartite
graph formed by the n elements on one side, the m bins
on the other, and d = 2 links leaving each element for 2
bins according to the hash values of the element. Then the
number of elements that cuckoo hashing inserts successfully
is exactly the size of the maximum matching [15]. Therefore,
our results with d = 2 also provide an upper bound on
the number of elements that can be inserted into the SRAM
by any alternative multiple-choice scheme with d = 2. To
further understand why cuckoo hashing has a high utilization,
it is important to notice that online cuckoo hashing with
d = 2, succeeds in inserting an element if and only if an
augmenting path originating from the corresponding vertex
exists [15]. This is because inserting an element into a cuckoo
hash table is equivalent to finding an augmenting path in
the corresponding graph (that is, a path that starts from the
vertex corresponding to the considered element, and alternates
between unmatched and matched edges until it ends at a right-
side vertex all of whose edges are unmatched). Notice that
for any sub-path (r1, v, r2), where v is a left-side vertex and
r1, r2 are right-side vertices, (r1, v) must be a matched edge
and (v, r2) an unmatched edge. Intuitively, this corresponds
to moving element v from bin r1 to bin r2. Since maximum
size matching can be computed by finding such augmenting
paths, when considering each left-side vertex only once and in
arbitrary order, we can immediately conclude that the number
of elements that a cuckoo hashing inserts successfully is
exactly the size of the maximum matching. For example, all
n elements can be inserted if and only if the corresponding
graph has a perfect matching (namely, a maximum matching
of size n; see [15] for more details).

B. Contributions

Our first contribution is that we study the performance of
cuckoo hashing with d = 2 over all possible loads. Past
papers have focused on lower loads, and shown that up to
a load n/m = 0.5, all elements could fit in the hash table
with high probability [11], [13]–[15]. On the contrary, we also
analyze the behavior of cuckoo hashing as the load gets beyond
0.5. To do so, we essentially transform the problem into a
problem in graph theory, then provide a theoretical analysis
of its performance, and later evaluate its real-life behavior by
using Internet backbone traces.

Specifically, we study the average performance of cuckoo
hashing by analyzing the expected maximum matching size
in the bipartite graph introduced above. We decompose each
random bipartite graph into connected components, and then
separately analyze each component and evaluate the size of
its local maximum bipartite match. The size of the maximum
bipartite matching is the sum of the sizes of all local matches.
Then, we count the number of connected components in the
graph and thus derive the size of the maximum matching in the
entire graph. Surprisingly, we can obtain an exact expression
of the average performance of cuckoo hashing in any finite
system.

We further show that the actual maximum matching size
is sharply concentrated around its expected value. Thus, the
difference between n and the expected maximum matching
size provides, with high probability, the number of elements
that should be stored in the off-chip DRAM.

Second, we provide an exact analysis of a common cuckoo
hashing implementation in which the memory is (statically)
partitioned into two segments, such that each segment corre-
sponds to the image of one hash function; this implementation
is particularly attractive when using single-ported memories.

Third, we further present exact analysis when, in order to
minimize the number of memory accesses, the average number
of choices is less than 2.

Fourth, we also obtain a lower bound on the required
DRAM size when the number of hashes d exceeds 2.

We further evaluate our results on real-life Internet packet
traces from an OC192 backbone link, using a real-life 64-bit
mix hash function. We show when the load is 1, i.e. n = m,
we can insert an average of 83.81% of the packets within the
hash table. Likewise, when the load is 0.6, i.e. n = 0.6m, we
can insert in average 99.38% of the packets, thus only storing
0.62% on off-chip DRAM. We further confirm our analytical
models and show that our bounds for d > 2 are typically
within 1% of the exact value.

Finally, we compare the network hash table throughput
using different numbers d of hash functions. We first provide
analytical results when the on-chip memory is partitioned into
two (unequal) segments. Then, we run simulations and show
that, unlike common belief, it is still worth using d = 2
hash functions beyond a load of 0.5, even though some of
the packets are stored on DRAM. We also illustrate how the
exact load at which cuckoo hashing with d = 3 hash functions
outperforms traditional cuckoo hashing with d = 2 depends
on the SRAM/DRAM access time ratio.

Incidentally, our paper can lead to two interesting contri-
butions. First, the paper analysis also provides exact results
when the numbers of elements n and buckets m are finite.
This non-asymptotic analysis is particularly needed when n
and m are known to be small. In addition, we note that for
other multiple-choice hashing schemes, our results provide a
lower bound on the number of elements that should be stored
off-chip. This is because the maximum matching size of the
graph is always an upper bound on the number of elements
that can be inserted into the hash table. Moreover, since finding
the maximum matching in bipartite graphs is a fundamental
problem with a wide range of applications, we believe that our
results also have a theoretical significance and may be used
in other contexts.

C. Limits

In our paper, we make several key assumptions that may
limit the reach of our results.

First, we rely on cuckoo hashing to implement the network
hash table. While it is a leading state-of-the-art hashing option,
we could have chosen to analyze alternative hashing schemes,
which may have provided different results. As mentioned
above, please note however that no multiple-choice algorithm
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with d = 2 can beat the SRAM utilization of cuckoo hashing,
although it may theoretically yield a better throughput.

Our second assumption is that the hash table is accessed
sequentially, such that each new packet needs to wait for
the end of the former packet. As a result, throughput is
inversely proportional to packet delay. This assumption is
designed to cope with general hash tables, in which several
applications may share the hash table, and therefore each
packet may need to access and modify several elements in
the hash table according to different application-based keys.
Since the modifications of each packet may also affect the
next packets, it is simpler to wait for its processing to end.
The hash table may be made more efficient by processing
packets of different application-based flows in parallel. But
such a scheme may become too hard to implement for a large
number of applications, because each key of each packet needs
to be compared with the relevant keys of all previous packets
currently accessing the hash table. In any case, our results can
also be extended to such parallel accesses.

Our third assumption is that all element queries are for
elements that are indeed stored in the hash-table. This assump-
tion is common in several networking applications [10], while
in others it requires a set membership query before actually
accessing the hash-table. To obtain the expected latency, we
further assume that all elements in the hash table are equally
likely to be accessed.

Finally, our last assumption is that each access to DRAM
is b times slower than an access to SRAM, i.e. the impact
of DRAM is mainly through its access time. We do not take
into account the chip in/out pin capacity, which may further
reduce the range of hashing options available. We also do not
consider the DRAM division into banks, and do not consider
non-uniform DRAM access times as a first approximation.

D. Related Work

There is a large literature on multiple-choice hashing
schemes for general hash tables [20], [21]. In particular,
regarding the cuckoo hashing scheme [6]–[9], [11]–[19], the
main effort has been to find a load threshold, such that for
any load below the threshold a perfect matching exists with
high probability. It is known that a cuckoo hashing scheme
with d = 2 succeeds with high probability if the load is
less than 0.5, but fails when the load is larger [11]. Recent
works [13]–[15] have also settled the problem of finding the
corresponding thresholds for d > 2. Moreover, [8] shows that
cuckoo hashing with a stash (in our case, DRAM) of size
s, d = 2, and a load less than 0.5 fails with probability
O (n−s). Our paper differs in that we also consider the average
efficiency of cuckoo hashing for load values beyond 0.5 for
d = 2. Moreover, while most of the works investigate only the
asymptotic behavior, we also present in our paper analytical
expressions for finite random graphs along with the asymptotic
ones. Last, we assume that the DRAM size is not a constraint.

We are particularly interested in schemes for network hash
tables [10]. In such schemes, the lookup times are often
assumed to be bounded. For instance, the multi-level hash table
(MHT) [7], [22] scheme partitions the SRAM memory into

subtables, with a single hash function per subtable. In addition,
the cuckoo variant with one move enables applications that
also need fast element insertions, which we do not consider
in this paper [6]. Moreover, additional papers consider the
problem of off-chip memory. When the SRAM is too small, an
on-chip summary of the off-chip elements is used to reduce the
average number of off-chip accesses to almost 1 per element
query [23]. But note that as a consequence, an off-chip access
is performed in any hashing operation. Another non-uniform
memory model-based hashing scheme is the peacock hashing,
which also stores clues in on-chip memory and improves upon
MHT for deletions [24]. Additional references also focus on
hash tables for specific applications, such as those based on
Bloom filters [5], [10], [25]. However, all these papers do not
focus on optimizing parameters in order to reduce the overall
latency in a combined SRAM/DRAM system, which is the
goal of this paper.

Finally, there are several related results in graph theory.
[26], [27] provide the probability of a perfect matching in
several random bipartite graph models. But they do not provide
the expected maximum matching size when this probability
is different from one. Also, several studies investigate the
expected maximum matching size in other models of random
graphs, and especially trees [28]–[31]. Our paper differs in
that it considers a different model of random bipartite graphs,
where each left-side vertex chooses a constant number of right-
side vertices.

Paper Organization: We start by introducing the prelim-
inary definitions in Section II. Then, Section III provides the
expected maximum matching size of random bipartite graphs
with left-side vertex degree 2, where a variation of the problem
in which each left-side vertex degree is at most 2 is considered
in Section IV. Next, in Section V, we solve the more appealing
problem in which the right-side vertices are partitioned into
two subsets, and each left-side vertex has exactly one edge to
each of these subsets. Section VI provides an upper bound on
the expected maximum matching size when the constant left-
side vertex degree is at least three. Last, in Section VII we
verify and evaluate our results, including by real-life trace-
based experiments. For the sake of readability, most of the
proofs are presented in Appendix A.

