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Maximum Bipartite Matching Size and
Application to Cuckoo Hashing

Yossi Kanizo, David Hay, and Isaac Keslassy

Abstract—Cuckoo hashing with a stash is a robust multiple elements could fit in the hash table with high probability, [7]
choice hashing scheme with high memory utilization that can [9]-[11].
be used in many network device applications. Unfortunately, for Unfortunately, even this high efficiency of cuckoo hashig i
memory loads beyond0.5, little is known on its performance. ffici f ’ K devi b desi .

In this paper, we analyze its average performance over such not s_u icient for network devices, ecau;e eS|g_ne_rs dYlyic
loads. We tackle this problem by recasting the problem as an consider that at load 0.%alf the memory is losfThis is why
analysis of the expected maximum matching size of a given memory-efficient hashing schemes attempt to pack even more
random bipartite graph. We provide exact results for any finite  elements by introducing an additional memory, caBéashor
system, and also deduce asymptotic results as the memory size, ooy list, that stores a small number of elements outside
increases. We further consider other variants of this problem, h . h’ h tabl h h h b
and finally evaluate the performance of our models on Internet t € main as. table [6], [1‘_1]_[17]'.1_ e stash can then be
backbone traces. More generally, our results give a tight lower implemented in hardware using for instance CAMs (content-
bound on the size of the stash needed for any multiple-choice addressable memories), which rely on associative mematy an
hashing scheme. consume significantly more power [6], [18]. It can also refy o

another hash table, or simply correspond to dropped packets
|. INTRODUCTION in & lossy hash table [20]. _
A. Background This memory-efficient archltecture with a stash enables the

) ) ) load of the hash-table to increase beydhdl. Unfortunately,

_ Network devices increasingly rely on hash tables 0 €fjhen the load gets beyorids, sizing the stash is not fully un-
ficiently mp_lement their algorithms, in fields as dlvgrs_e aSerstood [18, Open Question Slhis paper is about analyzing
load-balancing, peer-to-peer, state management, MOWGIOT s challenging case where the load exceéds
caching, rout]:nﬁ, flltgrmg, and secyrlty [1]_[6],' i K To further understand why cuckoo hashing has a high

Bgcause ofthe strlngemgmory Size constr_aln _neMpr utilization, it is important to notice thainline cuckoo hashing
devices, recent research is increasingly dealing with @avipg with d = 2, succeeds in inserting an element if and only if

the memory efficiency of hash tables. In particulanckoo o5\ ,gmenting path originating from the correspondingevert
hashinghas recently drawn a lot of attention due to its eﬁ'c'ergxists [11]. This is because inserting an element into a@aick
space utilization _along with its constant query -and defetiqash table is equivalent to finding an augmenting path in
times, as well as its constar_lt expected insertion yme,([é’.bt. the corresponding graph (that is, a path that starts from the
[18.] and references .thereln).. In. cuckqo hashing, we w rtex corresponding to the considered element, and attsn

to Insertn el_ements Intom unl_t-3|zed bins. Each of th_ﬁ between unmatched and matched edges until it ends at a right-
element_s 'prlcally use_d - 2. independent hash funf:t'_ons_'side vertex whose all edges are unmatched). Notice that for
each pointing to an arbitrary bin. When an element arrives, 'tany sub-pathir,, v, 7»), wherew is a left-side vertex ane,
placed in one of these 2 bins. If both bins are full, it dispic _ o right-side \;er)tice,s(rl ») must be a matched edg,e and
another element, which is then moved to the bin correspgndipv rs) an unmatched edge. Intuitively, this corresponds to
to its other choice. This process continues until all elame%é)ving elementy from bin r, to bin . Since maximum

are placed, unless it is stopped and then the element cantof, matching can be computed by finding such augmenting
be inserted. aths, when considering each left-side vertex only onceirand

Cuckoo _rll_ash_lng IIS fspemally_énterﬁst;)r_lg be_cause ﬁ;'ﬂz hIErbitrary order, we can immediately conclude that the numbe
memory utilization. n fact, consider the bipartite graphmed ¢ ojoments that a cuckoo hashing inserts successially

bydtge} nk elleme_nts on honle ade,f(t;v% bins on dt.he Othir’ exactly the size of the maximum matchikgr example, all
an Inks leaving each element Ins according to the ,, gjaments can be inserted if and only if the corresponding

hash values pf the element. Then.the number of glements tgﬁiph has aerfect matchingnamely, a maximum matching
cuckoo hashing inserts successfulyexactly the size of the - i ;
) ; AN e of sizen; see [11] for more details).
maximum matching11], [19], i.e. it is extremely sufficient.
Past papers have in fact shown that up to a lead. = 0.5, all
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and later evaluate its real-life behavior by using Internethemes, our results provide lower bound on the size
backbone traces. of the stash This is because the maximum matching size

First, we study theverage performancef cuckoo hashing of the graph is always an upper bound on the number of
by analyzing theexpected maximum matching siize the elements that can be inserted into the hash table. Moreover,
bipartite graph introduced above. We decompose each randsince finding the maximum matching in bipartite graphs is
bipartite graph int@onnected componentnd then separatelya fundamental problem with a wide range of applications
analyze each component and evaluate the size of its looalcomputer science, we believe that our results have also a
maximum bipartite match. The size of the maximum bipartittheoretical significance and may be used in other contexts.
matching is the sum of the sizes of all local matches. Then, we Paper Organization:We start by surveying the relevant
count the number of connected components in the graph diterature in Section Il. Then we introduce the preliminary
thus derive the size of the maximum matching in the entidfinitions in Section Ill. Section IV provides the expected
graph. Surprisingly, we can obtain @mact expressioof the maximum matching size of random bipartite graphs with left-
average performance of cuckoo hashing with a stash in asige vertex degree 2, where a variation of the problem in
finite system. which each left-side vertex degree is at most 2 is considered

We further show that the actual maximum matching siz®ection V. Next, in Section VI, we solve the more appealing
is sharply concentrated around its expected value. Thes, firoblem in which the right-side vertices are partitionetbin
difference betweem and the expected maximum matchingwo subsets, and each left-side vertex has exactly one edge t
size providesthe required size of the stashwvhich should each of these subsets. In Section VIII we verify and evaluate
store all elements with high probability. To do so, we useur results, including by real-life trace-based experitaen
concentration results based on applying Azuma’s inequalitast, Section VII provides an upper bound on the expected
to a Doob martingale, which is defined over the maximummaximum matching size when the constant left-side vertex
matching size when exposing vertices one at a time. degree is at least three. For the sake of readability, most of
practice, the goal of this result i help designers sizethe proofs are presented in Appendix A.
their CAM stashedy providing guarantees on the number
of elements that can be inserted in the hash table with these
stashes.