II. BIPARTITE GRAPH MODEL

In this section, we define cuckoo hashing using a bipartite
graph, with the left-side vertices corresponding to elements
and the right-side vertices to SRAM bins.

Formally, given two disjoint sets of vertices L and R of
size n and m respectively, we consider a random bipartite
graph G = ⟨L+R,E⟩, where each vertex v ∈ L has d = 2
outgoing edges whose destinations are chosen independently
at random among all vertices in R. We allow both choices to
be the same vertex, implying that G might have parallel edges.
For brevity, we sometimes say that v ∈ L chooses a vertex
v′ ∈ R if (v, v′) is in E. The load of G is denoted by α = n

m .
We further consider cases when the average number of

choices is less than 2.
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Definition 1. Let dv be the number of choices of each vertex
v ∈ L. The average number of choices a is the average left-

side vertex degree, i.e. a =
E(

∑
v∈L dv)
n =

∑
v∈L E(dv)

n .

First, in the deterministic case, we find the expected max-
imum matching size of the graph Ga = ⟨L+R,E⟩, where
each vertex v ∈ L independently chooses a predetermined
number dv ∈ {1, 2} of random vertices in R, such that
a = d1+2·d2

n .
Second, in the random case, we analyze the slightly different

case of a random bipartite graph Gp = ⟨L+R,E⟩ where each
vertex chooses two vertices with probability p and one vertex
with probability 1 − p. This implies that in Gp, the average
number of choices a = 1 + p.

Finally, we also consider a static partitioning of the choices;
the set R is partitioned into two disjoint sets Ru and Rd of
sizes β ·m and (1− β)m. In that case, we consider a random
bipartite graph Gβ = ⟨L+ (Ru ∪Rd), E⟩, where each vertex
v ∈ L chooses exactly one vertex in Ru and another vertex in
Rd.

We want to find both the expected maximum matching size
as well as the normalized limit expected maximum matching
size for the above-mentioned graph models. To do so, we
model our hash functions as fully random, which often yields
an excellent approximation [10], [32].

Definition 2. For any graph G, let µ (G) be the expected size
of the maximum size matching.

Notice that if G is a deterministic graph, then µ (G) is
simply the size of its maximum size matching.

Definition 3. The normalized limit expected maximum match-
ing size γ = limn→∞

µ(·)
n is the limit percentage of the

expected maximum matching size (out of the number of the
vertices in L).

Note that often we are interested in n − µ(G), which
corresponds to the expected number of unmatched left-side
vertices in the graph. This corresponds to the number of
elements that should be stored in the off-chip DRAM.

Finally, our goal is to model the throughput of the network
hash table. To do so, we first assume that each access to on-
chip SRAM takes a unit amount of time, while each access
to off-chip DRAM takes a latency of b (where b > 1, e.g.
b = 10). Also, all accesses are sequential. For instance, assume
that we use cuckoo hashing with d = 2, and a given element
is in the DRAM. Then a query for this element would first
successively check the d = 2 SRAM bins, then the DRAM,
for a total latency of b+ 2.

We further assume that all the elements in the hash table are
equally likely to be accessed. We define the average latency
as the average total access latency over all elements in the
hash table, including the elements in the SRAM as well as in
the DRAM. We further define the throughput of the network
hash table as the inverse of its average latency. For example,
if it takes on average 2 accesses to query an element, then
the hash table throughput is 1

2 . Our goal is to maximize this
throughput.

 

 

 

 
 

 

 

 

Fig. 2. Example of bipartite graph with left-side vertex degree 2

III. EXPECTED CUCKOO PERFORMANCE: BIPARTITE
GRAPHS WITH d = 2

We are now interested in evaluating the expected perfor-
mance of cuckoo hashing. As explained above, we approach
the problem using a graph-theory perspective, since it is the
same as evaluating the expected maximum matching size of
the random bipartite graph G.

To do so, we consider the connected components of the
random bipartite graph G. We start by stating some lemmas
on these connected components, before establishing our main
result on the expected matching size. Note that further evalu-
ation of the results reported here appears in Section VII.

A. Expected Maximum Matching Size

We first consider an arbitrary bipartite graph H =
⟨LH +RH , EH⟩, where each left-side vertex in LH chooses
d = 2 right-side vertices in RH (parallel edges are allowed),
with |LH | = s and |RH | = q.

Figure 2 illustrates such a bipartite graph with s = 3, q = 4,
and left-side vertex degree 2. Dashed lines represent edges
not in the maximum size matching, while solid lines represent
edges in the maximum size matching.

We start by quoting a few useful and straightforward lem-
mas (proved in Appendix A), before stating our result.

Lemma 1. If s ≤ q − 2, then H is not connected.

Lemma 2. If H is connected and s ≥ q, then µ (H) = q.

Lemma 3. If H is connected and s = q − 1 then µ (H) = s.

Lemma 4. For any graph with s = q − 1, H is connected if
and only if it is a tree.

Lemma 5. The number Ts of labeled connected bipartite
graphs H whose |LH | = s and |RH | = s + 1 is Ts =
(s+ 1)

s−1
s!

We can now prove the next theorem on our random bipartite
graph G, which is the main theoretical result of this paper.
This theorem provides the exact expected number of elements
µ (G) that can fit the on-chip SRAM memory using standard
cuckoo hashing with d = 2. Therefore, a corollary is that
n− µ (G) also gives us the expected number of elements that
are left outside the chip.

Theorem 1. Let d = 2 and ℓ = min (n,m− 1). The expected
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maximum matching size µ (G) is

µ (G) = m−
ℓ∑

s=0

{(
n

s

)
·

(
m

s+ 1

)
·
(
1− s+ 1

m

)2(n−s)

·

(
s+ 1

m

)2s

· 2ss!

(s+ 1)s+1

}
Proof: Let M be a maximum matching of G. Our proof

is based on counting the expected number of vertices in R
that are not part of M , and on the decomposition of G into
its connected components.

Lemma 1 yields that any connected component of G with s
left-side vertices has at most s+1 right-side vertices. We call a
connected component with s left-side vertices and s+1 right-
side vertices a deficit component of size s. Lemma 3 implies
that the maximum matching size of any such deficit component
is s. Therefore, exactly one of its right-side vertices is not part
of M . Notice that in all other connected components, where
q < s + 1, the maximum matching size of G is exactly q
(Lemma 2), implying that all their right-side vertices are part
of M .

Thus, in order to calculate the size of M , it suffices to count
the number of deficit components x. The size of M is m− x
because exactly x right-side vertices do not participate in M ,
one for each deficit component.

Consider a random bipartite graph, with s left vertices, each
of degree 2, and s + 1 right vertices, and let Ps = 2sTs

(s+1)2s

be the probability that it is connected. Note that we multiply
Ts by 2s because Ts only counts connected bipartite graphs,
which are necessarily trees (Lemma 4), with no distinction
between the two edges connected to each left vertex, while
in the denumerator we count all possible instances of random
bipartite graphs as above, where we distinct between the two
edges connected to each left vertex.

The expected number of deficit components of size s is(
n
s

)(
m
s+1

)
·
(
1− s+1

m

)2(n−s)·
(
s+1
m

)2s·Ps. The above expression
consists of the following factors (in order):
(i) choosing the s vertices in L;
(ii) choosing the s+ 1 vertices in R;
(iii) the probability that all s + 1 vertices in R may be
connected only to the chosen s vertices in L;
(iv) the probability that all s vertices in L are only connected
to the s+ 1 vertices in the right side; and,
(v) the probability that all chosen vertices are connected.

Finally, we calculate x by summing over all possi-
ble values on s. As mentioned before, the expected size
of M is given by m − x. We get: µ (G) = m −∑ℓ

s=0

(
n
s

)(
m
s+1

)
·
(
1− s+1

m

)2(n−s) ·
(
s+1
m

)2s · Ps, where ℓ =

min (n,m− 1), Ps =
2sTs

(s+1)2s
, and Ts = (s+ 1)

s−2 ·(s+ 1)!,
as found in Lemma 5.

The following example provides a simple illustration when
n = m = 2.

Example 1. Consider the case n = m = 2 (and d = 2). Then
in all random graphs the maximum matching size is 2, except
for the two extreme cases where all 4 edges are connected to
a specific vertex in R, and then the maximum matching size
is 1. Each such case occurs with probability

(
1
2

)4
. Hence,

µ (G) = 2 − 2 ·
(
1
2

)4
= 15

8 = 1.875. This is indeed precisely
what we obtain using Theorem 1.

B. Concentration Result
We next show that the size of the maximum matching is

highly concentrated around its expectation µ(G). This implies
that the number of off-chip elements will be close to its
average value.

In order to prove this result, we apply Azuma’s inequality
to a Doob martingale (more specifically, the martingale is a
vertex exposure martingale of the left-side vertices). Note that
as long as all left-side vertices pick their edges independently,
this concentration result holds regardless of the value of d,
and more generally regardless of the specific distribution
over which the hash functions are defined. Therefore, the
concentration result also applies to the settings of Sections IV
– VI.

Theorem 2. Let H be a specific instance of the ran-
dom graph G, as defined in Section II. For any λ > 0,
Pr(|µ(H)− µ(G)| > λ

√
n) < 2e−λ2/2.

Proof: Our notations follow those of [33]. We first define
an exposure martingale, which exposes one left-side vertex at
a time, along with all its outgoing edges. This martingale is
equivalent to a regular vertex exposure martingale, in which all
right-side vertices are exposed first, and then left-side vertices
are exposed one by one.

Specifically, let G be the probability space of all two-choice
bipartite graphs as defined in Section II and f the size of the
maximum size matching of a specific instance. Assume an
arbitrary order of the left-side vertices L = {v1, . . . vn}, and
define X0, . . . , Xn by Xi(H) = E[f(G) | ∀x ≤ i,∀vy ∈
R, (vx, vy) ∈ G iff (vx, vy) ∈ H]. Note that X0(H) = µ(G)
since no edges were exposed, while Xn(H) = µ(H) as all
edges are exposed.

Clearly, f satisfies the vertex Lipschitz condition since if
two graphs H and H ′ differ at only one left-side vertex,
|f(H) − f(H ′)| ≤ 1 (either that vertex is in the maximum
matching or not). Thus, since each left-side vertex makes in-
dependent choices, [33, Theorem 7.2.3] implies that the corre-
sponding vertex exposure martingale satisfies |Xi+1−Xi| ≤ 1.
Hence, by applying Azuma’s inequality, we immediately get
the concentration result.

Notice that if we are interested only in one-sided bounds, we
can get a slightly tighter result: Pr(µ(G)− µ(H) > λ

√
n) <

e−λ2/2. This is exploited in the following corollary, which
shows that to obtain a given overflow fraction, the number of
off-chip elements grows sub-linearly with n beyond its average
value.

Corollary 3. With probability at least 1 − ϵ, the number of
elements that need to be stored in off-chip DRAM is less than
n− µ (G) +

√
2n · ln (1/ϵ), where µ(G) is as in Theorem 1.

Proof: If a stash of size n−µ (G)+
√
2n · ln 1/ϵ is used,

cuckoo hashing fails if and only if n− µ(H) > n− µ (G) +√
2n · ln 1/ϵ, or by rewriting it, µ(G)−µ(H) >

√
2n · ln 1/ϵ.

By substituting λ =
√

2 · ln 1/ϵ in the above one-sided bound,
we get the claimed result.
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C. Limit Normalized Expected Maximum Matching Size

Our results above provide exact expressions, given n el-
ements and m SRAM bins. We now want to study the
scaling properties of the hash table, and are interested in the
asymptotic expression where n → ∞ with α = n

m constant.
The following results show an interesting connection be-

tween the limit normalized expected maximum matching size
and the Lambert-W function, and even a connection between
the perfect matching threshold and the radius of convergence
of the Lambert-W function. For further details on the Lambert-
W function, see also Appendix B.

Theorem 4. Let d = 2. The limit normalized expected
maximum matching size γ = limn→∞

µ(G)
n is given by:

γ =
1

α
+

1

2α2
·W
(
−2α · e−2α

)
+

1

4α2
W 2

(
−2α · e−2α

)
, (1)

where the Lambert-W function is the inverse function of the
function ω(x) = xex.

Proof: We compute the limit of µ(G)
n as n → ∞ such

that α = n
m :

γ = lim
n→∞

1

n
·

(
m−

ℓ∑
s=0

{(
n

s

)
·
(

m

s+ 1

)
·

(
1− s+ 1

m

)2(n−s)

·
(
s+ 1

m

)2s

· 2ss!

(s+ 1)
s+1

})

We find through differentiation that
(
1− s+1

m

)2(n−s)
is an

increasing function with respect to n (where m = n
α ).

Moreover, the expansion of 1
n ·
(
n
s

)(
m
s+1

)
·
(
s+1
m

)2s
shows that it

is also an increasing function. Therefore, their product is also
increasing and, by the monotone convergence theorem [34],
we get

γ = lim
n→∞

m

n
−

∞∑
s=0

lim
n→∞

(
1

n
·
(
n

s

)(
m

s+ 1

)
·

(
1− s+ 1

m

)2(n−s)

·
(
s+ 1

m

)2s

· Ps

)
where by convention

(
u
v

)
= 0 for u < v. By substituting

the expression for Ps, and using the facts that
(
n
s

)
= ns

s! +
O
(
ns−1

)
and limn→∞ (1 + a/n)

n
= ea, we deduce:

γ = lim
n→∞

m

n
−

∞∑
s=0

lim
n→∞

(
1

n

ns

s!

ms+1

(s+ 1)!
e−2α(s+1)·

(s+ 1)
2s

m2s
· 2

s (s+ 1)
s−1

s!

(s+ 1)
2s

)
By substituting m = n

α , and simplifying the above expression,
we get:

γ =
1

α
− 1

α
·

∞∑
s=0

αs · 2s · (s+ 1)
s−1

(s+ 1)!
· e−2α(s+1)

=
1

α
− 1

2α2
·

∞∑
j=1

(
−2α · e−2α

)j · (−j)
j−2

j!

Let T (x) =
∑∞

j=1
(−j)j−2

j! · xj be a formal power series,
where by substituting x = −2α · e−2α we get the above
expression. By differentiating T (x) and multiplying by x, we
get:

x · d

dx
T (x) = −

∞∑
j=1

(−j)
j−1

j!
· xj = −W (x) ,

where the Lambert-W function is the inverse function of the
function ω(x) = xex [35], and the last equality follows from
its known Taylor expansion that converges as long as x is
within the radius of convergence with |x| ≤ e−1 [35].

Given that x · d
dxT (x) = −W (x), we compute T (x):

T (x) =

∫
1

x
· (−W (x)) dx = −W (x)− 1

2
W 2 (x) ,

with convergence within |x| ≤ e−1.
Interestingly, the function f (α) = −2α · e−2α gets its

minimum at α = 0.5, where it precisely equals the radius
of convergence −e−1. Therefore, for all α we can substitute
x = −2α·e−2α, since we are within the radius of convergence
of T (x), and we finally derive the result.

We note that this particular asymptotic result can be also
achieved by the theory of giant components in random
graphs [33], [36]. However, this technique is not applicable
for finite n and m, and cannot be used to derive most of the
other results in this paper. (A proof using this technique
appears in Appendix A).

The following simple illustration of the result shows that
standard cuckoo hashing can only reach about 84% of SRAM
occupancy when the load is 1.

Example 2. In case α = 1, that is n = m, the normalized
limit expected maximum matching size is

γ = 1 +
1

2
·W

(
−2 · e−2

)
+

1

4
W 2

(
−2 · e−2

)
≈ 0.8381.

The following corollary shows that when the load is below
1
2 , the probability for a right-side vertex to be part of a
maximum matching goes to 1. This corollary also follows
from the previously known result that there is a perfect
matching with high probability in cuckoo hash tables with
load α ≤ 1

2 [11].

Corollary 5. Let d = 2 and α = n
m ≤ 1

2 . Then the
limit normalized expected maximum matching size is γ =
limn→∞

µ(G)
n = 1.

Proof: In case α ≤ 1
2 , W

(
−2α · e−2α

)
equals −2α, thus,

γ = 1
α + 1

2α2 · (−2α) + 1
4α2 (−2α)

2
= 1

IV. CUCKOO WITH LOW MEMORY BANDWIDTH:
BIPARTITE GRAPHS WITH dv ≤ 2

In this section we are interested in a low-memory-bandwidth
version of the cuckoo hash algorithm. We now let each element
choose either 1 or 2 bins instead of only 2 bins, to force them
to access less bins and use less memory I/O bandwidth.

The idea behind this cuckoo algorithm is that it may use
less SRAM accesses than a full cuckoo algorithm. On the
other hand, it will be less memory-efficient and therefore will
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also need to access the DRAM more often. We are interested
in the tradeoff between these two considerations.

Formally, we relax the constraint that each vertex in L
chooses exactly 2 vertices in R, and let each left-side vertex
choose either 1 or 2 right-side vertices. Since we can divide
the set of vertices either deterministically or randomly, we will
discuss the results in both cases. See also [37] for a similar
model.

Note that further evaluation of the results reported in this
section can be found in Section VII-B.

A. Connected Components in Deterministic Graphs

As in Section III-A, we now consider a deterministic
bipartite graph H = ⟨LH +RH , EH⟩, with |LH | = s and
|RH | = q. We assume that the degree of each vertex in LH

is at most 2.

Proposition 1. Lemmas 1, 2, and 3 hold also when the degree
of each vertex in LH is at most (but not necessarily) 2.

Note that the proofs remain almost identical to the original
proofs, replacing a few equalities with the corresponding
inequalities.

Lemma 6. Let s+ 1 = q. If H is connected then the degree
of each vertex in LH is 2.

B. Expected Maximum Matching Size

Predetermined Number of Choices—We assume that each
vertex v ∈ L independently chooses 1 ≤ dv ≤ 2 random
vertices in R, where dv is predetermined. The following result
provides the expected maximum matching size in this case.

Theorem 6. Given a predetermined average number of
choices a, let d1 = (2− a)·n and d2 = n−d1 = (a− 1)·n be
the number of vertices in L that choose one and two vertices in
R, respectively. The expected maximum matching size µ (Ga)
is given by:

µ (Ga) = m−
ℓ∑

s=0

{(
d2
s

)
·

(
m

s+ 1

)
·
(
1− s+ 1

m

)2(d2−s)+d1

·

(
s+ 1

m

)2s

· 2ss!

(s+ 1)s+1

}

where ℓ = min (d2,m− 1).