We next provide an exact analysis when the average numbeMultiple-choice hashing schemes were first considered in
of choices is less tha? to minimize the number of memory the seminal paper of Azar et al. [21]. It showed that placing
accesses. We further obtain a lower bound on the requiregich element in the least occupied bin among a constant
stash size when the number of hastiexceed<. Our results numberd of random bins significantly improves the maximum
for d > 2 rely on Huisimi tree enumerations. They illustratdin load to% + O(1) with high probability (compared
the tradeoff between an improved memory efficiency and tit@ the case wheré = 1, in which the maximum bin load is
need for more memory accesses, itee tradeoff between logn (1 + O(1))). This result initiated an extensive research
memory size and bandwidth with many variants of multiple-choice hashing schemesgctvhi

Finally, we evaluate cuckoo hashing with a stash on redypically exhibited the so-calledower of two random choices
life Internet packet traces from an OC192 backbone linkygisi with d = 2 [22]. For brevity, we next survey only works that
a 64-bit mix hash function. We show that when= m, we directly correspond to our paper.
can insert an average 88.81% of the packets within the hash  First, we relate to works which considered the same model
table, and put the remainder in the CAM stash. Likewise, whas in this paper (a random bipartite graph with constant left
n = 0.6m, that is,20% more than the threshold for perfectside vertex degree). Motivated by achieving a performance
matching, we can insert in average0.9938n of the packets, guarantee for the cuckoo hashing scheme [23], the maint effor
that is, the need stash sizeAas0.0062n. We further confirm has been to find a load threshold, such that for any load below
our analytical models and show that our boundsdor 2 are the threshold a perfect matching exists with high probspbili
typically within 1% of the exact value. It is known that a cuckoo hashing scheme wih= 2

Incidentally, our paper can lead to two interesting comtrib succeeds with high probability if the load is less than a load
tions. First, the paper analysis also provides exact esoit threshold of 0.5, but fails when the load is larger than 0]5 [7
the stash sizes when the numbers of elemeratsd bucketsn  Recent works [9]-[11] have settled the problem of finding the
are finite. This non-asymptotic analysis is particularlgded corresponding thresholds fdr> 2. Another recent work [16],
when n and m are known to be small. For example, ashows that cuckoo hashing with a stash of siz€ = 2, and
suggested in [5], the cuckoo hashing scheme can be usea toad factor less than 0.5 fails with probabilify(n—*). Our
store fingerprints of elements and thus enable set mempergbiper differs in that we also consider load values bey@Ad
queries. To be able to move a fingerprint from one bucket tor ¢ = 2. Moreover, while most of the works investigate
another, the hash value can only depend on the currentdocatnly the asymptotic behavior, we also present in our paper
and on the fingerprint itself. This can be modeled by cuckamalytical expressions for finite random graphs along with t
hashing with a small finite number of elements and bucketsymptotic ones.
implying again that an asymptotic analysis cannot be agplie The problem of finding the expected maximum matching
in this case. size is also investigated assuming other models of random

In addition, we note that for other multiple-choice hashingraphs, mainly trees. In [24] (and references therein) the

II. RELATED WORK



authors investigate the expected maximum matching size of
an (r,s)-tree, finding that for almost al(n,n)-trees the
percentage of dark vertices in a maximum matching is at
least 72%. A more recent work [25] presents results relaied t
the expected maximum matching size of the class of simply-
generated trees. A model of a loop graph is considered by [26]
showing a lower bound on the expected maximum matching
size. While using the cavity method of statistical physic[2 Fig. 1. An example bipartite graph with left-side vertex dege

the authors find analytically the value under consideration

the Erddbs graphG(n,c/(n — 1)), wherec < 2.7183. Our

paper differs in that it considers a different model of ramdo This paper focuses on the expected size of the maximum
bipartite graphs, where each vertex inchooses a constantsize matching ofG, which is captured by the following
number of vertices ink. definition:

Additional related works deal with the probability of a Definition 2: The operatoy (-) extracts theexpected size of
perfect matching in other random graph models. For instantlke maximum size matchinly operates both on deterministic
in a random directed bipartite graph with left-side andn and random bipartite graphs. (Namely, for a deterministic
right-side vertices, and an outward degreat each vertex, graph H, p(H) is simply the size of the maximum size
the probability that the random bipartite graph contains raatching ofH.)
perfect matching approaches 1df> 1, but approaches 0 Definition 3: The normalized limit expected maximum
otherwise [28]. Also, in a random bipartite graph witHeft- matching sizey = lim,,_,~ Mf{ is the limit percentage of
side verticesp right-side vertices¢n edges picked uniformly the expected maximum matching size (out of the number of
at random, and a degree of at le&stthere is a perfect the vertices inL).
matching with high probability [29]. As shown in the literature, in real-world systems, pradtica

Finally, conjectures in [30], [31] consider the expectedimi hash functions usually work as if they were fully random [6].
mum matching weight given a full bipartite graph with randortherefore, we model the hash functions in our theoretical
exponentially distributed edge weights. These conjestare analyses as such.
proved in [32], [33]. Our goal is to find both thexpected maximum matching size
as well as thenormalized limit expected maximum matching
sizefor the above-mentioned graph models.

I11. D EFINITIONS AND PROBLEM STATEMENT

Given two disjoint sets of vertice and R of sizen and
m respectively, we consider a random bipartite gr&ph= IV. EXPECTED CUCKOO PERFORMANCE BIPARTITE
(L+ R, E), where each vertex € L hasd = 2 outgoing GRAPHS WITHd = 2
edges whose destinations are chosen independently atmando
among all vertices irk. We allow both choices to be the same
vertex, implying thatG' might have parallel edges. For brevr[y,In
we sometimes say thatc L chooses vertexv’ € R if (v,v")
is in E. Theload of G is denoted byn = .

We fgrther consider cases when theerages number of To do so, we consider the connected components of the
choicesis less thare.

Definition 1: Let d, be the number of choices of eachandom bipartite graplt. We start by stating some lemmas

on these connected components, before establishing oar mai
vertexv € L. Theaverage number of choicesis the average
E(Soer do)  Suey Ed) result on the expected matching size.
left-side vertex degree, i.e.= v = =eel

First, in the deterministic case, we find the expected max-
: A. Expected Maximum Matching Size
imum matching size of the grapfi, = (L + R, E), where
each vertexv € L independently chooses a predetermined We now deal with a random graph, in which each left-side
numberd, € {1,2} of random vertices inR, such that Vertex choosesl = 2 right-side vertices (parallel edges are
q — dat2:ds dz allowed). Note that further evaluation of the results régdr
Second, in the random case, we analyze the slightly differdifre appears in Section VIII. .
case of a random bipartite graph, = (L + R, E) where each First, we quote a few useful lemmas (proved in [19]), before
vertex chooses two vertices with probabllmand one vertex stating our result. As stated, the following lemmas are for
with probability 1 — p. This implies that inG,,, the average & given bipartite graptti = (Ly + Ry, En), where each
number of choices = 1 + p. vertex in Ly has degree 2 (parallel edges are allowed), with
Finally, we also consider static partitioning of the choices |Lr| = s and|Ry| = ¢. An example bipartite grapk = 3,
the setR is partitioned into two disjoint set®, and R, of ¢ = 4, and left-side vertex degree 2, appears in Figure 1.
sizesf-m and(1 — 8) m. In that case, we consider a randoniashed lines represent edges not in the maximum size match-
bipartite graphG's = (L + (R, U Ry), E), where each vertex ing, while solid lines represent edges in the maximum size

v € L chooses exactly one vertex i, and another vertex in matching.
Ry. Lemma 1:If s < ¢ — 2, thenH is not connected.

We are now interested in evaluating the expected perfor-
ance of cuckoo hashing with a stash. As explained in the
troduction, we approach the problem using a graph-theory
perspective, since it is the same as evaluating the expected
maximum matching size of the random bipartite graph




Lemma 2:If H is connected and > ¢, thenp (H) =¢.  B. Concentration Result

Lemma 3:1f H is connected and = ¢—1thenyu (H) = s. We next show that the size of the maximum matching is
Lemma 4:For any graph withs = ¢ — 1, H is connected highly concentrated around its expectatipiG). In other
if and only if it is a tree. words, this means that our stash occupancy will be closeto it
Lemma 5: The numberT, of connected bipartite grapiig  average value, which can helpsige the stasmore accurately
whose|Ly| =s and|Ry| =s+1is T, = (s +1)°* " s by providing performance guarantees on its performance.