Random Number of Choices—We assume that each vertex
v ∈ L independently chooses 1 ≤ dv ≤ 2 random vertices in
R, where for each v ∈ L, dv equals 2 with probability p, and
it equals 1 with probability 1−p. The following result reflects
the expected maximum matching size in this case.

Theorem 7. The expected maximum matching size µ (Gp) is
given by

µ (Gp) =
n∑

d2=0

(
n

d2

)
· pd2 · (1− p)n−d2 · µ

(
G

a=1+
d2
n

)
,

where µ (Ga) is given by Theorem 6.

C. Limit Normalized Expected Maximum Matching Size

Predetermined Number of Choices—We are also inter-
ested in the asymptotic expression, where n → ∞, such that
we fix both the load α = n

m and the average number of choices
a = d1+2·d2

n of the vertices. This is reflected in the following
theorem.

Theorem 8. The limit normalized expected maximum match-
ing size γa = limn→∞

µ(Ga)
n with average number of choices

a ∈ (1, 2] is given by:

γa =
1

α
+
W (−2α (a− 1) · e−aα)

2α2 · (a− 1)
+
W 2 (−2α (a− 1) · e−aα)

4α2 · (a− 1)
.

For a = 1, it is γa = 1
α − 1

α · e−α.

Interestingly, if even a small fraction of the elements do
not have choice, then the limit normalized expected maximum
matching size is not 1. This is reflected in the following
corollary.

Corollary 9 ((No) Perfect Matching). If 1 ≤ a < 2 then
γa < 1.

Random Number of Choices—We now study the case of
the random bipartite graph Gp = ⟨L+R,E⟩, where each
vertex chooses two vertices with probability p, and a single
vertex with probability 1−p. As we show in the next theorem,
the asymptotic expression can be derived from γa.

Theorem 10. The limit expected maximum matching size γp =

limn→∞
µ(Gp)

n is γp = γa=1+p.

V. SINGLE-PORTED CUCKOO: STATIC PARTITIONING OF
THE CHOICES

We now consider a popular cuckoo-hashing implementation
variant in which the bins are statically partitioned into two
equal sets, and each element holds one hash function to each
set. This variant is easier to implement in hardware, because it
can be implemented using two simple single-ported memories,
instead of a single dual-ported one.

Formally, we consider the random bipartite graph Gβ =
⟨L+ (Ru ∪Rd), E⟩, where R is now partitioned into two
disjoint subsets Ru and Rd with |Ru| = β · m and |Rd| =
(1− β)m. Each vertex v ∈ L independently chooses a single
random vertex in Ru and another single random vertex in
Rd. This corresponds, for example, to a hashing scheme that
selects non-overlapping sets of bins as images of its hash
functions (e.g., as in multilevel hashing scheme [22] or d-
left [2]).

Note that further evaluation of the results reported in this
section can be found in Section VII-C.

A. Connected Components in Deterministic Graphs

The following lemma counts all the possible bipartite graphs
Hud of the form ⟨LH + (RHu ∪RHd

), EH⟩ with degree 2 for
each vertex in LH , where |LH | = s, |RHu | = i and |RHd

| =
j, such that each vertex v ∈ LH is connected using a single
edge to some vertex in RHu and another single edge to some
vertex in RHd

.
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Proposition 2. Lemmas 1, 2, 3, and 4 hold for this case as
well.

Lemma 7. Let s = i+j−1. The number Ti,j of connected bi-
partite graphs is Tij = ij−1 ·ji−1 ·s! = ij−1 ·ji−1 ·(i+ j − 1)!

B. Expected Maximum Matching Size

In the next theorem we find the expected maximum match-
ing size with a static partition of the right-side vertices.
Theorem 11. Given the static partitioning of the bipartite
graph Gβ , the expected maximum matching size µ (Gβ) is

µ
(
Gβ

)
= m−

n∑
s=0

(n
s

) ℓ2∑
i=ℓ1

(β ·m
i

)((1− β) ·m
s+ 1− i

)(
1−

i

β ·m

)n−s

·

(
1−

s+ 1− i

(1− β) ·m

)n−s ( i

β ·m

)s ( s+ 1− i

(1− β) ·m

)s

·

Pi,s+1−i,

where ℓ1 = max {0, s+ 1− (1− β) ·m},
ℓ2 = min (s+ 1, β ·m), Pij =

Tij

(i·j)i+j−1 , and
Tij = ij−1 · ji−1 · (i+ j − 1)!.

Proof: Similarly to the proof of Theorem 1, our proof is
based on counting the expected number of vertices in L that
are not in some specific maximum matching M of Gβ , based
on the decomposition of G into its connected components.
As in the proof of Theorem 1, we consider the number of
connected components with exactly s vertices in L and q =
s + 1 vertices in Ru ∪ Rd, where we have to sum over all
possible combinations (i, s+ 1− i), where i corresponds to
the number of vertices taken from Ru and s+1−i corresponds
to those taken from Rd.

Thus, the expected number of connected components in Gβ
with s vertices in L, i vertices in Ru and s + 1 − i vertices
in Rd is given by:(
n

s

)
·

(
β ·m
i

)(
(1− β) ·m
s+ 1− i

)
·
(
1− i

β ·m

)n−s

·(
1− s+ 1− i

(1− β) ·m

)n−s

·
(

i

β ·m

)s

·
(

s+ 1− i

(1− β) ·m

)s

· Pi,s+1−i,

The above expression consists of the following factors (in
order):
(i) choosing the s vertices in L;
(ii) choosing the i vertices in Ru;
(iii) choosing the s+ 1− i vertices in Rd;
(iv) the probability that all i vertices in Ru may be connected
only to the chosen s vertices in L;
(v) the probability that all s + 1 − i vertices in Rd may be
connected only to the chosen s vertices in L;
(vi) the probability that all s vertices in L are only connected
to the i vertices in Ru;
(vii) the probability that all s vertices in L are only connected
to the s+ 1− i vertices in Rd; and,
(viii) the probability that all chosen vertices are connected.

Finally, adding the expressions for all possible s’s and i’s
and subtracting it from m yields the claimed result.

Up until now we were only interested in the maximum
matching size. However, to determine the latency and through-
put of our hash table, we also need to know how many

elements are in each of the two partitions. Note that there are
many matchings with the maximum matching size. Among
those, we are interested in the matchings that maximize the
expected number of elements in the first partition. This is
reflected in the following theorem.

Theorem 12. Given the static partitioning of the bipartite
graph Gβ , there is a maximum matching such that the expected
number of elements in the first partition is

µ1 (Gβ) = βm ·
(
1−

(
1− 1

βm

)n)
.

Moreover, there is no other maximum matching with a higher
expected number of elements in the first partition.

Proof: Since cuckoo hashing brings to a maximum match-
ing, we consider the case where we always first try to insert an
element into its first choice, i.e. into the first partition. Once
an element is inserted there, the corresponding bucket would
always stay occupied. This follows by the definition of cuckoo
hashing.

Since the first partition size is βm, and there are n elements,
the probability that no element hashes into some bucket in the
first partition is

(
1− 1

βm

)n
. It then follows that the expected

number of occupied buckets in the first partition is as claimed
in the theorem.

C. Limit Normalized Expected Maximum Matching Size

As in the previous sections, we are also interested in the
asymptotic behavior of the partitioned cuckoo hashing scheme
where n → ∞ with both fixed load α = n

m and fixed partition
β. We obtain the following theorem.

Theorem 13. Given the static partitioning of the bipartite
graph Gβ , the limit normalized expected maximum matching
size γβ = limn→∞

µ(Gβ)
n for β ∈ (0, 1) is given by:

γβ =
1

α
− β · (1− β)

α2
· (t1 + t2 − t1 · t2) ,

where t1, t2 are provided by the following equations:
α

1− β
· e−

α
β = t1 · e−t2 ,

α

β
· e−

α
1−β = t2 · e−t1 (2)

and satisfy the condition t1 · t2 ≤ 1.
For β ∈ {0, 1} (namely, the trivial partitions), the limit

normalized expected maximum matching size γβ is 1
α−

1
α ·e

−α.

We deduce the following two corollaries. The first one states
that cuckoo hashing with equal partition is asymptotically
equivalent to cuckoo hashing with no partition. The second
one states how close partition needs to be to equal in order to
reach an ideal average matching.

Corollary 14 (Asymptotic Equivalence). Let d = 2. The limit
normalized expected maximum matching size of Gβ with β =
0.5 is the same as the limit expected maximum matching size
of G.

Proof: We substitute β = 0.5 in the expression from
Theorem 13, and get α

0.5 · e
− α

0.5 = t1 · e−t2 , α
0.5 · e

− α
0.5 =

t2 · e−t1 . One of the solutions of the above equations is t1 =
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t2 = −W
(
−2αe−2α

)
. In the proof of Theorem 4, we showed

that −W
(
−2αe−2α

)
≤ 1. Thus, t1 · t2 < 1. By substituting

this solution in the expression for γβ from Theorem 13 , we
get the exact expression as in Equation (1).

Corollary 15. Let d = 2, α ≤ 1
2 , and fix a partition β.

The limit normalized expected maximum matching size γβ =

limn→∞
µ(Gβ)

n is 1 whenever 1−
√
1−4α2

2 ≤ β ≤ 1+
√
1−4α2

2 .

As in the last section, we are also interested in the limit
normalized expected fraction of elements in each of the
partitions. This following theorem corresponds to Theorem 12.

Theorem 16. Given the static partitioning of the bipartite
graph Gβ , in the scaled system, there is a maximum matching
such that the asymptotic expected fraction of elements in the
first subtable is

µ1
β =

β

α
− β

α
e−

α
β

Moreover, there is no maximum matching with a higher
expected fraction.

Proof: The proof is obtained by taking the limit of the
expression in Theorem 12, normalized by n.

Finally, given the off-chip memory access latency b, the
following corollary shows the throughput of the hash table. It
follows immediately from Theorems 13 and 16,

Corollary 17 (Asymptotic Equivalence). Given an on-chip
memory with two partitions of sizes βm and (1− β)m, and
assuming an SRAM of access latency 1 and an off-chip DRAM
of access latency b, the hash table throughput is(

µ1
β + 2 ·

(
γβ − µ1

β

)
+ (2 + b) · γβ

)−1
(3)

Following Corollary 17, it is possible to compute the
optimal partition β that maximizes the hash table throughput.
We further evaluate this in Section VII-F.

VI. SUPER-CUCKOO: BIPARTITE GRAPHS WITH d > 2

We are now interested in checking how powerful cuckoo
hashing can be when we allow more than 2 hash functions
per element. Of course, using more hash functions will result
in an increase in implementation complexity, and therefore
one goal of this study is to point out the tradeoff between
efficiency and complexity.

In this section we briefly show how our method can be
applied to find an upper bound on the expected maximum
size matching where each left-side vertex has d > 2 choices.
Formally, we are given two disjoint sets of vertices L and R of
size n and m, respectively, and a random bipartite graph Gd =
⟨L+R,E⟩, where each vertex v ∈ L has d outgoing edges
whose destinations are chosen independently at random (with
repetition) among all vertices in R. We obtain the following
upper bound on the maximum matching size of the bipartite
graph Gd.

Theorem 18. Let ℓ = min
(
n,
⌊
m−1
d−1

⌋)
and q = (d− 1)·s+1.

Then, µ
(
Gd
)

is at most

min

(
n,m−

ℓ∑
s=0

(q − s)
(n
s

)(m
q

)(
1−

q

m

)d(n−s) ( q

m

)ds ds · q!
q(d−1)·s+2

)
.
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Fig. 3. Expected maximum matching size for various values of n and m
(normalized by n). .
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Fig. 4. Limit expected normalized maximum matching size for various values
of load α.

An evaluation of the upper bound and a comparison to
the simulated expected matching size is presented in Sec-
tion VII-D.

VII. EVALUATION AND EXPERIMENTS

We now evaluate our theoretical results, using both synthetic
evaluations and trace-based experiments.

A. Expected Maximum Matching Size With d = 2

Figure 3 shows the expected maximum matching size nor-
malized by n for various values of n and m. It compares
simulation results with our analytical model from Theorem 1.
For each instance of n and m, we randomized 10,000 bipartite
graphs, then computed the average value. The results confirm
that our model is fairly accurate, and also show the conver-
gence of the expected maximum matching size to its limit.

Figure 4 shows the expected maximum matching size nor-
malized by n as found in Theorem 4, for various values of
load α, both via our analytical model and via simulations. The
simulations were performed using m = 1000 and n = α ·m.
For each value of α, we randomized 100 bipartite graphs.
Again, the model appears fairly accurate.

B. Expected Maximum Matching Size With dv ≤ 2

Figure 5 shows the normalized limit expected maximum
matching size, for various values of load α and average
number of choices a, both via our analytical model (from
Theorem 8) as well as via simulations. The simulations were
performed using m = 1000 and n = α · m, where for
each instance of the simulation we randomized 100 bipartite
graphs. Once again, the results confirm that our model is fairly
accurate.

C. Expected Maximum Matching Size With Static Partition

Figure 6 shows the limit expected maximum matching
size normalized by n, for various values of load α and
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Fig. 5. Low-choice cuckoo: limit expected normalized maximum matching
size as a function of the average number of choices a, for various values of
the load α.
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Fig. 6. Partitioned cuckoo: limit expected normalized maximum matching
size as a function of the partition parameter β, for various values of the load
α.

partition β, both via our analytical model (from Theorem 13)
and via simulations. The simulations were performed using
m = 1000 and n = α · m. For each pair of values of
α and β, we randomized 100 bipartite graphs. The results
confirm the accuracy of our model. They also illustrate how the
limit expected maximum matching size is symmetric around
β = 0.5, and the symmetric partition case reaches the optimum
for this metric.

Note that in case α = 0.5 and β < 0.5, while it seems that
the normalized limit expected maximum matching size is 1, it
is not the case. For instance, in case α = 0.5 and β = 0.45, we
get that 1−γβ ≈ 1.675 · 10−7. Referring to Corollary 15, this
is because 1+

√
1−4α2

2 = 1
2 in that extreme case. For strictly

smaller loads, the imbalance in the partition sizes does not
necessarily reduce γβ and the plot becomes true flat in the
middle, as illustrated in Corollary 15.

D. Expected Maximum Matching Size With d > 2

We evaluate the upper bound found for the expected match-
ing size (Theorem 18). Figure 7 shows our upper bound as
well as simulation results for various values of the number of
choices d. We took n = m = 100, while for each instance of d,
we randomized 105 bipartite graphs. In the case of d = 2, our
upper bound matches the exact expression found in Theorem 1
and thus matches the simulation results. In addition, we can
compare simulation results for higher values of d with our
bounds. For instance, in the case of d = 3 the normalized
expected maximum matching size via the simulation is 0.9402,
while our upper bound is 0.9508. In case d = 4, we get
a simulation value of 0.9795, while the corresponding upper
bound is 0.9820.
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Fig. 7. Super-cuckoo: comparison of the simulation results and the theoretical
upper bound for the normalized expected maximum matching size, as a
function of the number of choices d in cuckoo hashing. The load is α = 1.
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Fig. 8. Experiment using real-life traces and hash functions of the normalized
number of elements in the DRAM, and comparison to the theoretical model.

E. Trace-Driven Experiments

We have also conducted experiments using real-life traces
recorded on a single direction of an OC192 backbone link [38],
where packets are hashed using a real 64-bit mix function [39].
Our goal is two-folded. First, we would like to verify that our
analysis agrees with results of real-life traces. And second, we
want to verify that the distribution of the overflow list size is
highly concentrated around its mean, as stated in Theorem 2.

We took m = 10,000, and set a number of elements n as
corresponding to various values of load α. We repeated each
experiment 100 times. Fig. 8 shows that the results of our
experiments are very close to our model. Furthermore, it also
shows that the minimum and the maximum off-chip DRAM
size are close to the mean.

F. Access Throughput

Finally, we compare the access throughputs of network hash
tables based on several hashing schemes.

Figure 9 plots the access throughput when the off-chip
memory is b = 5 times slower than the on-chip memory. In
the case of the partitioned cuckoo hashing with d = 2, it
assumes an optimal partitioning for each load, as provided by
by Corollary 17. It is clear that that there is limited difference
between the cases of d = 2 with partitioning and d = 2 with-
out partitioning, and therefore by simplicity we only consider
one of them below. More importantly,it shows that up to a load
of approximately 0.7, and for loads above approximately 1, it
is better to use d = 2 than d = 3. Intuitively, this is because the
decrease in the number of needed SRAM accesses more than
compensates for the resulting loss of efficiency and therefore
the increase in the number of DRAM accesses.

Figure 10 further highlights this result. It plots the ratio of
the throughput of several cuckoo and d-left [2] variants by
the throughput of partitioned cuckoo with d = 2 and optimal
partitioning. Therefore, it emphasizes the throughput gain (or
loss) with respect to the partitioned cuckoo algorithm.
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Fig. 10. Ratio of the throughput of several cuckoo and d-left variants by the
throughput of optimally-partitioned cuckoo hashing with d = 2 and optimal
partitioning.

In Figure 10(a), when DRAM accesses are b = 5 slower
than SRAM accesses, we can see more clearly the outperfor-
mance of partitioned cuckoo with d = 2 under most loads, and
compared to most hashing algorithms. For instance, at load
α = 1, i.e. when the hash table is highly loaded, partitioned
cuckoo hashing with d = 2 is (surprisingly) better then d = 3.
By Theorem 13 and Theorem 16, we can find that the optimal
memory partitioning is β = 57.0% for the first subtable and
1−β = 43.0% for the second subtable, and that 47.2% of the
elements are stored in the first subtable, 36.2% in the second
one, and 16.6% in the off-chip DRAM. The resulting through-
put is (1 · 0.472 + 2 · 0.362 + (2 + 5) · 0.166)−1 ≈ 0.4241.
This is indeed higher than the throughput of cuckoo hashing
with d = 3 with no partitioning, which is found to be 0.4194
in simulations.

Finally, Figure 10(b) shows that for b = 15, the cost of
DRAM accesses becomes higher, and therefore there is more
incentive to be efficient in the SRAM. Cuckoo hashing with
d = 3 outperforms then in most cases. Most often, the cost of
DRAM is not high enough to justify d = 4.