We can now prove the next theorem on our bipartite graph!n order to prove this result, we apply Azuma’s inequality
G, which is the main result of this paper. We remind that thi® & Doob martingale (more specifically, the martingale is a
theorem states the expected number of elemerts) that Vertex exposure martingale of the left-side vertices).
can be inserted by our cuckoo hashing scheme with a staspNote that as long as all left-side vertices pick their edges

Therefore,n — 1 (G) also gives us thexpected stash size independently, this concentration result holds regasdies
Theorem 1:let d = 2 and b = min{n,m —1}. The the value ofd, and more generally regardiess of the specific

expected maximum matching sizeG) is distribution over which the hash functions are defined. &her
fore, the concentration result applies also for the settiofy

* m Sections V — VII.
p(G)=m— sllsgt1]™ Theorem 2:Let H be a specific instance of the ran-
s=0 Sns) 2s . dom graphG, as defined in Secztion lll. For anyx > 0,
<1 ik 1) (S* 1) Zs Pr(|u(H) — p(G)] > AWn) < 27N/,
m m (s+1) Proof: Our notations follow those of [34]. We first define

an exposure martingale, which exposes one left-side vattex
Proof: Let M be a maximum matching a&. Our proof 5 time, along with all its outgoing edges. This martingale is
is based on counting the expected number of vertice® in equivalent to a regular vertex exposure martingale, in it
that are not part of\/, and on the decomposition @ into  rignt-side vertices are exposed first, and then left-sidtoes
its connected components. are exposed one by one.

Lemma 1 yields that any connected componentiofith s Specifically, letG be the probability space of all two-choice
left-side vertices has at most-1 right-side vertices. We call a bipartite graphs as defined in Section Il afidhe size of the
connected component withleft-side vertices and + 1 right-  maximum size matching of a specific instance. Assume an
side verticesa deficit component of size Lemma 3 implies arbitrary order of the left-side vertices = {vy,...v,}, and
that the maximum matching size of any such deficit componedéfine Xo, ..., X,, by X;(H) = E[f(G) | Yz < i,Vv, €
is s. Therefore exactly oneof its right-side vertices is not part R, (v,,v,) € G iff (v,,v,) € H]. Note thatXo(H) = u(QG)
of M. Notice that in all other connected components, whegince no edges were exposed, whig (H) = u(H) as all
g < s+ 1, the maximum matching size df is exactlyq edges are exposed.

(Lemma 2), implying that all their right-side vertices ar@tp  Clearly, f satisfies the vertex Lipschitz condition since if
of M. two graphsH and H’ differ at only one left-side vertex,

Thus, in order to calculate the size bf, it suffices to count |f(H) — f(H')| < 1 (either that vertex is in the maximum
the number of deficit components The size ofM is m —x matching or not). Thus, since each left-side vertex makes in
because exactly right-side vertices do not participate i, dependent choices, [34, Theorem 7.2.3] implies that theeeor
one for each deficit component. sponding vertex exposure martingale satisfiés 1 — X;| < 1.

Let P, = % be the probability that a bipartite graphHence, by applying Azuma’s inequality, we immediately get

H = (Ly + Ry, Ey) is connected, with degree 2 for allthe concentration result. _ _ u
vertices inLy, where|Ly| = s and |Ry| = s + 1. Notice that if we are interested only in one-sided bounds, we

can get a slightly tighter resulPr(u(G) — p(H) > A\/n) <
e=*/2. This is exploited in the following corollary, which
shows that to obtain a given overflow fraction, the needed
stash size grows sub-linearly withbeyond its average value.
Corollary 3: To achieve an overflow fraction efin cuckoo
hashing with stash, when inserting elements tom bins, a
stash of sizev — u (G) + /2n - In (1/€) suffices, wherg(G)
is defined in Theorem 1.

The expected number of deficit components of sizés
(M () (1= = )2(7“5)-(%)25-RS. The above expression
consists of the following factors (in order):

(i) choosing thes vertices inL;

(il) choosing thes + 1 vertices inR;

(iii) the probability that alls + 1 vertices in R may be
connected only to the chosenvertices inL;

Sv)ﬂ:he prcibab|tl_|ty th.attills yemce_z "_]L a:jre only connected Proof: If a stash of sizev— u (G)++/2n - In1/e is used,
o thes + 1 vertices in the right side; and, cuckoo hashing fails if and only it — u(H) >n — u(G) +

(v) the probability that all chosen vertices are connected. 9 -1n 1 /¢, of by rewriting it, (G — u(H) > /2n - In 1 /e
Finally, we calculatex by summing over all possi- gy qpstitutingh = /2 - In 1 /¢ in the above one-sided bound,

ble vaIL_les ons. As mentioned before, the expected sizg,e get the claimed result. -

of M is given by m — z. We get: u(G) = m —

S o™ () - (1= %)2(”78) : (%)28 - P,, whereb = C. Limit Normalized Expected Maximum Matching Size
min{n,m — 1}, Ps = % andT, = (s +1)* (s + 1), We are now interested in the asymptotic expression where

as found in Lemma 5. B 7 — oo with a = > constant. The following results show an



interesting connection between the limit normalized eigec its known Taylor expansion that converges as longras
maximum matching size and the Lamb@it-function, and within the radius of convergence with| < e=! [35].

even a connection between the perfect matching threshadld anGiven thatz - 7' (z) = —W (z), we computeT (z):

the radius of convergence of the Lamb@rt-function [19],

1 1
135]. T@)= [ 2 (=W (@) do =W () - 30 (o),
For further details on the Lambel- function, see also z
Appendix B. with convergence withifz| < e~ 1.

Theorem 4:Let d = 2. The limit normalized expected Interestingly, the functionf (o) = —2a - e™2* gets its

maximum matching size = lim,_,.. 2 is given by: minimum ata = 0.5, where it precisely equals the radius
1 1 1 of convergence-e~!. Therefore, for allo we can substitute

vy = 7+2—2-W (—2a - e‘z‘*)+ﬁW2 (—2a-e7?%), (1) = —2a-e 2%, since we are within the radius of convergence
« (6] 0

o ] ) of T (), and we finally derive the result. [ ]
Wher_e the Lambert¥” function is the inverse function of the \y\e note that this particular asymptotic result can be also
functionw(z) = ze®. o achieved by the theory of giant components in random
Proof: We compute the limit oL asn — oo such graphs [34], [37]. However, this technique is not applieabl
thata = b for finite n andm, and cannot be used to derive most of the

b other results in this paper. (A proof using this technique
1 7 Z n m y
2 (00

v = lim — appears in the appendices).
noeen The following corollary shows that for = 2 < 1, the
)
m m
We find through differentiation thafl — %)Q("_s) is an

probability for a right-side vertex to be part of a maximum
matching goes to 1. This corollary also follows from the
previously known result that there is a perfect matchindhwit
high probability in cuckoo hash tables with load< % [7].
Corollary 5: Let d = 2 anda = Z < 1. Then the

increasing function with respect ta (where m = 2).  ~ ; . . o
: o m 11\ 28 ” limit normalized expected maximum matching size~is=
Moreover, the expansion ¢f- () (,7;)- (%5+)™ shows that it 1 wG) _ 4
n—oo 0 T e

is also an increasing function. Therefore, their productlé®
increasing and, by the monotone convergence theorem [3?],_

we get
s (i)
— Z lim | — - X
e\ n s)\s+1
versionof the cuckoo hash algorithm. We now let each element

2(n—s) 2s
1 1
(1_s+) <s+> P,
m m choose either 1 or 2 bins instead of only 2 bins, to force them

By substituting the expression fdt,, and using the facts that {0 @ccess less bins and use less memory I/O bandwidth.
gn) = 204 0 (n*Y) and limy_a (1+a/n)" = €2, we Formally, we relax the constraint that each vertexIin

Proof: In casex < 1, W (—2a - e=2*) equals—2q, thus,
Lt gk (-20) + gl (-20)" =1 .

V. CuckoO WITH Low MEMORY BANDWIDTH: BIPARTITE
GRAPHSWITH d,, < 2

In this section we are interested ilcav-memory-bandwidth

’y:

e

S

educe: chooses exactly 2 vertices iR, and let each left-side vertex
o s s s os o h ither 1 or 2 right-side vertices. Since w n divi
yzﬁ,lzimﬂ 6*20(5+1>.(5+1)2 2 (s 4 1) 1 ;:hoos::‘e;tet_ o] 2 gd ;sde_ _e:_cei S cedelca _Iclj de
n o on s (s 1) 2 s+ 1% e set of vertices either deterministically or randomlg, wi

e o _discuss the results in both cases. These results corre$pond
By substitutingn = %, and simplifying the above expressionexample to cases in which the average number of choices, as

we get: defined below, is important (e.g. [15]). See also [38] for a
1] = (s + 1)371 similar model.
T = LTy Zas - 2% Grn e~ 20(stD) Note that further evaluation of the results reported in this
5=0 ’ section can be found in Section VIII-B.
11 =)
= — 72 . Z (_Za . 6_2O‘)J C . o
a 2« = J! A. Connected Components in Deterministic Graphs

o0 —4)—2
Let 7' (z) = 352, ¢ .

As in Section IV-A, we now consider a deterministic

-a? be a formal power series, pipartite graphH — (L + Ry, Eg), with |Lg| = s and

where by substitutingr = —2a - e~* we get the above |, | = ¢. We assume that the degree of each vertex in

expression. By differentiatin@ (=) and multiplying byz, we
get:

d 0 aj—-1
z.de(x)_JZ:l(Jj)!

~LL‘j:7W(:L'),

is at most 2.

Proposition 1: Lemmas 1, 2, and 3 hold also when the
degree of each vertex ihy is at most (but not necessarily)
2.

Note that the proofs remain almost identical to the original

where the Lambert¥ function is the inverse function of the Proofs, replacing a few equalities with the corresponding
function w(z) = ze” [35], and the last equality follows from inequalities.



Lemma 6:Let s+ 1 = ¢. If H is connected then the degreeVI. SINGLE-PORTED CUCKOO: STATIC PARTITIONING OF
of each vertex inLy is 2. THE CHOICES

, . , We now consider a popular cuckoo-hashing implementation

B. Expected Maximum Matching Size variant in which the bins are statically partitioned intootw

1) Predetermined Number of Choicel this section, we equal sets, and each element holds one hash function to each
assume that each vertexc L independently choosek < set. This variant igasier to implement in hardwarbecause it
d, < 2 random vertices iR, whered, is predetermined. The can be implemented using two simsiggle-ported memories
following result provides the expected maximum matchingstead of a single dual-ported one.
size in this case. ) Formally, we consider the random bipartite graph =

Theorem 6:Given a predetermined average number quJr (R, U Ry), E), where R is now partitioned into two
choicess, letd; = (2 —a)-n anddy =n—d; = (a —1)-n be isjoint subsetsk, and R, with [R,| = 3 -m and |Ry| =
the number of vertices ih that choose one and two vertices md sjoint Subsets,, a d W | R m | Rdl .
R, respectively. The expected maximum matching izé&,) (1 — B) m. Each vertexww € L independently chooses a single

is given by: random vertex inR, and another single random vertex in
b Ry. This corresponds, for example, to a hashing scheme that
w(Ga) =m— <d2>< m ) X selects non-overlapping sets of bins as images of its hash
=\ /st functions (e.g., as in multilevel hashing scheme [39]der

Ll Hdz=s)bdy rg 4 N2 95 g) left [40]).
m m (s+1)"T Note that further evaluation of the results reported in this

whereb = min {ds, m — 1}. section can be found in Section VIII-C.

2) Random Number of Choicetn this section, we assume
that each vertew € L independently chooses < d, < 2 A Connected Components in Deterministic Graphs
random vertices inR, where for eachwv € L, d, equals 2  The following lemma counts all the possible bipartite giph
with probability p, and it equals 1 with probability — p. H,, of the form(Ly + (Ry, U Ru,), Ex) with degree 2 for
Based on Theorem 6, the following result reflects the explecteach vertex inL, where|Ly| = s, |Ry,| =i and |Ry,| =

maximum matching size in this case. j, such that each vertex € Ly is connected using a single
Theorem 7:The expected maximum matching siz¢G,) edge to some vertex iRy, and another single edge to some
is given by vertex inRy,.
1(Gp) =X 0,—0 (1) p2 L (1—p)" 2 (GQ:HE‘J) , Where Proposition 2: Lemmas 1, 2, 3, and 4 hold for this case as
11 (G,) is given by Theorem 6. " well.
Lemma 7:Let s =i+ j —1. The numbefl; ; of connected
C. Limit Normalized Expected Maximum Matching Size  bipartite graphs isT;; = /=! . ji=1 . sl = =1 . ji=1.

1) Predetermined Number of ChoicegVe are also inter- (i+5—1)
ested in the asymptotic expression, where» oo, such that
we fix both the loadv =  and the average number of choice§. Expected Maximum Matching Size
a= % of the vertices. This is reflected in the following In the next theorem we find the expected maximum match-

theorem. size with a static partition of the right-side vertices.

in
Theorem 8:The limit normalized expected maximum gl'heorem 11:Given the static partitioning of the blpal’tlte

matching sizev, — lim, ., “C2) with average number graphGp, the expected maximum matching siz¢Gp) Is

of choicesa € (1,2] is given by:v, = lim #lGa) _ 1 (Gg) =m*§ (Z) i (Bm) <(1_ﬂ).m> (1 : )”*SX

n—o00 ] —1 .

1 W (=2a(a—1)-e9) W2 (=2a(a— 1) e . = gom

a"_ 202 - (a — 1) + 402 - (a—1) - For <17 s+1fz')"‘s< i )S(erl—i)SX

a=1,itis given by, = lim, o 4% =1 1. o p (1=p)-m p-m/ \A=F)-m
Interestingly, if even a small fraction of the elements db no R

have choice then the expected maximum matching size is mdiere b, = max{0,s+1—(1—p)-m},

1. This is reflected in the following corollary. b, = min{s+1,8-m,}, P; = W and
Corollary 9 ((No) Perfect Matching)if 1 < a < 2 then T;; =/~ j7=1.(i+j —1)! (as given in Lemma 7).

Ya < 1. Proof: Similarly to the proof of Theorem 1, our proof is

2) Random Number of ChoicesVe now study the case pased on counting the expected number of vertices that
of the random bipartite graply, = (L + R, E), where each are not in some specific maximum matching of G5, based
vertex chooses two vertices with probabilityfand one vertex gn the decomposition ofs into its connected components.
with probability 1 — p). As we show in the next theorem, theas in the proof of Theorem 1, we consider the number of
asymptotic expression can be derivedy connected components with exactiyvertices inL andq =

Theorem 10:The limit expected maximum matching size, 4 1 vertices inR, U Ry, where we have to sum over all
Yy = limy, o0 “C2) where each vertex chooses two verticegossible combinationsi, s + 1 — i), wherei corresponds to
with probability p (and one vertex with probability — p) is  the number of vertices taken from, ands+1—i corresponds

Yp = Ya=1+4p- to those taken froni?,.
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The above expression consists of the following factors (fﬂorma ized byn)

order):
(i) choosing thes vertices inL;

it . . . . VIl. SUPER-CUCKOO: BIPARTITE GRAPHS WITHd > 2
(ii) choosing the vertices inRy;

(iii) choosing thes + 1 — i vertices inRy; We are now interested in checking how powerful cuckoo
(iv) the probability that alb vertices inR, may be connected hashing can be when we allow more than 2 hash functions
only to the chosen vertices inL; per element. Of course, using more hash functions will tesul
(v) the probability that alls + 1 — ¢ vertices inR, may be N an increase in implementation complexity, and therefore
connected only to the choservertices inL; one goal of this study is to point out the tradeoff between
(vi) the probability that alls vertices inL are only connected €fficiency and complexity.

to thei vertices iR, In this section we briefly show how our method can be
(vii) the probability that alk vertices inL are only connected aPplied to find an upper bound on the expected maximum
to thes + 1 — i vertices inRy; and, size matching where each left-side vertex has 2 choices.