VIII. CONCLUSION

In this work, we analyzed the throughput of a network
hash table combined of on-chip SRAM and off-chip DRAM,
and based on cuckoo hashing. We first provided an exact

expression for the expected maximum matching size of a
random bipartite graph with each left-side vertex picking
d = 2 right-side vertices, for any number of left-side and
right-side vertices. Then, we deduced asymptotic results as the
memory size goes to infinity, and even showed a connection
to the Lambert-W function. Both these results directly apply
as exact results for cuckoo hashing, and also serve as upper
bounds for any alternative multiple-choice hashing algorithm
with d = 2 choices. We further analyzed several cuckoo
hashing variants.

Our results illustrate the impact of the SRAM/DRAM access
time ratio on the parameter choice. In particular, we show that
the common intuition of avoiding DRAM accesses by using
highly efficient schemes is not always correct. Sometimes, it is
better to use a less efficient hashing method because it needs
less SRAM accesses. In addition, while we focused in this
paper on the throughput of an SRAM/DRAM system, these
results can also be extended to evaluate the system power
consumption. They can also apply to alternative systems, such
as SRAM/CAM implementations.
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APPENDIX A
OMITTED PROOFS

A. Proof of Lemma 1

The proof follows by induction on s. For s = 1, there are
2 edges in the graph and therefore every graph with q ≥ 3 is
not connected. Assume that the claim holds up until s = s′,
we next prove that it holds for any bipartite graph H ′ such
that |LH′ | = s′ + 1 and |RH′ | ≥ s′ + 3. Assume towards
a contradiction that there is a graph H ′ that is connected.
We first show that there is a vertex in RH′ with a degree 1:
This follows from the fact that the average right-side degree

is 2(s′+1)
s′+3 < 2, implying that there is at least one vertex with

degree strictly less than 2; since the graph is connected, there
are no right-side vertices with degree 0. Let vr be such a vertex
and let vℓ ∈ LH′ be the (only) left-side vertex to which it is
connected. By the induction hypothesis, the graph induced by
LH′ \ {vℓ} and RH′ \ {vr} is not connected, implying it has
at least two connected components. In H ′, vℓ is connected to
vr and since its degree is 2 it can be connected only to one of
these components. This implies that H ′ is also not connected,
and the claim follows.

B. Proof of Lemma 2

We first consider the case where s = q. For S ⊆ LH ,
let d(S) ⊆ RH be the set of vertices that are adjacent to
any vertex in S. Hall’s Theorem [40] implies that to prove
that µ (H) = q (namely, there is a perfect matching in H)
it suffices to prove that for every S ⊆ LH , |S| ≤ |d(S)|.
Assume towards a contradiction that there is a subset S ⊆ LH

such that |S| > |d(S)|, and denote |d(S)| as ℓ. Furthermore,
consider the bipartite graph Ĥ =

⟨
L̂H + R̂H , ÊH

⟩
, in which

L̂H = LH \ S, R̂H = RH ∪ {v̂R} \ d(S) (where v̂R is a
newly-introduced vertex) and any edge in E(H) of the form
(vℓ, vr) such that vℓ ∈ LH \S and vr ∈ d(S) is replaced with
the edge (vℓ, v̂R) in ÊH . Notice that since H is connected, Ĥ
must be connected as well. Recall that |S| > ℓ, thus

∣∣∣L̂H

∣∣∣ =
|LH\S| ≤ s − ℓ − 1, while

∣∣∣R̂H

∣∣∣ = |RH ∪ {v̂R} \ d(S)| =
|RH | − |d(S)| + 1 = s − b + 1. This contradicts Lemma 1,
implying that for every S ⊆ LH , |S| ≤ |d(S)| and by Hall’s
Theorem µ (H) = q.

For s > q, trivially µ(H) ≤ q. Therefore, it suffices to
show that there exists a subset S ⊆ LH of size q, such
that the corresponding bipartite subgraph is connected (and
hence has a perfect matching of size q). We construct S in q
iterations such that at the end of iteration n we end up with
some subsets Sn ⊆ LH and Qn ⊆ RH of the same size
n, whose corresponding subgraph is connected. We start by
n = 1 and pick some vertex vR ∈ RH and one of its adjacent
vertices vL ∈ LH . Assuming that at the end of iteration n,
sets Sn and Qn were chosen (and their corresponding graph
is connected), we next construct Sn+1 and Qn+1. Let v1 be
an arbitrary vertex in Sn and let v2 be an arbitrary vertex
in LH \ Sn (such a vertex always exists since s > q > n).
Similarly, let v′1 be an arbitrary vertex in Qn and let v′2 be an
arbitrary vertex in RH \Qn. Since H is connected there is a
path between v1 and v2, and let v be the first vertex along this
path that is not in Sn. Similarly, v′ is the first vertex along
the path between v′1 and v′2 that is not in Qn. We differentiate
between three cases: (i) v is adjacent to Qn and v′ is to Sn.
In this case Sn+1 = Sn∪{v} and Qn+1 = Qn∪{v′} and the
corresponding subgraph is connected; (ii) v is not adjacent to
a Qn. Let w be the vertex before v in the path between v1 and
v2, and let w′ be the vertex before w in the path. Note that
w′ ∈ Sn by the choice of v, and that w /∈ Qn (otherwise
v is adjacent to a Qn). Thus, for Sn+1 = Sn ∪ {v} and
Qn+1 = Qn ∪{w}, the corresponding subgraph is connected;
(iii) v′ is not adjacent to a Sn. The claim holds similarly to case
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(ii) by looking at the path between v′1 and v′2. We continue this
construction for q iterations, resulting in two subsets Sq ⊆ LH

and Qq ⊆ RH of size q each, whose corresponding subgraph
is connected.

C. Proof of Lemma 3

Since each vertex in LH has a degree of two, the sum of the
degrees of all the vertices in RH is 2s = 2q − 2. Therefore,
there must be at least one vertex vr ∈ RH with degree 1
(there cannot be a vertex with degree 0 since H is connected).
Let vL ∈ LH be the (only) vertex that is connected to vR
and v̂R ∈ RH be the other vertex that is connected to vL.
Also consider the bipartite graph Ĥ =

⟨
L̂H + R̂H , ÊH

⟩
that

is given by removing vR from H and adding a new edge
(vL, v̂R). By the construction of Ĥ , the degree of each vertex
in L̂H is exactly 2. Moreover, since H is connected, Ĥ is also
connected. Hence, Lemma 2 implies that there is a matching of
size s in Ĥ . By the construction of Ĥ , this is also a matching
in graph H .

D. Proof of Lemma 4

First, if H is a tree then it is connected by definition. To
show the other direction, we assume towards a contradiction
that H is a connected graph with cycles; let C be a cycle
in H , and consider an edge e = (vL, vR) that resides at
cycle C (where vL ∈ LH and vR ∈ RH ). We build the
bipartite graph Ĥ =

⟨
L̂H + R̂H , ÊH

⟩
, such that L̂H = LH ,

R̂H = RH ∪ {v̂R}, where v̂R is a newly-introduced vertex,
and ÊH = EH \ {e} ∪ {ê}, where ê = (vL, v̂R). Intuitively,
we replace one of the edges in the cycle to reach for a newly-
introduced vertex, and by that we increase the size of the
connected component. Notice that Ĥ is connected and all
vertices in L̂H have a degree of 2. But,

∣∣∣L̂H

∣∣∣ < ∣∣∣R̂H

∣∣∣ − 1,
thus contradicting Lemma 1 and the claim follows.

E. Proof of Lemma 5

We count the connected bipartite graphs with two disjoint
sets LH and RH . By Lemma 4, we have to count the number
of trees over the set LH ∪ RH , where edges must be of the
form (vL, vR), such that vL ∈ LH and vR ∈ RH . We build
(and count) the set as follows: The number of trees over the
set RH is (s+ 1)

s−1 (Cayleys formula). For each such tree
instance, we put a new vertex (originally from LH ) between
each pair of adjacent vertices. There are s! possibilities to do
so.

F. An Alternative Proof of Theorem 4

Considering the random graph with m vertices and n edges
such that a vertex m1 is connected to vertex m2 if and only
if there exists an element that hashes into m1 and m2. This
random graph is called the cuckoo graph [13]. Neglecting the
O(1) loops, this graph is equivalent to the Erdös-Renyi random
graph Gm,n that assigns equal probability to all graphs with
exactly n edges (and m vertices)

A matching in Gm,n corresponds to directing some of the
edges in the random graph such that the in-degree is at most
1. For each connected component C in Gm,n, if C is a tree
we can direct all edges, while in all other cases we can direct
as much edges as the number of vertices.

The number of such edges and vertices can be found in [33],
[36], yielding the exact same result.

G. Proof of Lemma 7

The proof is identical to the proof of Lemma 4 with two
modifications. First, instead of initially counting the number of
trees over the set RH , we count the number of parity trees [41]
over the disjoint sets RHu and RHd

. By [41] we are given that
the number of parity trees is ij−1 · ji−1. Second, we do not
have to color the edges because of the partition.