(viii) the probability that all chosen vertices are connected.F_Orma”ya we are givgn two disjoint sets of yerti@sandR of
Finally, adding the expressions for all possible andi's SiZén andm, respectively, and a random bipartite graph =

and subtracting it fromn yields the claimed resuilt. m (L+ R E), where each vertex € L hasd outgoing edges
whose destinations are chosen independently at randor (wit

repetition) among all vertices ik. We obtain the following
C. Limit Normalized Expected Maximum Matching Size ~ UPPEr b((i)und on the maximum matching size of the bipartite
graphG*.
As in the last sections, we are also interested in theTheorem 15:Let b = min {n, mf—ll” andq = (d—1) -
asymptotic expression where— oo with both fixeda = - 4 1. Then (Gd) is lower or equal to
and fixedgs. This is achieved in the following theorem. 5 ' H q
Theorem 12:Given the static partitioning of the bipartite b s s g5,
graphGg, the limit normalized expected maximum matchingnin{n,mz(qs) (n) (m> (1 - g>d< ) (g>d dq’},

i . . — s/ \q m m (d—1)-5+2
sizeys = lim, 00 @ for 8 € (0,1) is given by:vg = =0 I
1_ ﬁ'((lx; ). (t; +to — t1 - t2), Wherety, t, are provided by AN _evaluation of the upper _boun_d ar_ld a comparison to
the following equations the simulated expected matching size is presented in Sec-
N N tion VIII-D.
e B =t e R = L
-5 e t1-e 3 e 1T to-e (2)

VIIl. EVALUATION AND EXPERIMENTS
A. Expected Maximum Matching Size With-= 2

Figure 2 shows the expected maximum matching size
normalized byn for various values ofn and m. We show
the expected maximum matching size both via our analytical
model from Theorem 1 and via simulations. For each instance
nof n andm, we randomizedn = 10,000 bipartite graphs. The
18sults fairly confirm that our model is accurate, and alsmsh
the convergence of the expected maximum matching size to its
limit. A simple evaluation appears in the following example

and satisfy the conditiomy, - t5 < 1.

For 8 € {0,1}, (namely, the trivial partitions), the limit
normalized expected maximum matching sigds L —1.e~.

We deduce the following two corollaries.

Corollary 13 (Asymptotic Equivalence)et d = 2. The
limit normalized expected maximum matching size“hf with
£ = 0.5 is the same as the limit expected maximum matchi
size of G.

Proof: We substitutes 0.5 in the expression from

=

. 5 — ;.o t2 o, e
Theo_rtem 12, and gef e bi-e - 05°¢ 07 Example 1:In casen = m = 2 (andd = 2), the expected
t2-e”"'. One of the solutions of the above equationgis= - .0 matching size i (G) = 12 — 1.875. This simple
— _ —2« 3 . .
b2 = W( 2ae ) In the proof of Theorem 4, we ShOwedresult can be justified as follows: In all cases the maximum

that —W (—2ae™2%) < 1. Thus,t; -t < 1. By substituting
this solution in the expression foys from Theorem 12 , we
get the exact expression as in Equation (1).

Corollary 14: Let d = 2, o < 2, and fix a partitiong.
The limit normalized expected maximum matching size=
@ is 1 Whenever71*W <B< 7“@.

matching size is 2, except for the two cases of maximum
matching of size 1, where all 4 edges are connected to a
spefific vertex inR. Each such case occurs with probability
(3) - Henceyu(G)=2- 1z — & = 2.

Figure 3 shows the expected maximum matching size nor-

limy, 00 malized byn as found in Theorem 4, for various values of
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D. Expected Maximum Matching Size With> 2

We evaluate the upper bound found for the expected match-
load «, both via our analytical model and via simulations. Thgg size (Theorem 15). Figure 6 shows our upper bound as

simulations were performed using = 1000 andn = o - m.  well as simulation results for various values of the numier o
For each value ofr, we randomized 100 bipartite graphs. Thehoicesd. We tookn = m = 100, while for each instance af,

results fairly confirm that our model is accurate. we randomized 0° bipartite graphs. In the case df= 2, our
We conclude by the following simple example: upper bound matches the exact expression found in Theorem 1
Example 2:In casea = 1, that isn = m, the normalized and thus matches the simulation results. In addition, we can
limit expected maximum matching size is compare simulation results for higher values dfwith our

1 1 bounds. For instance, in the case df= 3 the normalized

y=1+--W(-2-e?)+-W?(-2-¢7?) ~0.8381. expected maximum matching size via the simulatiof 9502,
2 4 . .

while our upper bound i$.9508. In cased = 4, we get

a simulation value 0).9795, while the corresponding upper
B. Expected Maximum Matching Size With< 2 bound is0.9820.

Figure 4 shows the normalized limit expected maximum
matching size, for various values of load and average g. Trace-Driven Experiments

number of choices:, both via our analytical model (from We have also conducted experiments using real-life traces
Theorem 4) as well as via simulations. The simulations were P 9

peformec usngn 1000 and — ., where for each | <C1080 01 2 Sgledrecton o G363 backhne <)
instance of the simulation we randomized 100 bipartite lgsap P 9 '

. : . Our goal is two-folded. First, we would like to verify thatrou
The results fairly confirm that our model is accurate. : . :
analysis agrees with results of real-life traces. And sdcon

we want to verify that the distribution of overflow list size i
C. Expected Maximum Matching Size With Static Partition highly concentrated around its mean, as stated in Theorem 2.

normalized byn, for various values of loadr and partition .experiment 100 times. Fig. 7 shows that the results of our

ﬁ.’ boltr; via o_ll_Jrr] an.alyt;c?l model (fron} The%rem 12)1‘388 V'%xperiments are very close to our model. Furthermore, d als
simulations. the simulations were performed using= shows the minimum and the maximum overflow list size as a

andn = a.m. For each pair of values of and 5, We o of the loadh, thus, introducing @onfidence interval
randomized 100 bipartite graphs. The results fairly conﬂng]f 98% for the case where = 10,000. Note that, as reflected

that our model is aC(_:urate. i i . in Thoerem 2, if we increase: (and setn accordingly) then
As expected, the limit expected maximum matching size {Re confidence interval narrows down

symmetric around3 = 0.5. In casea = 0.5 and 8 < 0.5,
while it seems that the normalized limit expected maximum
matching size is 1, it is not the case. For instance, in case
a = 0.5 and 8 = 0.45, we get thatl — v5 ~ 1.675- 107", In this work, we analyzed the performance of cuckoo
However, there are cases where imbalance in the partittes sihashing with a stash for loads abo®e. We first provided
does not reduceg, as shown for instance in Corollary 14. an exact expression for the expected maximum matching size

IX. CONCLUSION
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[17]
of a random bipartite graph with each left-side vertex pigki 18]
d = 2 right-side vertices. Then, we deduced asymptotic results
as the memory size goes to infinity, and showed a connectidfl
to the Lambert4” function.

Both these results directly apply as exact results for the
average number of inserted elements using cuckoo hashi#gl
They also help us size the stash needed in the algorithm.
In addition, they serve as an upper bound for any alternatiye
hashing algorithm.

We also discussed alternative cases, in which cuckoo eitf
uses a lower memory bandwidth to gain power, or usesya,
higher memory bandwidth to gain in efficiency, as well as [a4]
case in which memory is partitioned and can be implemented
using two single-ported memories. Finally, we evaluated Ofbs)
results on Internet backbone traces.

As future work, our goal is to implement the algorithm
in FPGAs, and evaluate its performance according to e
measures accepted in the switch industry (e.g., mean time to
failure vs. power utilization resulting from the CAM stash) [27]
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[44] H. I. Scoins, “The number of trees with nodes of alternpegity, is connected), we next construsf,,; and Q1. Let v; be
Mathematical Proceedings of the Cambridge Philosophicati@®y gn arbitrary vertex inS,, and letv, be an arbitrary vertex

vol. 58, no. 01, pp. 12-16, 1962. in I, g h ¢ | ists si
[45] F. Bergeron, G. Labelle, and P. Lero@@mbinatorial Species and Tree- in Ly U S, (such a vertex always exists singe> ¢ > n).

Like Structures Cambridge University Press, 1998. Similarly, let v} be an arbitrary vertex id),, and letv}, be an
arbitrary vertex inRg U Q,,. SinceH is connected there is a
APPENDIXA path betweemw; andwvs, and letv be the first vertex along this

OMITTED PROOFS path that is not inS,,. Similarly, v" is the first vertex along

the path between]| andvj that is not inQ,,. We differentiate

between three case§) v is adjacent taQ,, andv’ is to S,,.
The proof follows by induction om. For s = 1, there are |n this caseS,; = S, U{v} andQ, 11 = Q,U{v'} and the

2 edges in the graph and therefore every graph with3 is  corresponding subgraph is connectéi); v is not adjacent to

not connected. Assume that the claim holds up untit s’,  a@,,. Letw be the vertex before in the path between; and

we next prove that it holds for any bipartite graphl such 4,, and letw’ be the vertex beforev in the path. Note that

that [Ly/| = s + 1 and [Ry/[ > s’ + 3. Assume towards «' ¢ S, by the choice ofv, and thatw ¢ Q,, (otherwise

a contradiction that there is a graph’ that is connected. 4 is adjacent to aQ,). Thus, for S, = S, U {v} and

We first show that there is a vertex iy with a degreel: @, ., = Q, U{w}, the corresponding subgraph is connected;

This follows from the fact that the average right-side degreiii) +' is not adjacent to &,,. The claim holds similarly to case

is 2(57;))1) < 2, implying that there is at least one vertex with(ii) by looking at the path betweer{ andv}. We continue this

degree strictly less thay since the graph is connected, thereonstruction for iterations, resulting in two subse$§ C Ly

are no right-side vertices with degreeletv,. be such a vertex andQ, C Ry of sizeq each, whose corresponding subgraph

and letv, € Ly, be the (only) left-side vertex to which it isis connectedm

connected. By the induction hypothesis, the graph induged b

Ly \ {v¢} and Ry \ {v,} is not connected, implying it has

at least two connected components.Hh, v, is connected to

v, and since its degree isit can be connected only to one of Since each vertex ik has a degree of two, the sum of the

these components. This implies tHdt is also not connected, degrees of all the vertices iRty is 2s = 2q — 2. Therefore,
and the claim followsm there must be at least one vertex ¢ Ry with degree 1

(there cannot be a vertex with degree 0 siftés connected).
Let vy, € Ly be the (only) vertex that is connected t@
and g € Ry be the other vertex that is connectedutp.
We first consider the case whese= ¢. For S C Ly, Also consider the bipartite grapH = ( Ly + RH,EH> that
let d(S) C Ry be the set of vertices that are adjacent t@ given by removinguy from H and adding a new edge
any vertex inS. Hall's Theorem [43] implies that to prove (,, 4.). By the construction off, the degree of each vertex
that pu (H) = ¢ (namely, there is a perfect matching i) in 7, is exactly 2. Moreover, sincH is connectedfT is also

it suffices to prove that for eveny C Ly, |S| < [d(S)].  connected. Hence, Lemma 2 implies that there is a matching of
Assume towards a contradiction that there is a SuSSetLr  sjzes in f. By the construction off, this is also a matching

such that|S| > |d(S)|, and denoted(S)| by b. Furthermore, iy graph /. m
consider the bipartite grapi = <ﬁH + Ry, EH>, in which

Ly = Lu\ S, Ry = Ry U {og} \ d(S) (Whereig is a D. Proof of Lemma 4
newly-introduced vertex) and any edge i{H) of the form

A. Proof of Lemma 1

C. Proof of Lemma 3

B. Proof of Lemma 2

: . First, if H is a tree then it is connected by definition. To
(vg, vr) SUChAthat.W < LH\S andv, € d(S) 1S replaced W'Ath show the other direction, we assume towards a contradiction
the edge(v;, vz in K. Notice that since is connectedl  y o 17 s 5 connected graph with cycles; lét be a cycle
must be connected as well. Recall thsf > b, thus‘LH‘ = in H, and consider an edge = (vr,vg) that resides at
ILg\S| < s—b—1, while |Ry| = |Ry U {og}\d(S)| = cycleC (Wherng € Ly :imd UR € Ry). We build the
|Ry| — |d(S)| +1 = s — b+ 1. This contradicts Lemma 1, Pipartite graphH = <LH + RHvEH>- such thatly = L,
implying that for everyS C Ly, |S| < |d(S)| and by Hall's Ry = Ry U {ir}, Whereoy is a newly-introduced vertex,
Theoremy (H) = g. and Ey; = Ey \ {e} U {¢}, whereé = (vr,,9z). Intuitively,

For s > ¢, trivially u(H) < g. Therefore, it suffices to we replace one of the edges in the cycle to reach for a newly-
show that there exists a subs8t C Ly of size ¢, such introduced vertex, and by that we increase the size of the
that the corresponding bipartite subgraph is connected (atonnected component. Notice thaf is connected and all
hence has a perfect matching of sige We constructS in ¢ vertices in Ly have a degree of 2. Bu Ll < ‘RH‘ -1,
iterations such that at the end of iteratiorwe end up with ;s contradicting Lemma 1 and the claim follovss.
some subsets,, C Ly and Q,, € Ry of the same size
n, whose corresponding subgraph is connected. We start by
n = 1 and pick some vertexy € Ry and one of its adjacent E- Proof of Lemma 5
verticesvy, € Ly. Assuming that at the end of iteration We count the connected bipartite graphs with two disjoint
sets.S,, and @,, were chosen (and their corresponding grapbetsLy and Ry. By Lemma 4, we have to count the number
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of trees over the seLy U Ry, where edges must be of the By substitutinga = -, we get:

form (vp,vg), such thatv, € Ly andvg € Ry. We build R 5 s

(and count) the set as follows: The number of trees over the _ iy, (1 _1 3 (n) (gn)( =5y ) <1 _
setRy is (s+1)° . For each such tree instance, we put a @ miSiso s ekl In
new vertex (orlglnally fromL ;) between each pair of adjacent A\ i sl
vertices. There are! possibilities to do som ( 18 _, > ' <5 n) ( )

)

jlsti=9)—1, s—l—l—z)Z 1 i+ (s+1—1)—1)! )
(i (s +1 - Hertmo=t
As in the proof of Theorems 4 and 8, using the monotone
Considering the random graph with vertices anch edges convergence theorem [36], we can put the limit inside the
such that a vertexn; is connected to vertex, if and only sum. By further simplifying the above expression with sanil
if there exists an element that hashes intg and m,. This consideration to the proofs of Theorems 4 and 8, we get
random graph is called the cuckoo graph [9]. Neglecting tﬁé(entually
O(1) loops, this graph is equivalent to the BedRenyi random 1 2 FL D (g gyt
graphG,, ,, that assigns equal probability to all graphs with7s =, ~ Z il (s+1—1)! '
exactlyn edges (andn vertices) =0 1o i
A matching inG,, ,, corresponds to directing some of the (3 . e’%ﬁ) . ( @ -e’%)
edges in the random graph such that the in-degree is at most B 1-8
1. For each connected componéitin G,, .., if C is a tree \We switch the order of summation and get that {0, 1, ...}
we can direct all edges, while in all other cases we can dlré"fﬁds goes frommax{0,i -1} to co. We also substitutg =
as much edges as the number of vertices. —i(ors=i+j—1). Thus,
The number of such edges and vertices can be found in [34] _1_p-(A-p) Z Z (A 3)
[37], yielding the exact same result. o 2

n—00

»
+
—
|
~

a

F. An Alternative Proof of Theorem 4

2 , il
=0 j=max{0,i—1}

( a .e—%)i.(a.e—fw>j
15 5
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LetT (2,y) = 32 1o i x'-y7. This expression has
been previously found [7] to be the multivariate formal powe
eries about the poirttg, yo) = (0,0) of ¢ (x,y) = t1 (x,y)+
o (z,y) —t1 (z,y) - ta (z,y) wheret1 (z,y) andty (z,y) are
given by the following implicit multivariate functions:

G. Proof of Lemma 7

The proof is identical to the proof of Lemma 4 with two
modifications. First, instead of initially counting the nben of
trees over the seRy, we count the number of parity trees [44
over the disjoint set&y, andRp,. By [44] we are given that
the number of parity trees i§~! - j°~1. Second, we do not
have to color the edges because of the partition. z=t (z,y)-e 2@V oy =ty (z,y)-e @YV (4)

However, the mentioned range of convergence in [7] is insuf-
H. Proof of Theorem 12 f|C|enF for our case. (Note qlsp that in [7] the sums should be
overi+ j > 1 and not overi,j > 0.)
As in the proof of Theorem 4, we compute the limit of Since we compute the limit normalized expected maximum
29 asn — co. We consider the case whete=  and matching, then the expression for; in Equation (3) is
0 < B <1 are fixed. Soys = limy_, o0 lt(gﬁ), that is, boundec_i frqm below by 0, thus, by Equation (3) the double
summation is bounded from above by a constant. On the other

hand, all terms in the summation in Equation (3) are positive

1 "y & Bemy (1—B)-m Then, if we look at the partial-sum series (by defining an
L N (m - ;0 (s) :Zbl ( i )( s+1—i ): arbitrary order), we get an increasing series which is bednd
N s41_4 \"* ENE Thus, by the monotone convergence theorem the doublg series
(1 - 5,m> : (1 - m) : (ﬁ) : converges for any values andy satisfyingz = 5 - ¢ #
(s+1—i)s.P_ ) andy:%wfﬁ.
(1-8)-m bt However, the multivariate functions in Equation (4) have

o . multiple branches (as the Lambé#t-function does [35]), that
By substituting the expression fdf .., from Theorem 11, i tor 4 givenz andy there is more than one solution. We

and moving(}) inside the second summation, we get: aim to find this branch in terms of, and t,. We use the
implicit function theorem to find the derivatives singuteas.

n s+1 1 —,B)m i n—s . . .
o=t (3RS (D)D) (1-55) - The dacobiants ghen by »
(17 s+1—1 )ns< i )S.(S+1*i )S. J:( e Zitl(zy) _tl(zlyt)l(.mey)z ! )a
(1-8) m g-m) \(A-p8) m ~ta (z,y) e ©
gD (s 41— )" (i (s+1—d) — 1) and it is invertible whereve/| # 0. Thus, there is a derivative
(i-(s+1—q))itHi=D=1 singularity in caset; (z,y) - t2 (z,y) = 1, which is the
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only solution. Therefore, as the given formal power seriéd. Proof of Theorem 8

in Equation (3) is about the poiritzo,y0) = (0,0) (which  \we compute the limit of“C<) asn — co. We consider
corresponds tax = 0), wheret, = t, = 0, it converges t0 the the case wherer — ™ anda = “+2% ~ 1 are fixed. So

branch where; (z,y) - t2 (z,y) < 1 (note that both; (x,y)

e o = lim, o0 “92) that s,
andt, (x,y) are always positives 7 Hiin— "

b 2(d2—s)+dy
o1 d2 m s+1
em 2 (= (V) (1) ()T
I. Proof of Corollary 14 o

s+1\%
One of the solutions to Equation (2) is given by:= ﬁ ( m ) 'PS>
ty = % By substitutingt; and ¢, in the expression foryg . di2d ]
from Theorem 12, we get that the limit normalized expected>Ven thata = S22 andn = d; + dp, we find that

i ; i i : dy = (a—1)-n and di = (2 — a) - n. Similarly to the proof
maximum matcahmg S'Zae Is 1. We alsq have to verify thaF of Theorem 4, we first have to find that each term in the
to < 1. Slnceﬁ and G are both positive, we are left with

o a.1B ing th dratic | i h summation is an increasing function with respectntoWe
725 - 5 < 1. By solving the quadratic inequality, we get the,. ..\ that(1 — ﬂ)z(drs)ml _ (1 - 1) P i an

claimed condition. Note that fore = 1/2 the range reduces jncreasing function”(using differentiation), "and also fitat

tof=1/2.m L. (la=bmy (1) (5;—1)28 is an increasing function as previ-
ously. Consequentially, each term in the sum is an incrgasin
function and, by the monotone convergence theorem [36], we

J. Proof of Lemma 6 can put the limit inside the sum. By further simplifying the
above expression as in the proof of Theorem 4 we eventually

Assume on the contrary thdf is connected but that thereget:
is (at least) a singlg vertezixL € Lf" wiAth degree 1. Consider 1 1 ()i~ e
the bipartite graphH = <LH +RH,EH>, that is given by 7a=7 = 5.5, =) Z i (a2 (a—1)-e")
removing the vertexy;, (and its connected edge) frof . =t

By the construction offf, we get thatH is connected, but Let T(z) = 32, (—j)"*
J= J:

2

-2J be a Taylor expansion,

‘ﬁH’ +1< ‘J:?H‘ which contradicts Lemma 1 where by substitutingr = —a -2 - (a—1) - e~ we get
the above expression. Similarly to the proof of Theorem 4,
we get that

K. Proof of Theorem 6 1
_ : T(x) =W (x) = ;W? (),
As in the proof of Theorem 1, our proof is based on 2

counting the expected number of vertices/inthat are not with convergence withinz| < e~! [35].

in some specific maximum matchiny of &, based on the  Since the functionf (o) = —a -2 - (a—1) - 7% gets

decomposition of> into its connected components. The prooks minimum ata = a1, where it equals—@e—l, and

is almostldent_lcal, with the mod|f|cat_|on that, due to Leména _2(a=1) -1 < e for all a € [1,2], then for alla we can

we only take into account thé, vertices that have a degree! 4 o o

of 2 (instead of alln vertices in the proof of Theorem 1). substituter = —a- 2 (a —1) - e Hence, it is within the
Thus, the expected number of connected components in

with s elements inL ands + 1 in R is given by:

radius of convergence & (z).

Finally, for the case where = 1, thend; = 0 andd; = n.
Therefore, the expression for the expected maximum majchin
size is reduced ton — (m - (1 — 1)"). Thus,

<d2>< m >.(1_8+1)2(d28)+d1-<8+1>2S.P
s/\s+1 m m Yo = lim M(Ga):lim1~<m—<m~<1—1) ))

where the above expression consists of the same consaterati 1 1

as in the proof of Theorem 1. Finally, as before, adding the
expressions for all possiblés and subtracting the sum from
m yields the claimed resulm

|
\

|

\

99

N. Proof of Corollary 9

L. Proof of Theorem 7 We show thaty, is strictly monotonically increasing, thus
ve < 1for1<a<2,sincevy, =1 for a = 2. This is shown

The number of vertices in, with degree 2 follows a by differentiatingy, with respect tou:

Binomial distribution withn experiments and a probability of {4, - 1 —ua
succesgp. In Theorem 6 we found the expected maximumia ~ 402 (a — 1) (W(-2a(a=1)-e*) +2a(a-1)-
matching size of each such instance. Thus, by the law of W (=20 (a—1)-e )

total expectation, the claimed result is given by computing ' '
the weighted average, where we computby the equations Both the first factor—m and the third factor
di+do=nanddy +2-do=a-n. M W (—2a(a—1)-e7**) are negative. Thus, if the second
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factor is positive then% is an increasing function with P. Proof of Theorem 15

respect taz € [1,2). _ . We first establish a few lemmas before proving the result.
If o > 0.5, then2a(a—1) > 1, and sinceW (z) is  ag pefore, we start by considering a deterministic bipartit

minimized for x = —% where it equals—1, the second graphH = (Ly + Ry, Ey) with degreed of each vertex in

factor is positive. On the other hand, consider that< Ly, where|Ly| = s and|Ry| = q.