H. Proof of Theorem 13

As in the proof of Theorem 4, we compute the limit of
µ(G)
n as n → ∞. We consider the case where α = n

m and
0 ≤ β ≤ 1 are fixed. So γβ = limn→∞

µ(Gβ)
n , that is,

γβ = lim
n→∞

1

n
·

m−
n∑

s=0

(n
s

)
·

b2∑
i=b1

(β ·m
i

)((1− β) ·m
s+ 1− i

)
·

(
1−

i

β ·m

)n−s

·
(
1−

s+ 1− i

(1− β) ·m

)n−s

·
(

i

β ·m

)s

·(
s+ 1− i

(1− β) ·m

)s

· Pi,s+1−i

)
By substituting the expression for Pi,s+1−i from Theorem 11,
and moving

(
n
s

)
inside the second summation, we get:

γβ = lim
n→∞

(
1

α
−

1

n

n∑
s=0

s+1∑
i=0

(n
s

)(βm
i

)((1− β)m

s+ 1− i

)(
1−

i

βm

)n−s

·

(
1−

s+ 1− i

(1− β) ·m

)n−s

·
(

i

β ·m

)s

·
(

s+ 1− i

(1− β) ·m

)s

·

i(s+1−i)−1 · (s+ 1− i)i−1 · (i+ (s+ 1− i)− 1)!

(i · (s+ 1− i))i+(s+1−i)−1

)

By substituting α = n
m , we get:

γβ = lim
n→∞

 1

α
−

1

n

n∑
s=0

s+1∑
i=0

(n
s

)( β
α
n

i

)( 1−β
α

n

s+ 1− i

)(
1−

i
β
α
n

)n−s

·

(
1−

s+ 1− i
1−β
α

· n

)n−s

·
(

i
β
α
· n

)s

·
(
s+ 1− i
1−β
α

· n

)s

·

i(s+1−i)−1 · (s+ 1− i)i−1 · (i+ (s+ 1− i)− 1)!

(i · (s+ 1− i))i+(s+1−i)−1

)

As in the proof of Theorems 4 and 8, using the monotone
convergence theorem [34], we can put the limit inside the
sum. By further simplifying the above expression with similar
consideration to the proofs of Theorems 4 and 8, we get
eventually:

γβ =
1

α
− β · (1− β)

α2

∞∑
s=0

s+1∑
i=0

i(s+1−i)−1 · (s+ 1− i)i−1

i! · (s+ 1− i)!
·(

α

β
· e−

α
1−β

)s+1−i

·
(

α

1− β
· e−

α
β

)i
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We switch the order of summation and get that i ∈ {0, 1, . . .}
and s goes from max{0, i− 1} to ∞. We also substitute j =
s+ 1− i (or s = i+ j − 1). Thus,

γβ =
1

α
− β · (1− β)

α2

∞∑
i=0

∞∑
j=max{0,i−1}

ij−1 · ji−1

i! · j! · (4)

(
α

1− β
· e−

α
β

)i

·
(
α

β
· e−

α
1−β

)j

Let T (x, y) =
∑

j+i≥1
ij−1·ji−1

i!·j! ·xi · yj . This expression has
been previously found [11] to be the multivariate formal power
series about the point (x0, y0) = (0, 0) of t (x, y) = t1 (x, y)+
t2 (x, y)− t1 (x, y) · t2 (x, y) where t1 (x, y) and t2 (x, y) are
given by the following implicit multivariate functions:

x = t1 (x, y) · e−t2(x,y) , y = t2 (x, y) · e−t1(x,y) (5)

However, the mentioned range of convergence in [11] is
insufficient for our case. (Note also that in [11] the sums
should be over i+ j ≥ 1 and not over i, j ≥ 0.)

Since we compute the limit normalized expected maximum
matching, then the expression for γβ in Equation (4) is
bounded from below by 0, thus, by Equation (4) the double
summation is bounded from above by a constant. On the other
hand, all terms in the summation in Equation (4) are positive.
Then, if we look at the partial-sum series (by defining an
arbitrary order), we get an increasing series which is bounded.
Thus, by the monotone convergence theorem the double series
converges for any values x and y satisfying x = α

1−β · e−
α
β

and y = α
β · e−

α
1−β .

However, the multivariate functions in Equation (5) have
multiple branches (as the Lambert-W function does [35]), that
is, for a given x and y there is more than one solution. We
aim to find this branch in terms of t1 and t2. We use the
implicit function theorem to find the derivatives singularities.
The Jacobian is given by

J =

(
e−t2(x,y) −t1 (x, y) · e−t2(x,y)

−t2 (x, y) · e−t1(x,y) e−t1(x,y)

)
,

and it is invertible wherever |J | ̸= 0. Thus, there is a derivative
singularity in case t1 (x, y) · t2 (x, y) = 1, which is the
only solution. Therefore, as the given formal power series
in Equation (4) is about the point (x0, y0) = (0, 0) (which
corresponds to α = 0), where t1 = t2 = 0, it converges to the
branch where t1 (x, y) · t2 (x, y) ≤ 1 (note that both t1 (x, y)
and t2 (x, y) are always positive).

I. Proof of Corollary 15

One of the solutions to Equation (2) is given by: t1 = α
1−β ,

t2 = α
β . By substituting t1 and t2 in the expression for γβ

from Theorem 13, we get that the limit normalized expected
maximum matching size is 1. We also have to verify that t1 ·
t2 ≤ 1. Since α

1−β and α
β are both positive, we are left with

α
1−β · α

β < 1. By solving the quadratic inequality, we get the
claimed condition. Note that for α = 1/2 the range reduces
to β = 1/2.

J. Proof of Lemma 6

Assume on the contrary that H is connected but that there
is (at least) a single vertex vL ∈ LH with degree 1. Consider
the bipartite graph Ĥ =

⟨
L̂H + R̂H , ÊH

⟩
, that is given by

removing the vertex vL (and its connected edge) from H .
By the construction of Ĥ , we get that Ĥ is connected, but∣∣∣L̂H

∣∣∣+ 1 <
∣∣∣R̂H

∣∣∣, which contradicts Lemma 1.

K. Proof of Theorem 6

As in the proof of Theorem 1, our proof is based on
counting the expected number of vertices in L that are not
in some specific maximum matching M of G, based on the
decomposition of G into its connected components. The proof
is almost identical, with the modification that, due to Lemma 6,
we only take into account the d2 vertices that have a degree
of 2 (instead of all n vertices in the proof of Theorem 1).

Thus, the expected number of connected components in G
with s elements in L and s+ 1 in R is given by:(

d2
s

)(
m

s+ 1

)
·
(
1− s+ 1

m

)2(d2−s)+d1

·
(
s+ 1

m

)2s

· Ps,

where the above expression consists of the same considerations
as in the proof of Theorem 1. Finally, as before, adding the
expressions for all possible s’s and subtracting the sum from
m yields the claimed result.

L. Proof of Theorem 7

The number of vertices in L with degree 2 follows a
Binomial distribution with n experiments and a probability of
success p. In Theorem 6 we found the expected maximum
matching size of each such instance. Thus, by the law of
total expectation, the claimed result is given by computing
the weighted average, where we compute a by the equations
d1 + d2 = n and d1 + 2 · d2 = a · n.

M. Proof of Theorem 8

We compute the limit of µ(Ga)
n as n → ∞. We consider

the case where α = n
m and a = d1+2·d2

n > 1 are fixed. So
γa = limn→∞

µ(Ga)
n , that is,

γa= lim
n→∞

1

n

(
m−

ℓ∑
s=0

(
d2
s

)(
m

s+ 1

)(
1− s+ 1

m

)2(d2−s)+d1

·

(
s+ 1

m

)2s

· Ps

)

Given that a = d1+2·d2

n and n = d1 + d2, we find that
d2 = (a− 1) · n and d1 = (2− a) · n. Similarly to the proof
of Theorem 4, we first have to find that each term in the
summation is an increasing function with respect to n. We
discover that

(
1− s+1

m

)2(d2−s)+d1
=
(
1− s+1

m

)a·n−s is an
increasing function (using differentiation), and also find that
1
n ·
(
(a−1)·n

s

)(
m
s+1

)
·
(
s+1
m

)2s is an increasing function as previ-
ously. Consequentially, each term in the sum is an increasing
function and, by the monotone convergence theorem [34], we
can put the limit inside the sum. By further simplifying the



15

above expression as in the proof of Theorem 4 we eventually
get:

γa=
1

α
− 1

2α2 · (a− 1)
·

∞∑
j=1

(−j)j−2

j!
·
(
−α · 2 · (a− 1) · e−aα)j

Let T (x) =
∑∞

j=1
(−j)j−2

j! · xj be a Taylor expansion,
where by substituting x = −α · 2 · (a− 1) · e−aα we get
the above expression. Similarly to the proof of Theorem 4,
we get that

T (x) = −W (x)− 1

2
W 2 (x) ,

with convergence within |x| ≤ e−1 [35].
Since the function f (α) = −α · 2 · (a− 1) · e−aα gets

its minimum at α = a−1, where it equals − 2(a−1)
a e−1, and∣∣∣−2(a−1)

a e−1
∣∣∣ ≤ e−1 for all a ∈ [1, 2], then for all α we can

substitute x = −α · 2 · (a− 1) · e−aα. Hence, it is within the
radius of convergence of T (x).

Finally, for the case where a = 1, then d2 = 0 and d1 = n.
Therefore, the expression for the expected maximum matching
size is reduced to m−

(
m ·

(
1− 1

m

)n)
. Thus,

γa = lim
n→∞

µ (Ga)

n
= lim

n→∞

1

n
·
(
m−

(
m ·

(
1− 1

m

)n))
=

1

α
− 1

α
· e−α.