0.5. SinceW (=20 (a — 1) e 2*@" V) = —2(a— 1o and | emma 8:If (d—1)-s < ¢ — 2, then H is not connected.
W(z) is an |ncrei';123|r(1971f)unctlon, then we have to Show  proof: As in the proof of Lemma 1, the proof follows
that —2a(a —1) - e Y < —2ar(a — 1) - e7**, that IS, py induction ons. For s = 1, there ared edges in the graph
—2a(a —1) > —aa. The last inequality can easily be shownyng therefore every graph with > d + 1 is not connected.

forl<a<2m Assuming that the claim holds up until= s/, we next prove
that it holds for any bipartite grapfif’ such that|Ly/| =
O. Proof of Theorem 10 s'+1and|Ry/| > (d—1)-(s"+ 1)+ 2. Assume towards a
e contradiction that there is a gragi’ which is connected.
We compute the fimit of(%2) asn — oc. We first show that there are—1 verticesv,,, vy, . . ., Ur,_,
. 1(G) in Ry, all of a degreel such that they are connected to the
T = nhj{}o n same vertex, € Ry.: The sum of right-side vertex degree

1 n ., isd- (s +1). Also, since the graph is connected there are no
= nan;O - Z < > p L (1=p)" " (Ga:H@ right-side vertices with degre@ This implies that there are

d2=0 a2 at least(d — 2) - (s’ + 1) + 2 vertices of degree 1, thus there

Let X ~ Bin(n,p) be the random variable counting the®XiSts a vertexy € Ry as claimed. _
number of vertices inL that choose 2 vertices i. By  BY the induction hypothesis, the graph induced by \

summing over three disjoint ranges of possible valuesifor {v.} and Ry \ {v,,, vry,...,vr,_, } IS NOt connected, which
we get implies that it has at least two connected component&’Iny,
L g is connected to all vertices., , v,.,, ..., v,,_,. Since its degree
np—n . . .
. 1 is d it can be connected only to one of these components. This
o= nlinio dzo PriX =da}- n (G«ZZH%) + implies thatH’ is not connected as well, and the claim follows.
-
[ |
3
[np+n4d]—1 . H
) 1 Lemma 9:If H is connected andd — 1) - s = ¢ — 1 then
Jm o3 PeX=dpDon(Congn) =
da=|np—n? |+1 Proof: Assume towards a contradiction tha{ H) < s,
. = 1 and consider some maximum matchidd. Let v, € Ly
A > . PriX =da}- 2 n (Ga:H%) be a vertex that is not in the maximum matching,
d2=|np-—ni] and vy, , vy,,...,v,, , be the vertices inkR (which are not
By Chebyshev's inequality we get thatnecessarily distinct) that are connected «o All vertices
Pr {|X —np| > ni/mp a- p)} < 1 Since UrirUra-eUr,, 8r€ connegted also to qnother vertexLin,
B otherwisev, was in the maximum matching/.

MH‘ =

p(1—p) <1, we get thatPr{|X —np| > "%} < —1-BY  Consider the bipartite grapi = <ﬁH + RH,EH>, which
the fact that% p Ga:1+d—2> < 1, we find that the first and is given by removing, from H. Since the right-side vertice_s
the third limits go to zero. Upy,Ury, .-, 0p,_, are also connected to the other left-side
Since the functioru: (G,,) is increasing with respect ta vertices (exceptv,), the bipartite graphH is connected.
(this can be shown by a simple combinatorial argument), Wewever, we get thatl, ;| = s—1 and’RH’ =(d—1)-s+1,

get the following lower bound: which contradicts with Lemma 8.

[nptnd |1 We note that in contrast to Lemma 2, the corresponding
v = lim Z Pr{X =d>}- 1 - (Gazuiz) proposition is not true forl > 2; that is, if H is connected
e da=np—nd|t1 " " ands < ¢, then the maximum matching size is not necessarily
s. As a counter example, consider the case whkte3 and
> lim (1— %) - ) (G 3 ) s = g = 3, where two left-side vertices choose the same
nee ni/ n a=14 lne=nt LAl single right-side vertex (using all their 3 choices), ané th
as well as the following upper bound: other left-side vertex chooses all 3 right-side verticebe T
. resulting bipartite graph is clearly connected, but the imaxn
[np+nd]—1 1 matching size is only 2 (only one of the first two left-verdce
Yo o= lim > Pr{X =d}- o (Gazwqi) can be in the matching).
dy=np_n3 |41 " Lemma 10:If (d—1)-s = q — 1 then H is connected if
1 and only if it is a tree.
< lml.-—-p (G anﬂij_l) : Proof: The proof consists of the exact same construction
a=1+ =

H as in the proof of Lemma 4, where we eventually get a
By the squeeze theorem, we get the claimed remult. contradiction with Lemma 8. [ ]
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Lemma 11:The numberT¢ of connected bipartite graphs

H whose|Ly| = s and |Ry| = 2(d—1)-s+1is T =

WD D (d—1) s+ 1)
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APPENDIX B
THE LAMBERT-W FUNCTION

The LambertW function, usually denoted by (-), is
given by the following implicit representation:

z2=W(z)- eV,

wherez is a complex number [35].

For real valued arguments, i.e.is real valuedW (z) has
two real-valued branches: the principal branch, denoted by
Wy () and the branchv_; (-). Figure 8 shows the two real-
valued branches. For instand&, (—e~!) = W_; (—e™!) =
—1 andW, (0) = 0.

Note that the notatio®V () usually relates to the principle
branch, i.eWj (-). Thus, although one would expect that for
real-valuedz, W (z - e*) = z, this is only the case for > —1;
incasez < —1, W_q (z-€*) =z # W (2 - ).

Proof: By Lemma 10, we have to count the number of

bipartite trees over the two disjoint setg; and Ry of sizes

and(d — 1) ---+1. SinceH is a tree, then there are no cycles.

Consequently, each one of the verticed.in is connected to

d distinct vertices inRg. Moreover, no two vertices it g
share more than 1 vertex iRy . For each vertex, € Ly, let

S, be the set of thel right-side vertices that, is connected
to and also let the cyclé€’,, be a cycle that consists of the
vertices ofS,,.

Consider the graphi = <1%H,EH>, which is given by
connecting each cycle’,, to C,, using a common vertex
v, if and only if v, is connected to both,, andwv,,. The
resulting graphX is a Husimi graph over(d —1) - s +
1 vertices, where the number of such (labeled) graphs is

Ut D (4~ 1) -5+ 1) [45].

Finally, each setS, is determined by the (labeled) vertex
in Rr. Thus, we multiply bys! the above expression. =

We are now able to prove the result.

Let M be a maximum matching d@¥. Similarly to the proof
of Theorem 1, the proof is based on counting the expected
number of vertices ink that are not part of\/, and on the
decomposition of7 into its connected components.

We count the expected number of connected components
with s left-side vertices andy = (d —1) - s + 1 right-side
vertices. By Lemma 9, the maximum matching size of each
such connected component is exactlyThus, there arg — s
right-side vertices that are not if/.

Let H be a bipartite graptf = (Ly + Ry, Eg), with
degreed for all vertices inLy, where|Ly| = s and|Ry| = q.

The rgrobabilityPS that H is connected is given by, =

e
(dé)d..;'

The remainder of the proof is similar to the proof of
Theorem 1m