N. Proof of Corollary 9
We show that γa is strictly monotonically increasing, thus

γa < 1 for 1 ≤ a < 2, since γa = 1 for a = 2. This is shown
by differentiating γa with respect to a:

dγa
da

=− 1

4α2 (a− 1)2
·
(
W
(
−2α (a− 1) · e−aα)+ 2α (a− 1)

)
·

W
(
−2α (a− 1) · e−aα)

Both the first factor − 1
4α2(a−1)2

and the third factor
W (−2α (a− 1) · e−aα) are negative. Thus, if the second
factor is positive then dγa

da is an increasing function with
respect to a ∈ [1, 2).

If α > 0.5, then 2α (a− 1) > 1, and since W (x) is
minimized for x = −1

e where it equals −1, the second
factor is positive. On the other hand, consider that α ≤
0.5. Since W

(
−2α (a− 1) · e−2α(a−1)

)
= −2 (a− 1)α and

W (x) is an increasing function, then we have to show
that −2α (a− 1) · e−2α(a−1) < −2α (a− 1) · e−aα, that is,
−2α (a− 1) > −aα. The last inequality can easily be shown
for 1 ≤ a < 2.

O. Proof of Theorem 10

We compute the limit of µ(Gp)
n as n → ∞.

γp = lim
n→∞

µ (Gp)

n

= lim
n→∞

1

n

n∑
d2=0

(
n

d2

)
· pd2 · (1− p)

n−d2 · µ
(
G

a=1+
d2
n

)

Let X ∼ Bin (n, p) be the random variable counting the
number of vertices in L that choose 2 vertices in R. By
summing over three disjoint ranges of possible values for d2,
we get

γp = lim
n→∞

⌊np−n
3
4 ⌋∑

d2=0

Pr {X = d2} ·
1

n
· µ
(
G

a=1+
d2
n

)
+

lim
n→∞

⌊np+n
3
4 ⌋−1∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2} ·
1

n
· µ
(
G

a=1+
d2
n

)
+

lim
n→∞

n∑
d2=⌊np−n

3
4 ⌋

Pr {X = d2} ·
1

n
· µ
(
G

a=1+
d2
n

)
By Chebyshev’s inequality we get that
Pr
{
|X − np| > n

1
4

√
np (1− p)

}
≤ 1

n
1
4

. Since

p (1− p) ≤ 1, we get that Pr
{
|X − np| > n

3
4

}
≤ 1

n
1
4

. By

the fact that 1
n · µ

(
G

a=1+
d2
n

)
≤ 1, we find that the first and

the third limits go to zero.
Since the function µ (Ga) is increasing with respect to a

(this can be shown by a simple combinatorial argument), we
get the following lower bound:

γp = lim
n→∞

⌊np+n
3
4 ⌋−1∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2} ·
1

n
· µ
(
G

a=1+
d2
n

)

≥ lim
n→∞

(
1− 1

n
1
4

)
· 1
n
· µ

(
G

a=1+
⌊np−n

3
4 ⌋+1

n

)
as well as the following upper bound:

γp = lim
n→∞

⌊np+n
3
4 ⌋−1∑

d2=⌊np−n
3
4 ⌋+1

Pr {X = d2} ·
1

n
· µ
(
G

a=1+
d2
n

)

≤ lim
n→∞

1 · 1
n
· µ

(
G

a=1+
⌊np+n

3
4 ⌋−1

n

)
.

By the squeeze theorem, we get the claimed result.

P. Proof of Theorem 18

We first establish a few lemmas before proving the result.
As before, we start by considering a deterministic bipartite
graph H = ⟨LH +RH , EH⟩ with degree d of each vertex in
LH , where |LH | = s and |RH | = q.

Lemma 8. If (d− 1) · s ≤ q − 2, then H is not connected.

Proof: As in the proof of Lemma 1, the proof follows
by induction on s. For s = 1, there are d edges in the graph
and therefore every graph with q ≥ d + 1 is not connected.
Assuming that the claim holds up until s = s′, we next prove
that it holds for any bipartite graph H ′ such that |LH′ | =
s′ + 1 and |RH′ | ≥ (d− 1) · (s′ + 1) + 2. Assume towards a
contradiction that there is a graph H ′ which is connected.

We first show that there are d−1 vertices vr1 , vr2 , . . . , vrd−1

in RH′ , all of a degree 1 such that they are connected to the
same vertex vℓ ∈ RH′ : The sum of right-side vertex degree
is d · (s′ + 1). Also, since the graph is connected there are no
right-side vertices with degree 0. This implies that there are
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at least (d− 2) · (s′ + 1) + 2 vertices of degree 1, thus there
exists a vertex vℓ ∈ RH′ as claimed.

By the induction hypothesis, the graph induced by LH′ \
{vℓ} and RH′ \ {vr1 , vr2 , . . . , vrd−1

} is not connected, which
implies that it has at least two connected components. In H ′, vℓ
is connected to all vertices vr1 , vr2 , . . . , vrd−1

. Since its degree
is d it can be connected only to one of these components. This
implies that H ′ is not connected as well, and the claim follows.

Lemma 9. If H is connected and (d− 1) · s = q − 1 then
µ (H) = s.

Proof: Assume towards a contradiction that µ (H) < s,
and consider some maximum matching M . Let vℓ ∈ LH

be a vertex that is not in the maximum matching M ,
and vr1 , vr2 , . . . , vrd−1

be the vertices in R (which are not
necessarily distinct) that are connected to vℓ. All vertices
vr1 , vr2 , . . . , vrd−1

are connected also to another vertex in LH ,
otherwise vℓ was in the maximum matching M .

Consider the bipartite graph Ĥ =
⟨
L̂H + R̂H , ÊH

⟩
, which

is given by removing vℓ from H . Since the right-side vertices
vr1 , vr2 , . . . , vrd−1

are also connected to the other left-side
vertices (except vℓ), the bipartite graph Ĥ is connected.
However, we get that

∣∣∣L̂H

∣∣∣ = s−1 and
∣∣∣R̂H

∣∣∣ = (d− 1)·s+1,
which contradicts with Lemma 8.

We note that in contrast to Lemma 2, the corresponding
proposition is not true for d > 2; that is, if H is connected
and s ≤ q, then the maximum matching size is not necessarily
s. As a counter example, consider the case where d = 3 and
s = q = 3, where two left-side vertices choose the same
single right-side vertex (using all their 3 choices), and the
other left-side vertex chooses all 3 right-side vertices. The
resulting bipartite graph is clearly connected, but the maximum
matching size is only 2 (only one of the first two left-vertices
can be in the matching).

Lemma 10. If (d− 1) · s = q− 1 then H is connected if and
only if it is a tree.

Proof: The proof consists of the exact same construction
Ĥ as in the proof of Lemma 4, where we eventually get a
contradiction with Lemma 8.

Lemma 11. The number T d
s of connected bipartite graphs

H whose |LH | = s and |RH | = 2 (d− 1) · s + 1 is T d
s =

((d−1)·s+1)!
((d−1)!)s ((d− 1) · s+ 1)

s−2.

Proof: By Lemma 10, we have to count the number of
bipartite trees over the two disjoint sets LH and RH of size s
and (d− 1) · · ·+1. Since H is a tree, then there are no cycles.
Consequently, each one of the vertices in LH is connected to
d distinct vertices in RH . Moreover, no two vertices in LH

share more than 1 vertex in RH . For each vertex vℓ ∈ LH , let
Sv be the set of the d right-side vertices that vℓ is connected
to and also let the cycle Cvℓ be a cycle that consists of the d
vertices of Sv.

Consider the graph Ĥ =
⟨
R̂H , ÊH

⟩
, which is given by

connecting each cycle Cvℓ1
to Cvℓ2

using a common vertex
vr if and only if vr is connected to both vℓ1 and vℓ2 . The
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Fig. 11. The Lambert-W function.

resulting graph Ĥ is a Husimi graph over (d− 1) · s +
1 vertices, where the number of such (labeled) graphs is
((d−1)·s+1)!
((d−1)!)s·s! ((d− 1) · s+ 1)

s−2 [42].
Finally, each set Sv is determined by the (labeled) vertex

in RL. Thus, we multiply by s! the above expression.
We are now able to prove the result.
Let M be a maximum matching of G. Similarly to the proof

of Theorem 1, the proof is based on counting the expected
number of vertices in R that are not part of M , and on the
decomposition of G into its connected components.

We count the expected number of connected components
with s left-side vertices and q = (d− 1) · s + 1 right-side
vertices. By Lemma 9, the maximum matching size of each
such connected component is exactly s. Thus, there are q− s
right-side vertices that are not in M .

Let H be a bipartite graph H = ⟨LH +RH , EH⟩, with
degree d for all vertices in LH , where |LH | = s and |RH | = q.
The probability Ps that H is connected is given by Ps =
(d!)sTd

s

qd·s
.

The remainder of the proof is similar to the proof of
Theorem 1.

APPENDIX B
THE LAMBERT-W FUNCTION

The Lambert-W function, usually denoted by W (·), is
given by the following implicit representation:

z = W (z) · eW (z),

where z is a complex number [35].
For real valued arguments, i.e. z is real valued, W (z) has

two real-valued branches: the principal branch, denoted by
W0 (·) and the branch W−1 (·). Figure 11 shows the two real-
valued branches. For instance, W0

(
−e−1

)
= W−1

(
−e−1

)
=

−1 and W0 (0) = 0.
Note that the notation W (·) usually relates to the principle

branch, i.e. W0 (·). Thus, although one would expect that for
real-valued z, W (z · ez) = z, this is only the case for z ≥ −1;
in case z < −1, W−1 (z · ez) = z ̸= W (z · ez).


